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Abstract 
The reliable identification of the irritative zone (IZ) is a prerequisite for the correct clinical 
evaluation of medically refractory patients affected by epilepsy. Given the complexity of MEG 
data, visual analysis of epileptiform neurophysiological activity is highly time consuming and 
might leave clinically relevant information undetected. We recorded and analyzed the interictal 
activity from seven patients affected by epilepsy (Vectorview Neuromag), who successfully 
underwent epilepsy surgery (Engel >= II). We visually marked and localized characteristic 
epileptiform activity (VIS). We implemented a two-stage pipeline for the detection of interictal 
spikes and the delineation of the IZ. First, we detected candidate events from peaky ICA 
components, and then clustered events around spatio-temporal patterns identified by convolutional 
sparse coding. We used the average of clustered events to create IZ maps computed at the 
amplitude peak (PEAK), and at the 50% of the peak ascending slope (SLOPE). We validated our 
approach by computing the distance of the estimated IZ (VIS, SLOPE and PEAK) from the border 
of the surgically resected area (RA). We identified 25 spatiotemporal patterns mimicking the 
underlying interictal activity (3.6 clusters/patient). Each cluster was populated on average by 22.1 
[15.0-31.0] spikes. The predicted IZ maps had an average distance from the resection margin of 
8.4 ± 9.3 mm for visual analysis, 12.0 ± 16.5 mm for SLOPE and 22.7 ±. 16.4 mm for PEAK. The 
consideration of the source spread at the ascending slope provided an IZ closer to RA and 
resembled the analysis of an expert observer. We validated here the performance of a data-driven 
approach for the automated detection of interictal spikes and delineation of the IZ. This 
computational framework provides the basis for reproducible and bias-free analysis of MEG 
recordings in epilepsy.  
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1 Introduction 

Magnetoencephalography (MEG) has been proven as a useful clinical tool for the improvement of 
surgery outcome in epilepsy (Stefan and Rampp 2020; Knowlton et al. 2006). Guidelines are 
provided for the use of MEG in clinical settings (Hari and Salmelin 2012; Bagić et al. 2011; De 
Tiège et al. 2017) and its integration in the presurgical work-up (Choi and Wang 2020). The impact 
of MEG in epilepsy investigation has been retrospectively validated on intracranial EEG 
recordings on large patient cohorts, with resection of MEG foci associated with good outcome 
(Murakami et al. 2016; Almubarak et al. 2014). The consideration of MEG findings in patient 
treatment prospectively improved clinical management optimizing intracortical EEG implantation 
and surgical plan (De Tiège et al. 2012; Knowlton et al. 2009). This evidence is built on the 
localization of interictal epileptiform discharges (IED), in the form of spikes and sharp waves. 
While interictal activity contains valuable information to support successful non-invasive clinical 
assessment (Englot et al. 2015), the identification of epileptiform events is committed to the visual 
inspection of expert reviewers. MEG recordings are characterized by multivariate information 
embedded in some few hundreds channels, where possibly repeating patterns with variable signal-
to-noise ratio (SNR) arise from the background activity. In this context, visual analysis represents 
a time consuming procedure prone to human bias. 

Several automated approaches for IED detection have been proposed for invasive and non-invasive 
EEG, based on a-priori assumptions on the morphological, spectral and statistical properties of 
epileptic spikes (Abd El-Samie et al. 2018). Recent approaches based  on machine learning showed 
high sensitivity of linear classifiers (Khalid et al. 2017; Khalid et al. 2016) and deep-learning 
(Zheng et al. 2020) for the detection of visually identified events. These strategies have been 
applied retrospectively, based on specific properties of the spike signal or following the training 
of a classifier on extensive available datasets. This poses some limitations on their applicability to 
prospective cases. 

Ideally, MEG analysis requires data-driven adaptive strategies, scalable to the peculiarity of the 
individual case. An interesting approach is this direction is represented by dictionary learning  (Jost 
et al. 2006). The target of this approach is the extraction of prototypical waveforms, to which we 
refer here as ‘atoms’, that are emblematic representations of the signal under study. The 
mathematical framework to apply dictionary learning of atoms to multivariate neural time series 
is provided by convolutional sparse coding (CSC, Grosse et al. 2007). While CSC has been 
successfully applied to image processing and neurophysiological signals (Barthélemy et al. 2013), 
an implementation particularly suitable for MEG has been recently proposed (Tour et al. 2018; Jas 
et al. 2017).  

Here we tested and validated a data-driven strategy, which aims to identify and cluster clinically 
relevant events, with minimal assumptions imposed by the user and with the option of visual 
validation of extracted clusters. Our approach is organized in two main stages: first, the selection 



3 

3 

of candidate IED by peak detection and dipole fitting (Ossadtchi et al. 2004); second, the validation 
of candidate IEDs undergoes spatiotemporal clustering by CSC (La Tour et al. 2018). We applied 
this pipeline to MEG data of epilepsy patients who underwent successful surgical resection and 
quantified the clinical relevance of the automatically identified irritative zone with respect to the 
outcome of the IED visual analysis and the resected area. 

 

2 Methods 
 
The analysis workflow is shown in Figure 1.  
 
Figure 1. Workflow overview. 
 
 

2.1 Patients 
Patients were recorded between 2012-2018 at the MEG Center of Moscow State University of 
Psychology and Education (MSUPE), Moscow, Russian Federation. We have selected 7 patients 
(N male = 2, average age 15.8) meeting the following inclusion criteria: 1) The patient underwent 
focal epilepsy surgery after the MEG recording; 2) Follow-up > 1 year, with known outcome 
according to the Engel scale; 3) Availability of an individual pre-surgical MR; 4) Description of 
the resected area, or alternatively, availability of the post-surgical MR; 5) Availability of visually 
marked epileptic spikes. Detailed clinical characterization for the entire dataset is provided in 
Table 1 . The selection of the putative seizure onset zone was based on the combined analysis of 
the interictal and pre-ictal events in these non-lesional or complex-lesional patients. Then they 
underwent pre-surgical or intra-operative ECoG based on the localization given by presurgical 
source localization of the MEG events. For a more detailed description see Koptelova et al. 2018. 

Patients signed the written consent to participate in the study. This study was approved by the 
ethical committees of Moscow State University of Psychology & Education (MSUPE), Moscow, 
Russia. 

 
 
Patient  Etiology 

(biopsy) 
Age/ 
gender 

SOZ (MEG) N visual 
spikes 

MRI 
findings 

Additional 
assessment 
 

Surgery Resection 
area 

Outcome 
(Engel) 

Follow up 
(months) 

1 FCD IIIc 16/m Right T Bas 62 1)FCD I in Right 
medial occipital 
area 
 2)FCD in Right 
parahippocampal 
gyrus  
3)Thinning of 

1)PET: 
hypometabolis
m in Right TL, 
Right PL, Right  
insula 2)Stereo-
EEG before 
MEG: 

tailored 
resection  

Right T 
Bas 

IA 12  
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Right insula presumably 
Right TL. 
 

2 FCD I, FCD II 8/f Left F 
Bas+Lat  
 

55 MR-negative 1)Ictal SPECT: 
Left Bas, 
2)PET: Left Bas 
3)Intraoperative 
ECoG 
 

tailored 
resection 

Left FL 
Bas+Lat  

IA  48 

3 TSC 16/f Right T Bas+Lat  
 

73 Multiple tubers 1)Ictal SPECT:  
hypometabolim 
in Right TL 
2)Intraoperative 
ECoG 
 

tuber removal  Right TL IA 46  

4 Ganglioglioma 
WHO grade I 

6.5/f F Med 79 glioma in Right F 
area 

— tumorectomy poster FL  IA 54  

5 HS, FCD Ib, 
Right TL 

28/f Right T 106 Right HS, right 
anterio-latero-
Bas dysplasia 

Intraoperative 
ECoG 
 

anterio-medial 
resection 

Right TL IB 78  

6 TSC 4.9/m Left T 89 Multiple tubers 
   

Presurgical 
long-term 
invasive EEG 
monitoring 
 

anterior  
lobectomy 

Left TL IIA 22  

7 FCD Ic 20/f Left T 99 Right 
Hippocampal 
Gyrus 

Intraoperative 
ECoG 
 

anterio-medial 
resection  

Left TL IIB  53 

 
Table 1. Patients’ description. Bas = basal, F = female, F = Frontal, FCD = focal cortical dysplasia, HS 
= hippocampal sclerosis, HG = hippocampal gliosis, PET = positron emission tomography, SPECT = 
Single-photon emission computed tomography, ECoG = electrocorticography,  L = Lobe, lat = lateral, m 
= male, Med = Medial,  T = Temporal, P = parietal, TSC = tuberous sclerosis, WHO = World Health 
Organization.    

2.2 MEG data acquisition 
Patients were recorded during sleep accommodated in supine position with the head fitting a 306-
channel MEG system (102 magnetometers and 204 gradiometers, Elekta Neuromag Oy, Helsinki, 
Finland) at the MEG Center of MSUPE. Data was acquired at a sampling rate of 1000 Hz. 
Additionally, ECG, EOG and EMG from the right and the left masseter muscles were recorded. 
Hands and legs movement were tracked with four accelerometers fixed at the index fingers of both 
hands and the second toe of both feet. Head movements were monitored by four head position 
indicator (HPI) coils, whose position was constantly tracked during the recordings. The 3 
anatomical fiducial points (nasion, left and right preauricular points) also were digitized using 
FASTRAK system (Polhemus Inc., Colchester, VT, USA) for the MRI-MEG co-registration.  
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2.3 MEG data preprocessing 
MEG data preprocessing was performed according to the standard practice for clinical MEG 
research (Gross et al. 2013; Hari 2018). The data were processed by МахFilter (Elekta Neuromag 
Software) using temporal signal space separation (tSSS, (Taulu and Hari 2008). For each patient, 
out of the 1-2 hours available recording, we selected 20 minutes with the highest number of 
visually marked spikes during sleep. MEG data were visually inspected and noisy segments were 
excluded for the automated spike detection pipeline (< 2 minutes out of 20-minutes recording). 
Eye blinks and heart beats were projected out by ICA decomposition.   

2.4 Anatomical data processing 

2.4.1 Head model 
Pre-surgical T1 MRI images (voxel size is 1 mm) with FreeSurfer v6.0.0 
(https://surfer.nmr.mgh.harvard.edu). The MRI and MEG spaces were aligned in the MNE-Python 
co-registration GUI (Gramfort 2013). The head model was computed using a single layer (inner 
skull) Boundary Element Method (BEM) model with around 10200 vertices covering the cortical 
surface. The forward model was generated assigning freely oriented sources to all vertices. 

2.4.2 Resected area  
 
The resected area (RA) was delineated co-registering  pre-surgical and post-surgical T1 MRI 
images in MNI space by Brainstorm (Tadel et al. 2011). The RA was manually delineated on the 
post-surgical MRI image. We created a binary mask with value equal to 1 for all sources inside 
the resection volume or within 3 mm from the resection border. 

 
 

 2.5 Visual marking 
Epileptiform events were identified according to the glossary of terms most commonly used by 
clinical electroencephalographers and recommendations The American Clinical MEG Society 
(ACMEGS) (Kane et al. 2017; Bagić et al. 2011). The epileptiform discharges were reconstructed 
at the peak using the multi-dipole modeling procedure (ECD, Equivalent current dipole) 
implemented into the Elekta Neuromag software, using a spherical head model. Three expert 
reviewers agreed on the marked events (T.S, A.K., A.Kr.). It is important to stress that not all 
spikes were visually marked, but only the amount necessary to compile a patient report. 

 
2.6 Automated spike detection and clustering 
 
We present here a fully automated data-driven pipeline for spike detection and clustering. Our 
pipeline includes two main stages: 1) peak detection in the feature space of ICA-decomposed MEG 
sensor data (Ossadtchi et al. 2004) and 2) spatio-temporal clustering of the sensor-space MEG data 
epochs around the detected peaks based on convolutional sparse coding (La Tour et al. 2018). 
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The pipeline was run separately for gradiometers and magnetometers, generating for each sensor 
type a library of clusters, with each cluster associated to a list of events. The libraries were created 
through an iterative procedure including stages 1 and 2 but sampling from different subsets of 
events. Once clusters were formed, the averages of the events within each cluster were used to 
map the irritative zone. In the following we provide implementation details. 

  

2.6.1 Stage I 

ICA decomposition  

To reduce computing load, the data were resampled to 200 Hz. MEG data bandpassed from 2 to 
90 Hz were decomposed by fastICA. The number of components was restricted to 20 for all 
patients and sensor types. 

Components selection  

Among the first 10 ICA components ranked by the explained variance, we selected those 
presenting a highly “peaky” temporal pattern, reflected by high Kurtosis values (1 to 10, see also 
Figure S1), and mimicking a dipolar spatial pattern, reflected by the goodness of  fit (GOF) of 
spatial pattern ECD (0 to 100%). For magnetometers the GOF threshold was equal to 80% and 
for the gradiometers to 60%. If GOF was greater than 95%, the ICA component was included 
irrespective of the Kurtosis value. Dipole fitting was performed by MUSIC (Mosher and Leahy 
1999). ICA components meeting these criteria were automatically selected for  the following 
analysis.  

Peak detection 

We performed peak detection on the selected ICA components time series. For peak detection, 
data were filtered in the 20–90 Hz spectral band. Additionally, we preprocessed ICA components' 
time series using sklearn RobustScaler to apply amplitude-based peak detection with the same 
parameters for different patients. Peak detection was performed using the  peak-finding routine 
scipy.signal.find_peaks() implemented in SciPy. To avoid different settings for different patients, 
we automatically decreased the threshold until at least 300 peaks were detected in each patient. 

Peak selection 
Detected peaks underwent dipole fitting by MUSIC algorithm (Mosher and Leahy 1999), 
computed on -20 to  30 ms around the spikes peak. To avoid redundancy in the data, only the event 
with the largest GOF was selected in each 0.5 s time window. In other words, the interspike interval 
was forced to be larger than 0.5 s. The output of stage I was a set of timestamps of identified spikes 
candidates.  
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2.6.2 Stage II 

αCSC decomposition  

We applied an optimization framework of convolutional sparse coding known as αCSC. 
Specifically, we used a multivariate model with rank-1 constraint (La Tour et al. 2018), which 
reflects the fact that one source can be observed on a manifold of MEG sensors. In a nutshell, the 
multivariate time series data Xn [n x T],  with n number of sensors and T the total time of the 
recording, is decomposed in a series of k atoms with spatial pattern 𝑢! [n x k] and temporal pattern 
vk [k x t], with t the duration of one event. The proximity of each data point to the k-th atom is 
defined by the activation vector zk [k x T], which is the element introducing sparsity. zk  has only 
few non-zero entries and it is always positive, meaning that one atom repeats along the time series 
with the same polarity. The temporal extension of each atom vk was set to t = 0.5 s, and the 
regularization parameter (λ) set equal to 0.1. The mathematical formulation is summarized as 
follows 

 
 
Before applying convolutional sparse coding, the data was bandpassed in the 2-90 Hz spectral 
range. 

Spatio-temporal clustering 
It was recently shown that αCSC can automatically detect biological artifacts and non-sinusoidal 
patterns (Jas et al. 2017; La Tour et al. 2018). In our pipeline, the number of atoms in the dictionary 
was restricted to 3 atoms for each sensor type. To maximize the performance of αCSC, we 
concatenated epochs of 1s centered on the timestamps provided from stage I. This allowed us to 
use αCSC purely as a clustering technique, where each cluster is identified by one atom of the 
library.  

Events selection  

The αCSC algorithm returns spatio-temporal patterns as atoms, and provides, for each atom k,  a 
spatial pattern uk (weights of each sensor), a temporal pattern vk (temporal time trend) and an 
activation vector zk, which defines the proximity of each time point of the MEG time series to the 
atom. To assign events to each atom, we thresholded   at 7 median absolute deviations (MAD), and 
iteratively decreased the threshold until either at least 15 events were selected or the threshold 
reached 1.5 MAD of zk. The derived epochs were assigned to the atom k. Each atom was therefore 
linked to a set of events with similar spatiotemporal patterns. This stage provides spatially aligned 
and clustered events. 

 Atoms library generation   
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We iterated our pipeline 4 times through stages 1 and 2. The rationale for multiple iteration is that 
prominent ICA components might miss relevant information. Therefore, we include additional 
runs forcing the clustering of spike events around different subsets of ICA components. In the first 
run, we include all ICA components passing the Kurtosis and GOF criteria, and extract the first 
three atoms. In the following three runs, we include a subset of ICA components showing similar 
topography (k-means based clustering). For each run, we extract three atoms. We constrained 
αCSC to fit three atoms in order to extract stable patterns in a reasonable time (20 minutes, 204 
chs, sampling frequency = 200 Hz, 3 atoms : 5 mins). Therefore, after 4 runs, we obtain twelve 
candidate atoms. The goodness of the cluster built around each atom was estimated according to 
three features: GOF of the spatial pattern uk; mean temporal correlation of the vk with the epoch 
time series from the sensor with maximum uk;  number of events in the cluster (=1 for 20 or more). 
Each of these three features was scored from 0 to 1 and their average represented the atom’s score. 
The atoms exceeding the mean+1standard deviation of the atoms score distribution were selected 
to populate the atoms' library. The selected atoms were visually reviewed, and atoms with unclear 
patterns were excluded (17/42 atoms were excluded in the analyzed dataset). 

2.6.3 Source reconstruction 
To delineate the irritative zone we used Minimum Norm Estimation (MNE, Hämäläinen and 
Ilmoniemi 1994) implemented in MNE-Python (Gramfort 2013). The covariance matrix was 
computed in the interval [-0.5 0.5] seconds around the spike peak of the averaged events in each 
cluster. The noise covariance was considered diagonal.  
Visually marked spikes were individually reconstructed at peak latency (Tanaka et al. 2018). The 
activation map for each spike was binarized, with value 1 for each vertex exceeding 50% of the 
maximum activation and 0 otherwise. The final binary map contained only locations pointed by at 
least half of the individual spike maps. Finally the binary map was smoothed within 10 mm in 
order to delineate the region associated with the spiking activity. 
Spatiotemporal clusters based on αCSC atoms were used to estimate the irritative zone. For each 
atom in the library, the average of all clustered events was localized  (Kanamori et al. 2013). Atoms 
resulting from gradiometers and magnetometers were treated as independent contributions. An 
activation map was computed for each atom at two latencies identified as PEAK, i.e. the latency 
of maximum amplitude of the sharp deflection of the spike, and SLOPE, identified as the latency 
preceding the PEAK where the activity is still above baseline and the spatial pattern provides a 
distinct focus (see also supplementary material, figure S2). In both cases, SLOPE and PEAK, the 
activation map was thresholded at 50% of the maximum activation value, and translated into a 
binary activation map (1 if activation is  higher, 0 otherwise, as in Tanaka et al. 2018). For each 
patient, we summed the binary maps from all atoms. Sources pointed by more than half of the 
atoms were selected and smoothed in the range of 10 mm. The resulting map delineated the 
predicted irritative zone. 

2.7 Statistics 

For each patient we obtained four anatomical maps: the resected area (RA), the irritative zones 
delineated by visually marked spikes, the irritative zone identified by automatically identified  
spikes at the level of the ascending slope (SLOPE) and at the level of the peak (PEAK). 
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We validate these three approaches by computing the average distance of the estimated irritative 
zone to the border of the resected area (Pellegrino et al. 2018). The RA was converted into a convex 
hull and the average distance of each point of the estimated irritative zone from the hull surface 
was computed. So the more negative the distance, the more is the overlap of the estimated irritative 
zone with the resected area; the more positive the distance, the larger the discrepancy between the 
estimated irritative zone and the resected area. 
 
The pipeline is implemented as a python package megspikes which can be found at 
https://github.com/MEG-SPIKES/megspikes. The code for reproducing the analysis and figures 
can be found at https://github.com/MEG-SPIKES/aspire-alphacsc-epilepsy-MEG. 
 

3 Results  
 
We automatically detected spike clusters in 20 minutes of sleep from seven patients with good 
surgery outcome (Table 1), following our two-steps procedure: identification of candidate 
epileptiform events and events clustering by convolutional sparse coding.  We indicate here with 
atom the spatiotemporal pattern defining a cluster of epileptic spikes. In Figure 2 we show the 
example of one atom and the events populating the atom’s cluster: spatial (Figure 2A) and temporal 
(Figure 2B) patterns characterize the profile of repeating epileptic events. The average of the 
events  displayed on the MEG layout shows a focal activation over the left hemisphere (Figure 
2C). Single events presented a stable temporal profile in the sensors with largest activation (Figure 
2D). In the seven cases analyzed, we identified 25 atoms (16 from gradiometers, 9 from 
magnetometers), with an average of 3.6 [range 1-6] atoms per case (2.3 [1.0-3.0] for gradiometers, 
1.3 [1.2-3.0] for magnetometers). We detected 549 total spikes, reflecting a spike rate of 2.41 [0.9-
3.6] spikes/minute (recording duration: 19.5 [12 - 24] minutes ). We assigned an average of 22.1 
[15.0-31.0] events to each cluster, with similar amounts of spikes detected from gradiometers (21.1 
[15.0-30.0] spikes/cluster) and magnetometers (23.7 [17.0-31.0] spikes/cluster). 
We validated the output of our analysis against  the irritative zone identified by visual analysis, 
the resected area and the surgery outcome. In Figure 3 we illustrate the case of patient 5: resected 
area and visually marked spike locations are superimposed on the individual patient MR in Figure 
3A, while the resected area and irritative zone identified by visual analysis projected on the 
modeled cortical surface are depicted in panel 3B and 3C respectively. The averaged time trend 
for one cluster is presented in the sensor space (panel 3D) and in the source space (panel 3E), while 
the cortical spread of activation at SLOPE and PEAK latencies ( see methods 2.6.3) is presented 
in 3F. Those activations anatomically define the predicted irritative zone, which is the output of 
our analysis pipeline. 
In this case, the automated procedure identified the source of epileptic activity within the resected 
area. The patient had a good surgery outcome (see Table 1), which exemplifies the clinical 
relevance of our approach.  
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We identified cortical sources of cluster averages at the amplitude SLOPE and PEAK for all 
patients and therefore delineated our predicted irritative zone. To quantify the reliability of our 
predicted irritative zone, first we visually confirmed the sublobar concordance with the resected 
area, as in (Pellegrino et al. 2018). We observed an overlap of the resected area with both visually 
identified and automatically detected irritative zones in six out of seven patients. In one patient 
(patient 7), we observed concordance between visually identified and automatically detected 
irritative zones, both not overlapping with the resected area, and the patient had outcome Engel 
IIB.  
  
Figure 2. Example of one atom from gradiometers in patient 7. A. Atom’s spatial pattern. B. Atom’s 
temporal pattern. C. Average of the epileptiform events assigned to this cluster. D. Temporal pattern of 
events from three representative gradiometers (x-axis:time, y-axis:event number).  
 
 
Figure 3. Illustration of the performance of our automated epileptic spike pattern detector applied on pre-
surgical MEG data from patient 5. A. Localization of visually detected spikes with single equivalent dipole 
fit (red dots) in the Elekta software and the resection area (blue area); B. Surgically resected area (lateral 
view, right hemisphere); C. Irritative zone defined by Minimum Norm Estimation (MNE) on visually 
detected spikes; F (left). Irritative zone defined by (MNE) along the ascending slope of the averaged 
automatically detected spike cluster; F (right). Irritative zone defined by (MNE) on the peak of the averaged 
automatically detected spike cluster; D. Sensor space butterfly plot of the averaged automatically detected 
spike cluster; E. Source space time series of the automatically detected spike cluster. Traces correspond to 
6 anatomical locations (FreeSurfer segmentation) with the highest averaged activity in the source space.  
 
SLOPE and PEAK latencies of the detected sources correspond to different spatial spread of 
activity, and therefore to different localization and extent of the irritative zone (Figure 4). We 
compared the average distance of the irritative zone from the resection border at the SLOPE and 
PEAK latencies  and observed that that irritative zone detected at the SLOPE is significantly closer 
to the resection border (Wilcoxon signed rank test, p = 0.01). SLOPE based distance from the 
resection border was not significantly distinguishable from the distance based on visual analysis 
(Wilcoxon signed rank test, p = 0.31). Across patients, average distance from the resection border 
was 8.4 ± 9.3 mm for visual analysis, 12.0 ± 12.0 mm for SLOPE and 22.7 mm ± 16.4 mm for 
PEAK. Therefore, the distance of the IZ at both SLOPE and PEAK latencies is relatively close to 
the resection margin. However, only when considering the source activation at the spike onset, the 
performance of the automated detection is similar to the expert observer.  
 
Figure 4. Accuracy of different estimations of the IZ. The average distance of the estimated IZ from the 
resection border is represented on the x-axis. The IZ estimated by the automated clustering at the level of 
the ascending slope, the visually marked events, and the automated clustering at the level of the peak, are 
shown for each case. Each patient is represented with a color and the size of the dot is proportional to the 
ratio between the size of the estimated IZ and the size of the resected area, to provide a comparison within 
and between patients. The red line corresponds to the 20 mm average distance from the resection border. 
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4 Discussion 
 
We proposed here a data driven approach for the automated identification of epileptiform activity 
patterns in MEG data. We showed that selection and clustering of events based on dictionary 
learning correctly supported the delineation of the irritative zone in the single patient for cases 
with good surgical outcome. Our approach provided an estimation of the irritative zone consistent 
with the visual inspection of expert observers. Therefore, our results support the standardization 
of the analysis of interictal epileptiform activity in MEG data.   
 
We followed a two-step procedure to select the events of interest and then cluster them. Our 
approach follows a procedure similar to spike sorting in microelectrodes recordings (Yger et al. 
2018), where detected neuronal spike peaks are used to build spatio-temporal templates by density-
based clustering. Clustering epilpeptic spikes in MEG recording represents a more challenging 
problem, given the lower number of events and their signal to noise ratio (SNR). On the other 
hand, given the biophysical relation between source and sensor space in MEG data, we optimized 
this scheme for the delineation of the irritative zone in non-invasive human epilepsy data. The data 
feeded into the pipeline were visually screened to minimize the presence of artifact. The peak 
detection was performed on ICA components mimicking sources with high kurtosis. Searching for 
peaks in source space rather than in sensor space signal improves signal-to-noise ratio (SNR) and 
is more robust to artifacts. As an advancement on (Ossadtchi et al. 2004), we did not cluster 
separately with respect to spatial and temporal source features of each single event, but we rather 
exploited the consistency of the spatiotemporal pattern of multiple events, which led to the 
estimation of data-driven ‘atoms’. Convolutional sparse coding is based on alpha stable heavy 
tailed noise distributions, which makes it robust against bursty events. The ‘atoms’ defined the 
library of learned repeating events, with each ‘atom’ representing the center of each cluster in 
feature space.   
Previously proposed detector strategies relied on statistical properties in the time, frequency and 
time-frequency domain (Omidvarnia et al. 2021), either on single channel  or multivariate data  
(Abd El-Samie et al. 2018). Recent approaches implemented machine learning to automatically 
classify epileptic events. Deep learning networks recognizing time domain morphological features 
(Wei et al. 2021) and based on short-term memory networks (Geng et al. 2021), as well as 
convolutional neural network processing spectral information (Santoso et al. 2021) have been 
proven as valuable approaches on EEG data. Deep learning has been successfully applied also on 
a MEG dataset of 20 patients affected by focal epilepsy (Zheng et al. 2020). Compared to other 
proposed approaches, dictionary learning does not require specific assumptions on the spike 
statistics and is not dependent on algorithm training on an extensive dataset. Therefore, it can be 
prospectively applied to the next incoming case.  
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The opportunity to standardize interictal events detection might further increase the added value 
of MEG recordings in epilepsy investigation. To date, spikes and sharp waves identify the 
irritative zone, which can overlap with the seizure onset zone and support the delineation of the 
resection margins (Jehi 2018). The clinical value of the irritative zone has been validated on 
intracranial EEG (Almubarak et al. 2014; Murakami et al. 2016) where seizure freedom was 
associated with the resection of dipole sources identified in MEG data. In prospective studies, 
MEG analysis outcome contributed to improve the subsequent implantation scheme (De Tiège et 
al. 2012; Knowlton et al. 2009). In a meta analysis of 6 clinical studies, it was shown that MEG 
source localization of interictal events might be even more specific that stereoEEG (Brændholt 
and Jensen 2020). While the use of MEG improves clinical practice, neurologists are involved in 
time-consuming bias-prone data inspection. Ideally, a clinical MEG recording session should 
lead to the identification and localization of a sufficient number of IED sources and to 
delineation of a reliable and reproducible spatiotemporal map of the irritative zone. In this 
context, an automated approach based on peak analysis might overestimate the extension of the 
irritative zone. Clustering events allows access to source activity at latencies preceding the spike 
peak with higher SNR. The proposed approach quickly provides neurologists with the activation 
profile of candidate clusters, which can be inspected and possibly contribute to clarify the 
structure of the epileptic network.  
 
The identification of epileptiform activity is a crucial step to anatomically target spike generators. 
Source estimation of interictal pattern in MEG has been validated by comparison with intracranial 
recordings (Tanaka et al. 2018; Grova et al. 2016; Tenney et al. 2014). In this project we used 
distributed sources imaging, which was shown to be more informative than equivalent current 
dipole  (Pellegrino et al. 2018). However, while source estimation is reliable for stationary activity, 
spike propagation represents still one major concern for the delineation of the epileptic network 
and the identification of the seizure onset zone. Therefore, rather than the spatial extent of the 
irritative zone, its intrinsic dynamic must be characterized. To date, the resection of sources of 
propagating spike patterns identified in invasive stereoEEG recordings are associated with good 
surgery outcome (Tomlinson et al. 2019; Azeem et al. 2021). The clinical analysis of MEG 
interictal patterns should therefore localize spike generators at latencies preceding the spike peak, 
where the SNR is higher, in order to account for spatial propagation. The consideration of the 
ascending slope in MEG has proven strong association of the irritative zone with good outcome 
(Englot et al. 2015), while recent evidence from high density EEG and MEG identifies the highest 
accuracy in the earliest resolvable phase of the IED onset (Plummer et al. 2019). Source estimation 
of the single event for latencies preceding the spike peak might be affected by poor SNR  
(Huiskamp, Agirre-Arrizubieta, and Leijten 2010, Chowdhury et al. 2013). Therefore, the 
opportunity to cluster similar events and consider their spatio-temporal averaged pattern empowers 
our ability to localize early activations. Our approach allows us to consider the evolution of the 
activity spread along the rising slope of the averaged time trend for each cluster of the irritative 
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zone. Enhancing the SNR of repeating patterns, we might provide a finer localization of the event 
onset. 
 
Limitations 
We demonstrated the applicability of convolutional sparse coding for spike detection and 
localization of the irritative zone in epileptic patients. However, the limited dataset considered 
represents the framework only for a technical validation. While we could reproduce the findings 
of visual analysis and provide clinically relevant information, a larger set of cases is needed to 
further quantify the reliability of our approach and verify its implementation in the clinical settings. 
 
Conclusions 
We propose here the validation of an algorithmic approach for the detection and clustering of IEDs, 
emulating the analysis of expert reviewers consistently with the clinical findings.  The opportunity 
to model epileptiform activity into spatiotemporal ‘atoms’ enhances SNR and provides reliable 
source localization at the early stage of the IED onset.  This, in turn, might support clinicians in 
the delineation of the irritative zone, providing automated access to spatial and temporal features 
characterizing the epileptic network.  
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