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Introduction

The view that perceptions and evaluations depend on their context was already a central tenant 
of the late 19th century’s Gestalt psychology theory [1] and of early Utility theory [2]. A centu-
ry later, the pervasiveness of perceptual illusions and decision-making biases, combined with 
decades of research in psychology, economics and neurosciences, consolidated the notion that 
perceptual and economic decisions are highly susceptible to contextual effects [3]. A significant 
fraction of these contextual effects seems to result from two fundamental computations: refer-
ence-point centring and range adaptation [4–6].

In most ecological and real-life situations, decisions are arguably strongly influenced by the 
retrospective recollection of past outcomes experienced in similar situations [7]. Yet, in these 
experience-based decisions (realm of the reinforcement-learning framework), the notion of out-
come context-dependence has been mostly neglected until recent times [8, 9] involving either 
description- or experience-based choices. In description-based paradigms, decision variables 
(i.e. payoffs and probabilities. Here, we review recent experimental work demonstrating that 
in human reinforcement learning, outcomes are encoded and remembered as a function of the 
learning context. 

By building on earlier work in perceptual decision-making, we consider the outcome context-de-
pendence as a manifestation of adaptive coding. Adaptive coding formalizes the idea that the 
(neural) representation of a variable is constrained by its underlying statistical distribution (the 
context [4, 5]). Analogously, in reinforcement learning, outcome encoding is influenced by the 
distribution of outcomes experienced in the same or similar contexts.
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Outcome reference point-dependence  
in reinforcement learning 

Harry Helson (1898–1977)’s adaptation-level (AL) theory constitutes the first systematic empir-
ical investigation and theoretical formalization of the reference point-dependence of perceptual 
judgments [10]. AL theory postulates that perceptual features (such as luminosity, loudness and 
weight) are evaluated relative to a norm (or adaptation level) as follows:  

= − ̅ 

where Ji is the judgement of a particular stimulus i on a specific attribute, Si is the objective 
value of the same stimulus in the perceptual attribute under consideration, and S− is the norm, 
namely the arithmetic mean of all stimuli relevant to defining the context. The norm constitutes 
a reference point, usually defined as the running average of similar stimuli recently or simulta-
neously sampled, which is used as a point of comparison to judge the currently experienced 
stimulus (centring). By importing the AL core intuition into the realm of economic judgment and 
decision-making, Kahneman and Tversky proposed that the utility of an expected outcome does 
not reflect its objective value, but rather a sense of gain or loss, relative to a reference point. 
Reference-point dependence is therefore an intrinsic feature of prospect theory (PT [11, 12] 
specifically in research on decision-making under risk. Kahneman and Tversky’s 1979 study 
tested financial choices under risk, concluding that such judgements deviate significantly from 
the assumptions of expected utility theory, which had remarkable impacts on science, policy and 
industry. Though substantial evidence supports prospect theory, many presumed canonical the-
ories have drawn scrutiny for recent replication failures. In response, we directly test the original 
methods in a multinational study (n = 4, 098 participants, 19 countries, 13 languages). 

In a recent study, we tested if reference point-dependence affects the way outcomes are 
encoded (and stored in memory) in human reinforcement learning [**13]. Our behavioral par-
adigm joins a learning phase with a transfer phase [14, 15]. Initially, during the learning phase, 
participants had to choose between options presented as fixed pairs of cues that were associ-
ated with a probabilistic outcome. The type of outcome defined the learning context: ‘gain’ (i.e. 
reward maximization) or ‘loss’ (i.e. punishment minimization) (Figure 1A). In the transfer phase, 
participants were required to express their option preference for each pairwise possible com-
bination, including hybrid combinations of options from different learning contexts (Figure 1B). 
Two key behavioral results emerged: i) during learning phase, accuracy was well above chance 
and remarkably similar in the gain and the loss contexts; ii) option preferences in the transfer 
phase violated the strictly monotonic ranking dictated by their expected values (Figure 1A-B). 
More specifically, we found a significant preference for the small-loss option over the small-gain 
option. Crucially, these two key effects violate the predictions of outcome encoding by a stand-
ard Q-learning algorithm. In the learning phase, the standard model predicts lower performance 
in the loss condition: a phenomenon due to an intrinsic asymmetry in reinforcement rate in the 
gain and loss contexts (a.k.a. the punishment learning paradox [16–18]. In the transfer phase 
the standard model predicts a strictly monotonic ranking of option preferences as a function 
of their objective values. By following the intuition of AL and PT theories, we proposed a mod-
el that learns the value of a reference-point and uses it to dynamically center the outcomes 
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before computing the option-specific prediction error (Figure 1C). We refer to this model as the 
REFERENCE model. This model successfully explains symmetrical gain-loss performance in the 
learning phase and the suboptimal preference pattern in the transfer phase. Moreover, it outper-
forms the standard Q-learning model in a broad range of conditions, arguing in favor of outcome 
reference-point dependence in reinforcement-learning. This result has been replicated not only 
in our laboratory, but also in other studies and featuring different designs, including social learn-
ing [19] and different option contingencies, arrangements and manipulations [*20–22].

Figure 1
Reference point-dependence in RL: task, results and model variables

(A) Learning phase contexts (top panel) and typical behavior (bottom panel). Subjects are presented for several trials with two 
learning contexts: AB (gain-maximization context) and CD (loss-minimization context). Feedback is probabilistic. Accuracy typically 
starts at chance level and progressively increases, reaching a similar plateau in both learning contexts. 
(B) Transfer phase contexts (top panel) and typical behavior (bottom panel). After the learning phase, symbols are re-arranged 
in new combinations. Here, we focus on the most informative combinations (AC and BC). The hallmark of outcome reference-point 
dependence is the preference for C over B in the BC comparison (green bar). While these behavioral signatures observed in both the 
learning and the transfer phase strikingly contrast with a model assuming objective outcome encoding (white dots), they are well 
captured by the REFERENCE model (black dots). Of note, choice pattern in the AC is also informative and indicates that the centering 
is only partial. 
(C) Evolution of the contextual variables (top panel) and subjective outcomes (bottom panel). The top panel illustrates the canonical 
temporal evolution of the reference points in the gain and loss contexts. Halfway through the learning phase, the reference points 
cross the expect value of the small gain/loss options. The bottom panel illustrates the resulting evolution of the average subjective 
outcomes for each option. Symmetrically to the top panel, roughly halfway through the learning phase, the subjective value of the 
outcomes of the EV25 and EV-25 options started to be subjectively ‘perceived’ as negative and positive, respectively. 
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Outcome range-adaptation  
in reinforcement learning 

In the late 20th century, Allen Parducci revealed the presence of context-dependence in affec-
tive assessments of happiness, pleasure and pain, and formalized his findings in the range fre-
quency (RF) theory [23]. Of particular interest to our review is Parducci’s ‘range principle’, which 
describes the subjective judgement of a stimulus Ji as:

=
−
−

 

where Si is the objective value of the stimulus i in the perceptual attribute under consideration, 
while Smax  and Smin  are the highest and lowest values presented in the relevant context, bound-
ing the range of possible outcomes. Essentially, the range principle states that subjective valu-
ation is adapted to the underlying distribution of stimuli through a normalization rule. Recently, 
Kontek and Lewandoswky translated this idea into description-based decision-making by pro-
posing the range-dependent utility model as an alternative to PT [*24]. The model assumes that 
the prospective valuation of the expected payoff of lotteries is range-adapted and accounts for 
several known behavioral paradoxes [25]. 

In a couple of recent studies, we tested if the range principle also applies to outcome encod-
ing and retrospective retrieval from memory in reinforcement learning [**26, **27]. We built 
upon the previous behavioral paradigms to include systematic manipulation of outcome magni-
tudes, generating learning contexts with different outcome ranges. As in the previous study, the 
learning phase was followed by a transfer phase, which included new combinations of options 
(Figure 2A-B). Again, two key results emerged from these studies: i) accuracy was very similar 
in the small and the big magnitude contexts; ii) in the transfer phase, participants’ choice-elic-
ited preferences were not consistent with the objective outcome values. Notably, options that 
were locally correct in the small magnitude contexts were systematically preferred to options 
that were locally incorrect in the big magnitude contexts, despite their objective expected values 
having the opposite ranking. A standard Q-learning model (with objective outcomes and softmax 
decision rule [28]) fails to predict this pattern, because its choice probabilities (and therefore ac-
curacy) are strongly affected by the relative magnitudes of the option values. In line with RF the-
ory, we proposed a model that learns the range of possible outcomes and uses it to dynamically 
rescale the outcomes before computing the option-specific prediction error (Figure 2C). This 
model, referred to as the RANGE model satisfactorily captures the key behavioral effects. In our 
last study [27] range adaptation has been shown to lead to suboptimal choices, particularly no-
table in reinforcement learning (RL, we also modulated the difficulty of the learning phase in two 
ways: by manipulating outcome information (partial vs. complete feedback) and by manipulating 
the task structure (blocked vs interleaved design). We found that outcome range adaptation was 
more pronounced in the easiest settings (block design, complete feedback), consistent with the 
idea that these manipulations enabled the participants to identify the context-relevant variables 
more easily. Crucially, as predicted by the RANGE model, this result was accompanied by a re-
duction in the subjects’ ability to successfully extrapolate option values in the transfer phase. 
This finding is in striking opposition to the almost universally shared intuition that reducing task 
difficulty should lead, if anything, to more accurate and rational behavior [29, 30]. 
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Another recent study investigated choices in a reinforcement learning paradigm featuring repeat-
ed choices between a deterministic (i.e. risk-free) and a probabilistic (i.e. risky) option. Results 
showed that the outcome range matters in subjective outcome values [*31] when people learn 
the odds and outcomes from experience, the extreme outcomes (best and worst. Specifically, 
the authors convincingly demonstrated that risk preferences were strongly driven by an in-
creased saliency of the extreme (i.e. the highest and the lowest possible) outcomes presented 
locally, in a given context, rather than being attached to any specific objective outcome value.

Figure 2
Range adaption in RL: task, results and model variables

(A) Learning phase contexts (top panel) a typical behavior (bottom panel). Subjects are presented for several trials with two learning 
contexts: AB (big-magnitude context) and CD (small magnitude context). Feedback is probabilistic. Accuracy typically starts 
at chance and progressively increases reaching a quite similar plateau in both learning contexts. 
(B) Transfer phase contexts (top panel) and typical behavior (bottom panel). After the learning phase, symbols are re-arranged 
in new combinations. Here, we focus on the most informative combinations (AC and BC). The hallmark signature of outcome range 
adaptation is the preference for C over B in the BC comparison (green bar). While these behavioral signatures observed in both 
the learning and the transfer phases strikingly contrast with a model assuming objective outcome encoding (white dots), they are 
well captured by the RANGE model (black dots). Of note, choice pattern in the AC is also informative, as it indicates that the range 
adaptation is only partial. 
(C) Evolution of the contextual variables (top panel) and subjective outcomes (bottom panel). The top panel illustrates the canonical 
temporal evolution of the ranges in the big and small magnitudes contexts. To the end of the learning phase, the ratio between the 
expected value of the options and the range values become similar in the big and small magnitude contexts. Crucially, Rmax and Rmin 
updates are conditional of R > Rmax and R < Rmin, respectively. The bottom panel illustrates the evolution of the average subjective 
outcomes for each option. Notably, approximately halfway through the learning phase, the subjective value of the outcomes of the 
EV2.5 and EV0.75 cross over. 
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What are the functional roles  
of outcome context-dependence  
in reinforcement learning?

Converging evidence shows that outcome context-dependence systematically induces subopti-
mal choices when options are extrapolated beyond their original learning contexts in the transfer 
phase (Figure 1-2). Our work shows that context dependency can, of course, improve learning 
performance in specific conditions (loss avoidance, small magnitude). However, most of these 
beneficial learning effects could be achieved by normalizing value signals at the choice phase, 
rather than at the learning and memorization phase, without bearing the costs of irrational 
preferences in the transfer phase. We speculate two possible functional roles for this learning 
bias. First, outcome context-dependence could simply result from adaptive and efficient (neural) 
coding principles, thereby optimizing information processing during learning [4, 5]. Alternatively, 
while context-dependent learning induces suboptimal choices in our laboratory setting, they 
may be evolutionarily rational, meaning that they generate, on average, optimal performance 
in the environments where they evolved – e.g. in environments where the resources are highly 
volatile [32, 33].
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Open questions

The present demonstration of context-dependent outcome encoding (Figure 1 and Figure 2) 
relies on a combination of an instrumental learning phase and of a transfer phase eliciting 
preference as instrumental choices (e.g., in a procedural manner). Whereas recent evidence 
suggests that the Pavlovian learning system presents similar outcome encoding constraints [34], 
future studies should investigate address whether the same mechanism generalizes to other 
learning (Pavlovian, instrumental, goal directed) and representational (declarative, episodic) 
systems [35, 36]. Finally, although we focused our review on situations, where context-depend-
ent reinforcement learning concurrently benefits the learning phase and undermines generaliza-
tion, an exhaustive investigation of learning and transfer environments could potentially identify 
situations where this trade-off can be tipped in favor of better generalization. 

Deciphering the mechanisms and properties of reference-point dependence and range adap-
tation may also be key to appreciating the neurobiological encoding of learning and decision-
related variables [**13, *37, 38]. 
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