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a b s t r a c t 

Magnetoencephalography (MEG) is a neuroimaging method ideally suited for non-invasive studies of brain dy- 

namics. MEG’s spatial resolution critically depends on the approach used to solve the ill-posed inverse problem in 

order to transform sensor signals into cortical activation maps. Over recent years non-globally optimized solutions 

based on the use of adaptive beamformers (BF) gained popularity. 

When operating in the environment with a small number of uncorrelated sources the BFs perform optimally and 

yield high spatial resolution. However, the BFs are known to fail when dealing with correlated sources acting like 

poorly tuned spatial filters with low signal-to-noise ratio (SNR) of the output timeseries and often meaningless 

cortical maps of power distribution. 

This fact poses a serious limitation on the broader use of this promising technique especially since fundamental 

mechanisms of brain functioning, its inherent symmetry and task-based experimental paradigms result into a 

great deal of correlation in the activity of cortical sources. To cope with this problem, we developed a novel data 

covariance modification approach that allows for building beamformers that maintain high spatial resolution 

when operating in the environments with correlated sources. 

At the core of our method is a projection operation applied to the vectorized sensor-space covariance matrix. This 

projection does not remove the activity of the correlated sources from the sensor-space covariance matrix but 

rather selectively handles their contributions to the covariance matrix and creates a sufficiently accurate approx- 

imation of an ideal data covariance that could hypothetically be observed should these sources be uncorrelated. 

Since the projection operation is reciprocal to the PSIICOS method developed by us earlier (Ossadtchi et al., 2018) 

we refer to the family of algorithms presented here as ReciPSIICOS. 

We assess the performance of the novel approach using realistically simulated MEG data and show its superior 

performance in comparison to the classical BF approaches and well established MNE as a method immune to 

source synchrony by design. We have also applied our approach to the MEG datasets from the two experiments 

involving two different auditory tasks. 

The analysis of experimental MEG datasets showed that beamformers from ReciPSIICOS family, but not the clas- 

sical BF, discovered the expected bilateral focal sources in the primary auditory cortex and detected motor cortex 

activity associated with the audio-motor task. In most cases MNE managed well but as expected produced more 

spatially diffuse source distributions. Notably, ReciPSIICOS beamformers yielded cortical activity estimates with 

SNR several times higher than that obtained with the classical BF, which may indirectly indicate the severeness of 

the signal cancellation problem when applying classical beamformers to MEG signals generated by synchronous 

sources. 
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. Introduction 

Magnetoencephalography (MEG) is a noninvasive neuroimaging

ethod hallmarked by the millisecond scale temporal resolution and

ubcentimeter spatial resolution. As such, this method is very well suited
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or studying the fine features of spatio-temporal dynamics exhibited by

eural circuits. The high temporal resolution of MEG is concomitant to

he nature of the underlying electrophysiological processes in the brain

issue. As to the spatial resolution, it crucially depends on how the ill-

osed inverse problem is approached to recover the distribution of neu-
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al sources from the magnetic field measurements around the head. Be-

ause the MEG inverse problem is inherently ill-posed no universal ap-

roach for solving it exists and each method makes specific assumptions

bout the properties of the neuronal activity. 

One assumption common in the MEG literature is that the neuronal

ubstrate that produces the observed data can be approximated by a

mall number of active focal sources typically represented by a set of

quivalent current dipoles ( Hamalainen and Hari, 1993 ). This multi-

le equivalent current dipoles (ECD) model originally implied the use

f the least squares dipole fit to identify the location and orientation

arameters of the dipoles ( An et al., 2008 ). In practice the parametric

CD model can be used to represent spatially extended sources which

as demonstrated in De Munck et al. (1988) where dipole model error

as studied for extended sources of the simulated visual evoked poten-

ials (VEPs). The difficulties associated with this approach are the un-

nown number of sources and the need to solve a non-convex optimiza-

ion task can be gracefully resolved with Multiple Signals Classification

MUSIC) family of methods, e.g. RAP-MUSIC ( Mosher and Leahy, 1999 ).

his method allows constructing a constellation of ECDs explaining the

bserved data produced by several simultaneously active (but not syn-

hronous) sources. Recent extension called tRAP-MUSIC ( Mäkelä et al.,

018 ) furnishes an elegant approach that yields an improved estimate on

he number of true active sources present in the data. An additional at-

ractive feature of MUSIC family of approaches is that they do not invert

ata covariance matrix which avoids the need to employ regularization

trategies that may bias the results. However, MUSIC methods can only

nd source location and are not designed for the source timeseries es-

imation task. Although the absence of data covariance inversion step

ake MUSIC approaches fairly robust against source timeseries corre-

ations, applying MUSIC family methods to the data generated by syn-

hronous sources (with source timeseries correlation close to 1) requires

n explicit scan for synchronized cliques which may be time-consuming

nd impractical, especially when such cliques comprise more than two

ources. 

More than two decades ago local linear estimators were introduced

s an alternative approach to estimating source distributions and time-

eries of specific neuronal sources from MEG and EEG data ( Van Veen

t al., 1997 ). This technique is based on the adaptive beamforming

rinciple ( Borgiotti and Kaplan, 1979 ) originally developed to detect

ources in radar signals. In neuroimaging we employ adaptive linearly

onstrained minimum variance (LCMV) beamformers ( Greenblatt et al.,

005; Sekihara et al., 2001; Van Veen et al., 1997 ) both in the scan-

ing mode and for estimation of neuronal source timeseries. To recover

ctivity of a given source the LCMV beamformer finds a spatial filter

y solving the optimization task to minimize the output power under

he constraint of unit gain in the “direction ” of the given source. Spatial

istributions delivered by beamformers when operated in optimal con-

itions tend to be focal, which represents the “most interesting feature ”

f this approach as described in Borgiotti and Kaplan (1979) . However,

s a result of the “greedy ” optimization linear dependencies between

he neuronal source timeseries are utilised by the algorithm to minimize

he output power ( Sekihara and Nagarajan, 2008 ). This undesired phe-

omenon is called signal cancellation. Therefore applying the original

CMV beamforming approach we must assume that the measurements

re generated by sources with uncorrelated timeseries. 

In reality, in the neuroimaging applications this assumption is often

iolated which leads to suboptimal performance of the adaptive beam-

ormers. Thus, cortical sources exhibit transient synchrony ( Varela et al.,

001 ) that manifests ongoing integrative processes ( Fries, 2015 ). An-

ther reason for such synchronization is the time-locking of brain activ-

ty (called event-related potentials, ERPs) to task events, such as move-

ent or stimulus onset, for a wide range of cognitive, motor and sen-

ory paradigms ( Gascoyne et al., 2016 ). Synchronous ERPs often occur

n both hemispheres at the functionally homologous areas. Bidirectional

nteraction of neuronal populations also leads to synchronization of their

ctivity. 
2 
In this paper we propose a model-based extension of the LCMV

eamforming that makes it robust against source synchrony and allows

or reliable estimation of both locations and timeseries of synchronous

ources. To explain the basic concept of this paper, we first illustrate

he two opposite but related problems of (1) Estimating functional con-

ectivity based on the indirect measurements and (2) Estimating source

imeseries or source power distribution using adaptive beamforming.

he problem of the former is the presence of artifacts of volume con-

uction: truly independent sources result into correlated sensor activ-

ty. The goal is to tune away from the volume conduction and estimate

rue source correlations. However, the presence of a non-trivial solution

o the first problem, i.e. the presence of sources with true dependen-

ies, is the problem of the latter: correlated sources lead to well known

nd unwanted signal cancellations in adaptive beamforming. As already

tated, the original adaptive beamformer is optimal if all source activ-

ties are uncorrelated, i.e. a situation where any observed functional

onnectivity (measured as correlation) is purely an artifact of volume

onduction. Correlated sources cause a significant reduction in the SNR

hen adaptive beamformers are used to process the data ( Sekihara and

agarajan, 2008 ). 

Here we focus on the latter problem and develop an improvement

or adaptive beamforming to make it robust against source correlations.

he key component of an adaptive beamformer is the data covariance

atrix that contains information about both the source-power distri-

ution and about the linear source dependencies. The manifestation of

inear dependencies present in the data covariance matrix is implicitly

sed by the LCMV beamformer optimal weights expression to further

inimize beamformer output variance. Here we propose a procedure

hat uses data covariance generative model to selectively handle covari-

nce matrix components to create a close approximation of an ideal

ata covariance matrix that would hypothetically be observed in the

bsence of correlation between source timeseries. Importantly, our co-

ariance modification procedure is data-independent. It relies only on

he forward model and can be considered as a deterministic extra step

n building an adaptive LCMV-based inverse operator. 

This paper is organized as follows. First we introduce the data model

nd describe the original adaptive beamforming approach ( Van Veen

t al., 1997 ). We then briefly illustrate both analytically and graphically

he problem of correlated sources and emphasize the situation when

ore than two coupled sources are present. Next, having introduced the

asic concepts and outlined the problem of correlated source timeseries

e review the existing solutions and stress that most of them focus on

he idea of nulling the sources identified as coupled to the target one.

his approach may become impractical when the number of coupled

ources is large and therefore next we introduce two covariance modi-

cation methods that allow us to suppress the manifestation of source

orrelations in the data covariance matrix without the need to iden-

ify the synchronized cliques. Using extensive simulations and real data

rom two paradigms we compare the performance of the adaptive beam-

ormers built using the original and the modified data covariance ma-

rices. We also match the performance of the beamforming approaches

gainst the minimum-norm estimation technique ( Hämäläinen and Il-

oniemi, 1994 ) that is (1) by design not affected by source timeseries

orrelation and (2) represents a solid and trusted reference that was

lso shown to manage well with localizing focal source in real data

 Komssi et al., 2004 ). In the discussion we summarize our findings and

utline the shortcomings and potential directions to further advance the

roposed approach. 

. Methods 

.1. Data model 

We assume that event-related potentials (ERPs) measured with elec-

rophysiological methods such as electroencephalography (EEG) and

agnetoencephalography (MEG) can be represented as a superposition
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f the contributions from a finite number of sources. Only the con-

ributions that are sufficiently phase-locked to the task onset moment

ake it through the averaging procedure and form the evoked response

 Luck and Kappenman, 2011 ). The observation equation linking vector

 ( 𝑡 ) of the averaged source-space activity with ERP’s timeslice 𝐱( 𝑡 ) mea-

ured by the array of 𝑀 sensors at time instance 𝑡 can be written as

( 𝑡 ) = 

𝑅 ∑
𝑖 =1 

𝐠 𝑖 𝑠 𝑖 ( 𝑡 ) + 𝐧 ( 𝑡 ) = 𝐆𝐬 ( 𝑡 ) + 𝐧 ( 𝑡 ) . (1)

here 𝐱( 𝑡 ) is [ 𝑀 × 1] vector and 𝐬 ( 𝑡 ) = 

[
𝑠 1 ( 𝑡 ) , … , 𝑠 𝑅 ( 𝑡 ) 

]𝑇 
is an [ 𝑅 × 1] vec-

or, as we assume, that this evoked activity is generated by a relatively

mall number 𝑅 of focal cortical sources. Here 𝐠 𝑖 is the topography of

he 𝑖 -th equivalent current dipole and 𝐆 = 

[
𝐠 1 , … , 𝐠 𝑅 

]
is a matrix of the

riented source topographies. Noise term 𝐧 ( 𝑡 ) represents the sum of the

emainders of the induced and task unrelated activity that is supposed to

e sufficiently suppressed by the event-related averaging procedure. For

ompactness in the presentation that follows we will stick to the fixed

rientation source model. However, in Section 2.5 we show how to han-

le the unknown source orientations and apply the proposed methodol-

gy to the vector beamformer ( Sekihara et al., 2001 ). 

One of the key assumptions implicit in this ERP data model is that

he stimulus-locked cortical activation profiles are expected to be focal.

he number of active stimulus-related sources 𝑅 is usually unknown,

ut it is assumed to be several orders of magnitude less than the total

umber of cortical sources. Note that in this paper we suggest an im-

rovement of the standard beamformer without making additional as-

umptions about the spatial distribution of the sources as compared to

eamformers themselves. Thus (1) represents basically the same source

odel as the one in ( Van Veen et al., 1997 ). 

It is customary to consider the MEG data in the space of virtual sen-

ors obtained by calculating the projection coefficients onto a subset

f principal directions of the forward model matrix. The formulation

resented here accommodates this point of view without any concep-

ual changes. The value of 𝑀 corresponding to the number of physical

ensors will then reflect the number of virtual sensors corresponding

o the number of principal directions capturing a specific percentage of

ariance in the original forward model. Correspondingly, the forward

atrix 𝐆 will be replaced by the product with the matrix containing the

oordinates of principal components in the original space. 

The LCMV beamforming approach extended here does not formally

equire the spatial whiteness of the additive noise term ( Van Veen et al.,

997 ) and therefore we do not make assumptions regarding its spatial

ovariance structure. Whole data covariance is assumed to have full

ank. 

The active source locations are unknown, and finding them is the

oal of the EEG and MEG inverse problem solving. We approach this

roblem with the knowledge of the forward model that matches every

 -th location of the dipolar sources with a topography vector 𝐠 𝑖 that con-

ains the weights for the contribution of the 𝑖 -th unit dipole to the sensor

easurements. Our goal is then to identify the grid nodes containing ac-

ive dipoles. Sufficient accuracy of computing 𝐠 𝑖 is a strong requirement

o ensure adequate performance of the inverse solvers, including adap-

ive beamformers. 

.2. Adaptive LCMV beamformer 

Adaptive linearly constrained minimum variance (LCMV) beam-

ormer ( Sekihara et al., 2001; Van Veen et al., 1997 ) is a local linear

stimator with a unit gain weight constraint ( Greenblatt et al., 2005 ).

ver the recent years, this approach gained popularity as an efficient

nverse solver of the MEG inverse problem ( Darvas et al., 2004 ). 

Due to the fundamental limitations of the electromagnetic inverse

roblem, it is impossible to globally suppress contribution from all non-

arget sources. Therefore, within the beamforming approach, the prob-

em of finding the spatial filter weights is formulated locally as mini-
3 
izing the spatial filter output variance under the unit gain constraint

ith respect to the source of interest. 

Beamformers can be used to estimate the activity of a specific ROI

r in a scanning mode to assess the distribution of activity over the

ntire cortex. Various forms of beamformers exist that can be classified

ased on the source-space and sensor-space norms ( Greenblatt et al.,

005 ). Unlike global estimators (MNE, wMNE, MCE, etc.), beamformers

uned to different cortical locations do not depend on each other and

heir summed output projected back to the source space is generally not

upposed to be equal to the measured data 𝐗 . 

Good spatial resolving power is one of the most attractive features of

he adaptive beamforming technique ( Borgiotti and Kaplan, 1979 ). It is

chieved using the data covariance matrix that conveys the information

bout the subset of active sources to the beamformer. This information

s then used by the beamformers to efficiently distribute the available

egrees of freedom to suppress only these active sources. 

.2.1. Adaptive beamforming principle 

Consider an elementary cortical dipolar source with free orientation

t 𝐫 𝑖 = [ 𝑥 𝑖 , 𝑦 𝑖 , 𝑧 𝑖 ] . To reconstruct activity via vector LCMV beamformer

rom the EEG or MEG data, one uses a spatial filter 𝐛 𝑖 tuned to this dipo-

ar source. These weights are calculated as the solution to the following

ptimization problem ( Sekihara et al., 2001 ) 

minimize 
𝐛 𝑖 

𝐛 𝑇 
𝑖 
𝐂 𝑥 𝐛 𝑖 

subject to 𝐛 𝑇 
𝑖 
𝐠 
𝑖 
= 1 , 

(2) 

here ( ⋅) 𝑇 is the transpose operator, 𝐂 𝑥 = 𝐸{ 𝐱 ( 𝑡 ) 𝐱 ( 𝑡 ) 𝑇 } is the sensor-

pace covariance matrix, matrix 𝐠 𝑖 = 𝐠 ( 𝐫 𝑖 ) is a topography of the 𝑖 -th

ource. Using Lagrange multipliers method, it can be shown that the

ptimal solution is 

 

𝑇 
𝑖 = [ 𝐠 𝑇 𝑖 𝐂 

−1 
𝑥 𝐠 𝑖 ] 

−1 𝐠 𝑇 𝑖 𝐂 

−1 
𝑥 (3)

he calculated spatial filters 𝐛 𝑖 could then be used to reconstruct the

ource timeseries vector estimates as 

 𝑖 ( 𝑡 ) = 𝐛 𝑇 𝑖 𝐱( 𝑡 ) . (4)

t is also possible to employ the beamformer in the scanning mode and

ompute power distribution profile 𝜎2 
𝑖 
= Var ( 𝐫 𝑖 ) for the entire set of 𝑁

ortical locations 𝐫 𝑖 , 𝑖 = 1 , … , 𝑁 which can be done without the explicit

omputation of 𝐛 𝑖 ( Sekihara and Nagarajan, 2008 ): 

2 
𝑖 = 𝐛 𝑇 𝑖 𝐂 𝑥 𝐛 𝑖 = [ 𝐠 𝑇 𝑖 𝐂 

−1 
𝑥 𝐠 𝑖 ] 

−1 . (5)

As follows from Eqs. (3) and (5) , given the forward model, the co-

ariance matrix fully determines the beamformer weights and the out-

ut power of source estimates when applied to the data 𝐱( 𝑡 ) . 
The described approach does not introduce any assumptions on the

umber of active sources or their spatial distribution. However, the

CMV adaptive beamformer assumes that the measured neural activity

s produced by a small number of focal cortical sources ( Borgiotti and

aplan, 1979 ). 

.2.2. Adaptive beamforming in the environment with correlated sources 

Despite the high localization efficiency and high spatial resolution,

daptive LCMV beamformers suffer from the signal cancellation prob-

em when operating in the suboptimal environment. The optimal spa-

ial filters calculated in (3) reflect activity of intrinsic sources correctly

nly when the measurements are generated by a small number of focal

ources with uncorrelated timeseries. 

These assumptions, however, are rarely met in the real experimen-

al conditions because the brain integrative mechanisms result in a

igh level of synchrony across different areas ( Fries, 2015 ). Thus, syn-

hronous, stimulus-locked responses occur in many cortical areas, such

s, for instance, ERPs occurring in bilateral, functionally homologous

ocations ( Gascoyne et al., 2016 ). 

Such correlation of sources causes significant reduction in the SNR of

ources timeseries estimated with adaptive beamformers. For example,
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Fig. 1. LCMV beamformer reconstruction in the case of three active sources with pairwise correlations 𝜌𝑠𝑠 12 , 𝜌
𝑠𝑠 
13 and 𝜌𝑠𝑠 23 = 0 . 9 . The estimated variance ̂𝜎𝑖 , 𝑖 = 1 , 2 , 3 

for each of the three sources as a function of pairwise correlation 𝜌𝑠𝑠 12 , 𝜌
𝑠𝑠 
13 is color-coded into the heat-maps. In each plot, the axis reflect coupling of the first source, 

𝐫 1 to the other two sources 𝐫 2 and 𝐫 3 quantified by the correlation coefficients 𝜌𝑠𝑠 12 and 𝜌𝑠𝑠 13 . The impossible combinations of correlation coefficient values given unit 

variance sources are shown in white. 
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t can be shown ( Sekihara and Nagarajan, 2008 ), that in the case of two

nteracting sources the estimated power of each source decreases as a

uadratic function of the correlation coefficient of their timeseries and

n the case of unit source variance, the output power can be expressed

s 

̂2 𝑖 = 1 − ( 𝜌𝑠𝑠 12 ) 
2 , 𝑖 = 1 , 2 (6)

As follows from (6) in the case of complete synchrony, the adaptive

eamformer will simply output zero. Intuitively this can be understood

s follows. In order to meet the constraint, the beamformer provides

nit gain for the target source. The functional optimized by the adaptive

eamformer requires minimization of the output power. In the presence

f another source with correlated activity, the beamformer adjusts the

eight vector in such a way that, on the one hand, the gain of unity

onstraint is met, and on the other hand, the activity of the correlated

ources is subtracted from the target activity to minimize the output

ower. Therefore, in the case of perfect correlation, the beamformer

roduces a zero SNR with respect to the activity of the target source. 

The situation is aggravated in the environment with larger number of

orrelated source. Even moderate correlation of source timeseries causes

ignificant reduction in the SNR of adaptive beamformer based esti-

ates. Consider an environment with three active unit variance sources

 1 , 𝐫 2 , 𝐫 3 with activation timeseries characterized by pairwise correlation

oefficients 𝜌𝑠𝑠 12 , 𝜌
𝑠𝑠 
13 , 𝜌

𝑠𝑠 
23 . 

It is relatively straightforward to show, that in this case the adaptive

CMV estimated source power ̂𝜎𝑖 , 𝑖 = 1 , 2 , 3 depends on the pairwise cor-

elation coefficients 𝜌𝑠𝑠 
𝑖𝑗 

as 

̂2 1 ∝
𝐹 (

𝜌𝑠𝑠 23 
)2 − 1 

, 𝜎2 2 ∝
𝐹 (

𝜌𝑠𝑠 13 
)2 − 1 

, 𝜎2 3 ∝
𝐹 (

𝜌𝑠𝑠 12 
)2 − 1 

, (7)

here 

here 𝐹 = 

(
𝜌𝑠𝑠 12 

)2 + 

(
𝜌𝑠𝑠 13 

)2 + 

(
𝜌𝑠𝑠 23 

)2 − 2 𝜌𝑠𝑠 12 𝜌
𝑠𝑠 
13 𝜌

𝑠𝑠 
23 − 1 . 

Panels A and B of Figure 1 show color-coded estimated power of

he three sources 𝐫 1 , 𝐫 2 and 𝐫 3 for various degrees of coupling between

he first source and the other two sources when 𝐫 2 and 𝐫 3 are strongly

oupled, 𝜌23 = 0 . 9 . As expected, the output power of the second and the

hird sources is reduced primarily due to their strong mutual coupling,

ig. 1 .B. In this case low SNR in the estimates of 𝐫 2 and 𝐫 3 complicates

heir detection and makes it problematic to implement the strategies

uggested in Dalal et al. (2006) ; Popescu et al. (2008) to ameliorate the

roblems caused by source correlation. Additionally, we also observe

 rapid reduction in the estimate of 𝐫 1 power with the growth of cou-

ling between this first source and either of the two remaining sources,

ig. 1 .A. 

In real life setting this situation may occur, for example, in an

uditory-motor experimental paradigm, where the subject is required to
4 
erform a motor action (e.g. press the button) in response to a deviant

uditory stimulus. According to our indexing scheme source 𝐫 1 models

ensory-motor response and sources 𝐫 2 and 𝐫 3 are located bilaterally in

he primary auditory cortex and respond synchronously to the auditory

timulus. 

Another likely scenario is when the source distribution is represented

n the form of two groups of sources with significant synchrony within

ach such group but no correlation between the groups. In this case

he within group synchrony will affect beamformer’s performance and

ill result in timeseries with underestimated amplitudes and erroneous

ource distributions. 

.2.3. Existing solutions 

Several approaches have been developed to improve beamforming

n the presence of correlated sources. ( Dalal et al., 2006 ) suggested that

he entire region that may potentially include a source correlated to

he activity in the region of interest (ROI) should be suppressed. This

dea can be implemented using an SVD derived constraint based on the

opography of the cortical patch containing the interfering source. This

pproach requires an apriori knowledge of the locations of correlated

ources. Nulling the activity of multiple regions (or spatially-extended

nes) with this method reduces the number of degrees of freedom, that

therwise could be used for suppressing the interfering sources. 

Brookes et al. (2007) suggested building a beamformer based on

he constraints that are calculated from the topographies of correlated

ources using their linear combination. An ”amplitude optimization ”

outine was suggested to compute the optimal mixing coefficients for

his procedure. Application of this method to real data requires explicit

canning over all possible pairs using a coarse grid, which is not time

fficient and prone to errors if the seed source is set apriori . 

Two beamformers that allow to overcome correlated sources issue

ere evaluated in Popescu et al. (2008) : (1) a linearly constrained min-

mum variance beamformer with partial sensor coverage (LCMV-PSC),

nd (2) a multiple constrained minimum-variance beamformer with co-

erent source region suppression (MCMV-CSRS). It was demonstrated

hat the latter exhibits precise localization and minimal amplitude and

hase distortion for a broad range of relative positions of the interfering

ource within the suppression region. With this method, again, degrees

f freedom are consumed because of the assumption regarding the loca-

ion of the interfering source that maintains the regional zero constraint.

Quraan and Cheyne (2010) compared various solutions available to

he date of that publication to cope with correlated sources in beamform-

ng. When prior information about the location of correlated sources

s available, the method of beamforming with coherent source region

uppression described in Dalal et al. (2006) appeared to be the most

ffective, including the case of closely located (3 cm apart) correlated

ources. The authors concluded that this solution, when carefully exer-
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ised, can significantly improve localization accuracy, but does not fully

olve the amplitude bias problem. 

Diwakar et al. (2011) introduced a dual-core beamforming idea,

hich is an extension of Sekihara’s vectorized LCMV approach

 Sekihara et al., 2001 ). Dual-core beamformer is built using the con-

traint created from the topographies of two spatially disjoint regions.

his approach allows for finding the pairs of highly correlated sources

nd eliminates the computationally expensive search for topographies

ixing parameter and optimal dipole orientation required in the ap-

roach of Brookes et al. (2007) . 

The approaches based on finding pairs of correlated sources would,

or example, fail to detect a hub coupled simultaneously to more than

ne additional source. Further, as our simulations show, synchrony be-

ween more than two sources has a complex effect on the suppression

f the beamformer output power. Therefore, in a number of practi-

al situations, the beamformers limited to considering only a pair of

ources could fail. Moiseev et al. (2011) presented a detailed treatment

f the multiple constrained minimum-variance beamformers with coher-

nt source region suppression (MCMV-CSRS) and offered a set of prac-

ical solutions and scanning statistics to be used for identifying cortical

egions with correlated activity. 

The approaches for coping with source synchrony problem that we

ave described so far are conceptually similar and spin around the idea

f suppressing the activity of the sources correlated to the current ROI.

dditional insights into the problem of adaptive beamfoming in the

nvironment with correlated sources could be gained from the data

ovariance matrix, which contains the information about source syn-

hrony. Formulation of the minimum variance adaptive beamforming

ptimization problem implies the absence of correlation of the under-

ying sources which leads to a specific structure of the data covariance

atrix. When this structure is violated the adaptive beamforming al-

orithm results in significant suppression of the SNR of the estimated

ource timeseries, and in the case of perfect synchrony the adaptive

eamformer would completely cancel the signal. 

The approach we propose here is based on the analysis of the struc-

ure of the data covariance matrix. Kimura et al. (2007) previously de-

eloped a method that is conceptually close to ours. They used a forward

odel and the least squares approximation approach to find an estimate

f the source-space covariance matrix that corresponded to the interac-

ion of a small number of sources. They then nulled the off-diagonal

lements of this matrix and projected it back to the sensor space. This

ew decorrelated matrix was used for building the conventional beam-

ormers. The performance of this approach depends on the estimated

umber of active sources chosen to comprise the source-space covari-

nce matrix. The selection of the number of sources to be represented in

he source-space covariance matrix is a non-trivial problem that affects

he performance of this technique. 

Here we propose an alternative way to modify data covariance ma-

rix that makes adaptive LCMV beamforming robust against correlation

f neural sources activity but does not require the full blown source mod-

lling. In contrast to the approach described in Kimura et al. (2007) , our

ovariance modification procedure does depend on the data. The pro-

osed covariance modification procedure creates a close approximation

f an ideal data covariance that could hypothetically be observed in the

bsence of correlation of source timeseries. It relies only on the whole

ead forward model and can be considered as a deterministic extra step

n building an adaptive LCMV-based inverse operator. 

In our approach, we consider the sensor-space data covariance ma-

rix 𝐂 𝑥 as an element of 𝑀 

2 -dimensional vector space and derive its

xpression as a function of active source topographies scaled by intrin-

ic source timeseries variance and covariance values. We then employ a

ata independent projection procedure to mitigate the contribution ex-

lained by coupling of intrinsic sources. This way the modified covari-

nce matrix 𝐂̃ 𝑥 approximates the one that could have been obtained

hould the same but non-interacting constellation of sources is mea-
p

5 
ured. We then apply the standard beamforming approach but use this

odified data covariance matrix to compute the beamformer weights. 

.3. ReciPSIICOS beamforming 

In this section we introduce the new beamformer modification,

hich is immune to the contributions from correlated sources in the

ata. The key component of the proposed algorithm is the projection

rocedure complementary to the PSIICOS ( Ossadtchi et al., 2018 ) intro-

uced by us earlier. 

We originally designed PSIICOS projection technique for connectiv-

ty analysis, particularly for non-invasive detection of true zero-phase

nteractions between sources which addressed problem (1) Estimat-

ng functional connectivity outlined in the introduction. The proce-

ure employs a projection operation applied to the sensor space cross-

pectral matrix treated as an element of 𝑀 

2 -dimensional vector space.

e showed that PSIICOS could sufficiently well disentangle the sub-

pace containing spatial leakage power from the subspace containing

he contributions from the true zero-phase coupling of sources having

ifferent locations. 

Here we address problem (2) Estimating source timeseries or source

ower distribution using adaptive beamforming and use a similar pro-

ection based approach for solving this complementary problem. Instead

f suppressing the variance in the subspace filled with source power, we

se the complementary version of PSIICOS projection to emphasize it and

nstead suppress the contributions to the sensor data covariance matrix

he spatial components modulated by the source -space timeseries covari-

nce. We refer to the new method as ReciPSIICOS because the proposed

ipeline solves the problem reciprocal to that solved by PSIICOS. 

.3.1. General idea and vectorized sensor-space covariance matrix 

𝑀 ×𝑀 sensor-space covariance matrix 𝐂 𝑥 = 𝐸{ 𝐱 ( 𝑡 ) 𝐱 𝑇 ( 𝑡 )} plays a

ivotal role in adaptive beamforming. Vectorized covariance 𝑣𝑒𝑐( 𝐂 𝑥 )
f the evoked response can be expressed in terms of the elements 𝑐 𝑠𝑠 

𝑖𝑗 
,

, 𝑗 = 1 , ..., 𝑅 of the source-space covariance matrix of 𝑅 active sources

nd their topographies 𝐠 𝑖 as 

𝑒𝑐( 𝐂 𝑥 ) = 𝑣𝑒𝑐( 𝐸{ 𝐱 ( 𝑡 ) 𝐱 𝑇 ( 𝑡 )}) = 

𝑅 ∑
𝑖 =1 

𝑣𝑒𝑐( 𝐠 𝑖 𝐠 
𝑇 
𝑖 ) 𝑐 

𝑠𝑠 
𝑖𝑖 

+ 

𝑅 ∑
𝑖 =1 

𝑅 ∑
𝑗= 𝑖 +1 

𝑣𝑒𝑐 ( 𝐠 𝑖 𝐠 
𝑇 
𝑗 + 𝐠 𝑗 𝐠 

𝑇 
𝑖 ) 𝑐 

𝑠𝑠 
𝑖𝑗 + 𝑣𝑒𝑐 ( 𝐂 𝑛 ) (8) 

here 𝐂 𝑛 is the noise covariance matrix. 

Eq. (8) demonstrates that matrix 𝐂 𝑥 can be decomposed into two

ypes of additive terms: auto-terms corresponding to the source power
𝑅 
𝑖 =1 𝑣𝑒𝑐 ( 𝐠 𝑖 𝐠 

𝑇 
𝑖 
) 𝑐 𝑠𝑠 
𝑖𝑖 

and also the pairwise cross-products of source topogra-

hies weighted with source covariance coefficients 
∑𝑅 

𝑖 =1 
∑𝑅 

𝑗= 𝑖 +1 ( 𝐠 𝑖 𝐠 
𝑇 
𝑗 
+

 

𝑗 
𝐠 𝑇 
𝑖 
) 𝑐 𝑠𝑠 
𝑖𝑗 

. These cross-terms are present in the covariance matrix due to

he non-zero off-diagonal elements 𝑐 𝑖𝑗 of the source-space covariance

atrix. 

The very existence of the cross-terms in the source-space covariance

atrix leads to the undesired performance of the adaptive beamformer.

his happens because the weight vectors are formed in such a way that

he correlated sources are utilized to minimize the beamformer output

ower. 

To dwindle the contribution of source covariance terms to the

ensor-space covariance matrix we propose to use a projector operat-

ng in the 𝑀 

2 -dimensional space. This processing pipeline is shown in

ig. 2 . We apply this projector 𝐏 to the vectorized data covariance ma-

rix to weaken the contribution of the cross-terms. The resulting post-

rojection matrix when reshaped back approximates the sensor-space

ovariance that could have been obtained if no coupling was present.

he obtained covariance matrix is then used in designing the LCMV

eamformer according to the standard approach. 

Next we propose two different approaches to building the 𝑀 

2 ×𝑀 

2 

rojection matrix 𝐏 dubbed ReciPSIICOS and whitened ReciPSIICOS. 
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Fig. 2. The main steps of the proposed approach. We manipulate with a the sensor-space covariance matrix 𝐂 𝑥 1. We consider 𝐂 𝑥 as an element of a linear vector 

space and first vectorize it to enable standard operations defined in the linear vector spaces. The vectorized sensor-space covariance matrix 𝑣𝑒𝑐( 𝐂 𝑥 ) is shown with the 

red dot in the coordinate axes corresponding the trivial basis of the linear space of matrices. As a vector and based on the generative model (8) it can be viewed as a 

sum of two non-orthogonal vectors. The first vector is a linear contribution of sensor-space covariance auto-terms 𝐠 𝑖 𝐠 𝑇 𝑖 modulated by source power 
∑𝑅 

𝑖 =1 𝑣𝑒𝑐 ( 𝐠 𝑖 𝐠 
𝑇 
𝑖 
) 𝑐 𝑠𝑠 

𝑖𝑖 
. 

The second vector is a sum of the pairwise cross-products 𝐠 𝑖 𝐠 𝑇 𝑗 of source topographies weighted with source space covariance coefficients 
∑𝑅 

𝑖 =1 
∑𝑅 

𝑗= 𝑖 +1 ( 𝐠 𝑖 𝐠 
𝑇 
𝑗 
+ 𝐠 

𝑗 
𝐠 𝑇 
𝑖 
) 𝑐 𝑠𝑠 𝑖𝑗 . 

Our goal is to suppress the contribution of this second vector to 𝐂 𝑥 2. We do this using the special precomputed projection matrix 𝐏 that we apply to 𝑣𝑒𝑐( 𝐂 𝑥 ) ; the 

result is then reshaped back ( 𝑣𝑒𝑐 −1 ) into 𝑀 ×𝑀 matrix and care is taken to make sure 𝐂̃ 

𝑎𝑏𝑠 
𝑥 

is a positive definite matrix. 3. Finally, adaptive beamformer spatial 

filters are calculated as usual but using the modified sensor-space data covariance. 
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.3.2. ReciPSIICOS projection 

The first approach to suppressing the manifestation of source ac-

ivity correlation in the sensor-space covariance is based on projecting

he vectorized data covariance 𝑣𝑒𝑐( 𝐂 𝑥 ) onto the source power subspace

 

𝐾 
𝑝𝑤𝑟 defined here as the 𝐾-dimensional principal subspace of collec-

ion of the vectorized auto-products of source topographies 𝑣𝑒𝑐 
(
𝐠 𝑖 𝐠 𝑇 𝑖 

)
,

 = [1 , … , 𝑁 ] , where 𝑁 is the total number of sources in the forward

odel and 𝐾 is the user defined parameter. See Fig. 2 and Projection

atrix in Fig. 3 . A rigorous criterion used to determine 𝐾 is described

n Section 2.4 . 

Importantly, unlike in Kimura et al. (2007) our approach for modifi-

ation of the sensor-space covariance aimed at eliminating the manifes-

ation of source activity correlation does not require estimating the the

ources present in the data, neither their count nor locations. Rather,

e use a projector matrix 𝐏 informed by the sensor-space covariance

enerative model (8) and built using the forward model alone. To con-

truct 𝐏 we estimate the principal source power subspace  𝐾 𝑝𝑤𝑟 of some

xed dimension 𝐾 capturing the largest proportion of variance that

ould have been potentially conveyed to the vectorized covariance ma-

rix via 𝑣𝑒𝑐 
(
𝐠 𝑖 𝐠 𝑇 𝑖 

)
, 𝑖 = [1 , … , 𝑁] under the assumption of uniform distri-

ution of activity across all 𝑁 sources represented in the whole brain

orward model matrix. This is exactly reciprocal to what is done in

 Ossadtchi et al., 2018 ) where we solve the complementary problem

f mitigating volume conduction effects and project the vectorized data
6 
ovariance away from the principal source power subspace  𝐾 𝑝𝑤𝑟 . The

rojection operator 𝐏 obtained this way is directly complementary to

hat of PSIICOS. 

More specifically, to build the projector we use the following se-

uence of steps: 

1. Construct matrix 𝐆 𝑝𝑤𝑟 , where columns correspond to the vectorized

auto-products of topographies for all available 𝑁 sources in the for-

ward model. For compactness we are considering here the fixed ori-

entation case and treat arbitrary source dipole orientations later in

Section 2.5 . We will denote the vectorized auto-product of topogra-

phies as 𝐪 𝑖𝑖 = 𝑣𝑒𝑐 
(
𝐠 𝑖 𝐠 𝑇 𝑖 

)
= 𝐠 𝑖 ⊗ 𝐠 𝑇 

𝑖 
. Then, matrix 𝐆 𝑝𝑤𝑟 can be created

by stacking 𝐪 𝑖𝑖 as columns, i.e. 

𝐆 𝑝𝑤𝑟 = 

[
𝐪 11 , … , 𝐪 𝑖𝑖 , … , 𝐪 𝑁𝑁 

]
(9)

2. Compute the singular value decomposition of matrix 𝐆 𝑝𝑤𝑟 obtained

in the previous step, 𝐆 𝑝𝑤𝑟 = 𝐔 𝑝𝑤𝑟 𝐒 𝑝𝑤𝑟 
(
𝐕 𝑝𝑤𝑟 

)𝑇 
, and create the projec-

tor onto the principal source power subspace  𝐾 𝑝𝑤𝑟 

𝐏 = 𝐔 

𝐾 
𝑝𝑤𝑟 

(
𝐔 

𝐾 
𝑝𝑤𝑟 

)𝑇 
, (10)

where 𝐔 

𝐾 
𝑝𝑤𝑟 is formed from the first 𝐾 left singular vectors. 𝐾

is the projection rank and the only parameter which is needed

to be chosen manually according to the guidelines given in

Section 2.4 . Note that this projection is complementary to that used
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Fig. 3. A schematic presentation of the ReciPSIICOS algorithm. Preprocessing: We first epoch the data and compute evoked response fields. Usually, at this step 

to account for MEG data not being numerically full rank, we project the data into a space of virtual sensors derived from the forward model matrix and capturing 

user-specified percentage of its variance. Projection matrix: This is the main ingredient of our method. We are creating projection matrix 𝐏 aimed at emphasizing 

the source power component (and at the same time suppressing source correlation component) of the sensor-space covariance, see Fig. 2 and expression (8) (green 

box). We operate in the product space of outer product of source topographies and collect all auto outer products 𝐪 𝑖𝑖 = 𝐠 𝑖 𝐠 𝑇 𝑖 , 𝑖 = 1 , … , 𝑁 into a single matrix 𝐆 𝑝𝑤𝑟 , see 

Eq. (13) . Next, we perform SVD of this matrix to identify the subspace capturing the largest proportion of variance for any given dimension 𝐾. Then, using the first 

𝐾 left singular vectors 𝐮 𝑝 𝑤𝑟 1 , … , 𝐮 𝑝 𝑤𝑟 𝐾 of 𝐆 𝑝𝑤𝑟 we form the projection matrix 𝐏 to be applied to the vectorized regular sensor-space covariance matrix computed 

during the Preprocessing step. The projection matrix needs to be formed only once for a given forward model. Output: Lastly, we modify sensor-space covariance 

matrix 𝐂 𝑥 by projecting its vectorized version into the 𝐾-dimensional subspace capturing most of the variation in the columns of 𝐆 𝑝𝑤𝑟 . We then reshape the projected 

vector back into the matrix form and apply the spectral flip approach ( Duin and Pekalska, 2010 ) to ensure non-negative definiteness of the resulting matrix 𝐂 

𝑎𝑏𝑠 
𝑥 

. We 

then use 𝐂̃ 

𝑎𝑏𝑠 
𝑥 

instead of 𝐂 𝑥 in (3) and (5) to compute the adaptive beamformer weights and output power correspondingly. 
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in Ossadtchi et al. (2018) where our goal was to suppress the mani-

festation of volume conduction. 

3. Apply the obtained projection matrix 𝐏 to the vectorized sensor-

space covariance matrix 𝑣𝑒𝑐 
(
𝐂 𝑥 

)
in order to project it onto the source

power subspace and reduce the contribution of the components mod-

ulated by the off-diagonal elements of the source-space covariance

matrix. The projected matrix is then 

𝐂̃ 𝑥 = 𝑣𝑒𝑐 −1 
(
𝐏 ⋅ 𝑣𝑒𝑐 

(
𝐂 𝐱 

))
. (11)

4. The projection procedure followed by reshaping returns a symmet-

ric matrix, see below. However, the projection procedure does not

guarantee the positive definiteness of the resulting matrix ̃𝐂 𝑥 and we

ensure this property by replacing its negative eigenvalues with their

absolute values. This operation is inline with spectral flip approach

introduced in Duin and Pekalska (2010) which has to be used care-

fully. See Section 3.2.3 for further analysis. Thus, we calculate the

final data covariance matrix with suppressed source covariance com-

ponent contribution from the source-covariance of the correlated

sources as 

𝐂̃ 

𝑎𝑏𝑠 
𝑥 = ̃𝐄 |𝚲̃|𝐄̃ 

𝑇 , (12)

where 𝐄̃ and 𝚲̃ are the matrices containing eigenvectors and eigen-

values of the matrix after the projection ̃𝐂 𝑥 and | ⋅ | denotes element-

wise absolute value. In Section 3.2.3 using the examples of real data

covariance matrices we explore in greater detail the issue with non-

positive eigenvalues in the post-projected matrix. 

5. Use projected covariance matrix 𝐂̃ 

𝑎𝑏𝑠 
𝑥 in (3) instead of the original

𝐂 to compute spatial filters 𝐛 , in (4) to reconstruct the source ac-
𝑥 𝑖 

7 
tivation timeseries and in (5) to estimate the source power 𝜎𝑖 distri-

bution. 

We can prove the symmetry of ̃𝐂 𝑥 , if we realize that 𝑀 

2 -dimensional

ector 𝑣𝑒𝑐( 𝐂 𝑥 ) projected onto the 𝐾-dimensional principal subspace of

 𝑝𝑤𝑟 = { 𝑣𝑒𝑐( 𝐠 𝑛 𝐠 𝑇 𝑛 )} , 𝑛 = 1 , ..., 𝑁 is a linear combination of 𝐾 left singular

ectors 𝐮 𝑘 of 𝐆 𝑝𝑤𝑟 . Since each singular vector is simply a linear combina-

ion of the columns of 𝐆 𝑝𝑤𝑟 we can write that 𝐏 ⋅ 𝑣𝑒𝑐( 𝐂 𝑥 ) = 

∑𝐾 
𝑘 =1 𝛼𝑘 𝐮 𝑘 =

𝐾 
𝑘 =1 𝛼𝑘 

(∑𝑁 

𝑛 =1 𝛽
𝑘 
𝑛 ⋅ 𝑣𝑒𝑐( 𝐠 𝑛 𝐠 

𝑇 
𝑛 ) 
)

. Reshaping this expression back into 𝑀 ×
matrix form results into a summation of scaled symmetric matrices

 𝑛 𝐠 𝑇 𝑛 that are symmetric itself. Similar arguments can be made to prove

hat the Whitened ReciPSIICOS projection described next also leads to

 symmetric matrix. Therefore, the eigenvalues of this matrix are real

umbers. 

In vector diagrams in Fig. 2 we show the decomposition of data co-

ariance 𝐂 𝑥 as a summation of components from  𝐾 𝑝𝑤𝑟 and  𝐾 𝑐𝑜𝑟 subspaces

f the 𝑀 

2 -dimensional space. These principal subspaces are not orthog-

nal. After projection performed at Step 2 the contribution from  𝐾 𝑐𝑜𝑟 to

̃
 𝑥 is supposed to be reduced and the components projecting into  𝐾 𝑝𝑤𝑟 

re to be left intact. 

The ReciPSIICOS procedure of source reconstruction is schematically

hown in Fig. 3 for the case of ERP analysis. We use MEG data projected

nto the forward model principal subspace defined as the subspace cap-

uring 90% of the energy in the forward operator matrix. This allows

educing the number of dimensions to about 60 – 80 virtual sensors.

ollowing the preprocessing, we split the data into the epochs accord-

ng to the timestamps of the stimulus onsets. Next, we calculate average
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voked response (ERP). We then use these average ERPs to compute

ensor-space covariance matrix. At this step, we have to make sure that

he ERP curve is of sufficient length and that our data covariance matrix

s full rank. 

We follow the steps listed in the beginning of this section to prepare

rojection operator based on the forward model matrix corresponding

o the virtual sensors. This has to be done only once for a given forward

odel matrix. If the forward model matrix needs to be recomputed for

ome reason, the ReciPSIICOS projector has to be recalculated. 

We then apply this projection operator to the vectorized data co-

ariance matrix and reshape the result of the projection to a square

atrix and heuristically fix negative eigenvalue problem as described

bove. Our experience shows that contribution of the eigendirections

odulated by the negative eigenvalues is quite slim and does not ex-

eed 20% of the total energy in the eigenvalue spectrum of the pro-

ected matrix, (see section 3.2.3 ) In our view the proposed heuristics

rovides an adequate balance of efficiency and simplicity as compared

o the full blown consideration of Riemannian geometry of the correla-

ion matrices, which nevertheless constitutes an interesting direction for

urther improvement of our method. In this section we have described a

imple projection into the power subspace. This method delivers a rea-

onable performance and provides adaptive beamforming scheme with

mmunity to the source-space correlations inevitably present in the MEG

nd EEG data. See Section 3 for description of simulations and real-data

nalysis results where we refer to this method as ReciPSIICOS. 

Because  𝐾 𝑝𝑤𝑟 and  𝐾 𝑐𝑜𝑟 non-trivially overlap, the described projection

rocedure depletes power from both subspaces, but does so at a faster

ace for  𝐾 𝑐𝑜𝑟 subspace. The ultimate balance between the power in the

wo subspaces achieved with specific value of projection rank 𝐾 may

erve as a quality metric for the procedure. We use these considerations

n Section 2.4 where we suggest a strategy for choosing optimal projec-

ion rank. 

In what follows we will describe another, slightly more complicated

rocedure, that allows achieving a better balance between the depletion

atio of power in the  𝐾 𝑝𝑤𝑟 and  𝐾 𝑐𝑜𝑟 subspaces. 

.3.3. Whitened ReciPSIICOS projection 

Projector 𝐏 built according to the second approach directly projects

he vectorized sensor-space covariance away from the subspace that cap-

ures dominant variance modulated by the source-space correlations.

his is done by first estimating the 𝐾 dimensional principal correla-

ion subspace  𝐾 𝑐𝑜𝑟 that captures most of the power in the collection of

𝑒𝑐 
(
𝐠 
𝑖 
𝐠 𝑇 
𝑗 
+ 𝐠 

𝑗 
𝐠 𝑇 
𝑖 

)
, 𝑖, 𝑗 = [1 , … , 𝑁] vectors and then projecting the covari-

nce matrix away from  𝐾 𝑐𝑜𝑟 . However, in order to maximally spare the

ource power terms from this projection we operate this projection in

he space whitened with respect to  𝐾 𝑝𝑤𝑟 . In what follows we refer to

his method as Whitened ReciPSIICOS. Step-by-step algorithm of build-

ng and applying the whitened projector is presented below as well as

he schematic representation in Fig. 4 . 

1. Construct matrix 𝐆 𝑐𝑜𝑟 whose columns span correlation subspace  𝑐𝑜𝑟 .

The columns of this matrix contain vectorized sums of symmetric

source topographies outer-products for all 
𝑁 ( 𝑁 −1) 

2 ordered pairs of

sources. Using 𝐪 𝑖𝑗 = 𝑣𝑒𝑐 
(
𝐠 
𝑖 
𝐠 𝑇 
𝑗 

)
= 𝐠 𝑖 ⊗ 𝐠 𝑇 

𝑗 
shortcut form matrix 

𝐆 𝑐𝑜𝑟 = 

[
… , 𝐪 𝑖𝑗 + 𝐪 𝑗𝑖 , …

]
(13)

and calculate matrix 𝐂 𝑐𝑜𝑟 = 𝐆 𝑐𝑜𝑟 𝐆 

𝑇 
𝑐𝑜𝑟 . 

2. Construct matrix 𝐆 𝑝𝑤𝑟 whose columns span power subspace  𝑝𝑤𝑟 .

Columns of this matrix are the vectorized sums of source topography

vectors as in the previous projector 

𝐆 𝑝𝑤𝑟 = 

[
𝐪 11 , … , 𝐪 𝑖𝑖 , … , 𝐪 𝑁𝑁 

]
(14)

Then calculate the matrix 𝐂 𝑝𝑤𝑟 = 𝐆 𝑝𝑤𝑟 𝐆 

𝑇 
𝑝𝑤𝑟 . 

3. Using eigendecomposition of 𝐂 𝑝𝑤𝑟 , compute the whitening operator

𝐖 𝑝𝑤𝑟 for the source power subspace  𝑝𝑤𝑟 

𝐖 𝑝𝑤𝑟 = 𝐄 𝑝𝑤𝑟 𝚲
−1∕2 
𝑝𝑤𝑟 𝐄 

𝑇 
𝑝𝑤𝑟 , (15)
8 
where 𝐄 𝑝𝑤𝑟 is the matrix of eigenvectors of 𝐂 𝑝𝑤𝑟 and diagonal matrix

𝚲𝑝𝑤𝑟 contains the corresponding eigenvalues. 

4. Apply whitening transformation to 𝐂 𝑐𝑜𝑟 to obtain 𝐂 

𝑤 
𝑐𝑜𝑟 =

𝐖 𝑝𝑤𝑟 𝐂 𝑐𝑜𝑟 𝐖 

𝑇 
𝑝𝑤𝑟 . 

5. Extract the principal subspace of 𝐂 

𝑤 
𝑐𝑜𝑟 by means of eigenvalue de-

composition as 

𝐂 

𝑤 
𝑐𝑜𝑟 = 𝐄 

𝑤 
𝑐𝑜𝑟 𝚲

𝑤 
𝑐𝑜𝑟 

(
𝐄 

𝑤 
𝑐𝑜𝑟 

)𝑇 
(16)

6. Form matrix projecting away from the source correlation subspace

 𝑐𝑜𝑟 and operating in the space whitened with respect to  𝑝𝑤𝑟 

𝐏 = 𝐖 

−1 
𝑝𝑤𝑟 

(
𝐈 − 𝐄 

𝑤𝐾 
𝑐𝑜𝑟 

(
𝐄 

𝑤𝐾 
𝑐𝑜𝑟 

)𝑇 )𝐖 𝑝𝑤𝑟 , (17)

where 𝐈 is identity matrix, 𝐄 

𝑤𝐾 
𝑐𝑜𝑟 is the matrix of the first 𝐾 eigenvec-

tors of matrix 𝐂 

𝑤 
𝑐𝑜𝑟 , 𝐖 𝑝𝑤𝑟 is the whitening matrix computed earlier

and 𝐾 is the projection rank and the only parameter in the intro-

duced algorithm that needs to be chosen manually. 

7. Apply the obtained matrix 𝐏 to the vectorized sensor-space covari-

ance matrix 𝑣𝑒𝑐 
(
𝐂 𝑥 

)
in order to project it away from the principal

source correlations subspace and thus reduce the contribution of the

components modulated by the off-diagonal elements of the source-

space covariance matrix. The projected matrix is then 

𝐂̃ 𝑥 = 𝑣𝑒𝑐 −1 
(
𝐏 ⋅ 𝑣𝑒𝑐 

(
𝐂 𝑥 

))
(18)

8. Again, as with constructing the first projection it can be proved that

the projected matrix is symmetric. Also, since this whitened projec-

tion procedure does not guarantee the positive definiteness of the

resulting matrix 𝐂̃ 𝑥 , we ensure this by replacing its negative eigen-

values with their absolute values. In other words, we calculate the

final data covariance matrix that has the contribution of the corre-

lated sources suppressed as 

𝐂̃ 

𝑎𝑏𝑠 
𝑥 = ̃𝐄 |𝚲̃|𝐄̃ 

𝑇 , (19)

where 𝐄̃ and 𝚲̃ are the matrices containing eigenvectors and eigen-

values of 𝐂̃ 𝑥 . 

9. Use the projected covariance matrix ̃𝐂 

𝑎𝑏𝑠 
𝑥 in (3) instead of the original

𝐂 𝑥 to compute the spatial filters 𝐛 𝑖 to reconstruct the source activa-

tion timeseries (4) and to estimate the source power 𝜎2 
𝑖 

distribution

in (5) . 

Note that this projection is still conceptually complementary to the

riginal PSIICOS ( Ossadtchi et al., 2018 ), as it projects the vectorized

ovariance away from the 𝐾-dimensional principal subspace  𝐾 𝑐𝑜𝑟 com-

uted using the columns of 𝐆 𝑐𝑜𝑟 . 

Both projection operations will inevitably affect both subspaces.

owever, as it has been demonstrated earlier in Ossadtchi et al. (2018) ,

he use of spectral value decomposition procedure (SVD) allows iden-

ifying a low dimensional subspace of  𝐾 𝑝𝑤𝑟 or  𝐾 𝑐𝑜𝑟 capturing most of

he power of the auto-product terms 𝑣𝑒𝑐 
(
𝐠 
𝑖 
𝐠 𝑇 
𝑖 

)
, 𝑖 = [1 , … , 𝑁] and the

ross-product terms 𝑣𝑒𝑐 
(
𝐠 
𝑖 
𝐠 𝑇 
𝑗 
+ 𝐠 

𝑗 
𝐠 𝑇 
𝑖 

)
, 𝑖, 𝑗 = [1 , … , 𝑁] . 

As in the previous case, this projection procedure is designed with-

ut taking into account the Riemannian geometry of the manifold of

he correlation matrices. Interestingly, this approach is based on pro-

ecting the original vectorized covariance matrix away from  𝑐𝑜𝑟 yields

ven smaller fraction of negative eigenvalues. In our experience, this

hitened projection operator consistently results into less than 20% of

he total energy in the eigenvalue spectrum of the projected matrix. 

.4. Optimal projection rank 

In the previous sections we introduced two projection procedures

imed at suppressing the contribution of the components modulated by

he off-diagonal elements of the source-space covariance matrix. The

rojection procedures require only one parameter, the projection rank,

hat has to be preset by the operator. Since the projection depends only

n the forward model, a possible solution is to select the projection rank

based on the simulations like the ones described in Section 3.1 . 
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Fig. 4. Schematic presentation of the Whitened ReciPSIICOS algorithm. 
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The other approach is based on the following considerations. We

perate in the 𝑀 

2 -dimensional space and consider Eq. (8) as the ob-

ervation equation of the 𝑣𝑒𝑐( 𝐂 𝑥 ) . This equation represents 𝑣𝑒𝑐( 𝐂 𝑥 ) as a

uperposition of activity of sources with the topographies 𝐪 ii = vec ( 𝐠 𝑖 𝐠 𝑇 𝑖 ) ,
 = 1 , … , 𝑅 and 𝐡 𝑖𝑗 = 𝑣𝑒𝑐( 𝐠 

𝑖 
𝐠 𝑇 
𝑗 
+ 𝐠 

𝑗 
𝐠 𝑇 
𝑖 
) , 𝑖 = 1 , … , 𝑅, 𝑗 = ( 𝑖 + 1) , … , 𝑅 . Vec-

ors 𝐪 ii and 𝐡 𝑖𝑗 mainly project into  𝐾 𝑝𝑤𝑟 and  𝐾 𝑐𝑜𝑟 subspaces correspond-

ngly. To calculate maximum possible energy in each of the subspaces

e can assume that the “sources ” with “topographies ” 𝐪 ii and 𝐡 𝑖𝑗 are

ctivated with unit independent activations and then the total energy

n both subspaces can be measured as the trace of the 𝑀 

2 ×𝑀 

2 corre-

ation matrices 𝐂 𝑝𝑤𝑟 and 𝐂 𝑐𝑜𝑟 introduced earlier in Section 2.3.3 . After

he projection procedure of rank 𝑘 is performed by means of matrix 𝐏 𝑘 ,
he subspace correlation matrices of the observable 𝑣𝑒𝑐( ̃𝐂 𝑥 ) will read as

 

𝑘 
𝐂 𝑝𝑤𝑟 𝐏 

𝑇 
𝑘 

and 𝐏 
𝑘 
𝐂 𝑐𝑜𝑟 𝐏 

𝑇 
𝑘 

. The fraction of power left in both subspaces

an be then computed as 

 𝑝𝑤𝑟 ( 𝑘 ) = 

𝑡𝑟𝑎𝑐𝑒 ( 𝐏 
𝑘 
𝐂 𝑝𝑤𝑟 𝐏 

𝑇 
𝑘 
) 

𝑡𝑟𝑎𝑐𝑒 ( 𝐂 𝑝𝑤𝑟 ) 
(20)

nd 

 𝑐𝑜𝑟 ( 𝑘 ) = 

𝑡𝑟𝑎𝑐𝑒 ( 𝐏 
𝑘 
𝐂 𝑐𝑜𝑟 𝐏 

𝑇 
𝑘 
) 

𝑡𝑟𝑎𝑐𝑒 ( 𝐂 𝑐𝑜𝑟 ) 
(21)

Based on these equations we can plot the curves ( 𝑃 𝑝𝑤𝑟 ( 𝑘 ) , 𝑃 𝑐𝑜𝑟 ( 𝑘 ))
arameterized by projection rank parameter 𝑘 . An example of such a

lot is shown in Fig. 5 that depicts the fraction of past projection power

n both subspaces parameterized by the projection rank 𝑘 . 

With the reduction of projection rank in the ReciPSIICOS procedure

hat performs projection onto the power subspace, more power is de-

leted from both the subspaces  𝐾 𝑝𝑤𝑟 and  𝐾 𝑐𝑜𝑟 . Conversely, the Whitened

eciPSIICOS implements the projection away from the correlation sub-

pace, so the power is suppressed while the projection rank grows. 

Our method works because there exists a range of projection rank

alues, where the power is depleted faster from the correlation sub-

pace than from the power subspace, i.e. 𝛿𝑃 = 

𝑑𝑃 𝑐𝑜𝑟 
𝑑𝑘 

− 

𝑑𝑃 𝑝𝑤𝑟 

𝑑𝑘 
> 0 . How-

ver, when projection rank 𝑘 reaches a certain value K 

∗ , the rate of

epletion of power from the two subspaces become comparable. Con-

equently, for the values of 𝑘 > 𝐾 

∗ , the difference 𝛿𝑃 changes its sign

o negative, i.e. the power subspace starts to lose power faster than the

orrelation subspace. This projection rank value 𝐾 

∗ can be considered
9 
s optimal. Our simulations show that the projection operation remains

airly stable for a broad range of projection rank values 𝑘 . Yet, these

alues are affected by the number of virtual sensors used and would

ignificantly differ for different MEG probes. 

Fig. 5 demonstrates the power suppression curves for the two pro-

osed methods and for the two MEG arrays: 204-gradiometer array of

euromag Vectorview-306 (panel A) and 275 gradiometer array of CTF

panel C). In both cases, the number of virtual sensors was selected so

hat their leadfiled matrix captured 99% of variance present in the orig-

nal leadfield matrix which resulted into 𝑀 

𝑁𝑚𝑔 = 50 and 𝑀 

𝐶𝑇𝐹 = 42
umber of sensors. Panels B and D show the logarithm of marginal

ain, defined as log ( 𝑑𝑃 𝑐𝑜𝑟 ∕ 𝑑𝑘 ) − log ( 𝑑𝑃 𝑝𝑤𝑟 ∕ 𝑑𝑘 ) , as a function of projec-

ion rank. According to the imposed assumptions, the optimal projection

ank is the value which sets the logarithm of marginal gain in power de-

letion to zero, which also means that the angle of the tangent to power

uppression curve equals to 45 ° at this point. 

This approach demonstrates the clear superiority of Whitened ReciP-

IICOS method over plain ReciPSIICOS, as for each value of preserved

ower in  𝐾 𝑝𝑤𝑟 Whitened ReciPSIICOS suppresses more power in  𝐾 𝑐𝑜𝑟 . 

.5. Handling unknown source orientations 

Anatomically, the dipole orientations coincide with the direction of

pical dendrites of the pyramidal neurons and therefore are predomi-

antly orthogonal to the cortical mantle. 

Modern tools of MRI data analysis allow for a very accurate extrac-

ion and precise parametrization of the cortical surface with the number

f nodes on the order of several hundreds of thousands, which in turn re-

ults in a reasonable accuracy of the orientation specification. However,

n practice significantly sparser grids of tens of thousands of nodes are

sed which leads to the increased uncertainty in the orientation param-

ter. To compensate for this it is customary to place a triplet of dipoles

n each node to accommodate any orientation to be learnt from the data.

he local forward matrix is then represented by a triplet of topographies

orresponding to the three dipoles. As shown in Ahlfors et al. (2010) ,

ven with realistically shaped forward models the third dimension in

he node forward model conveys to the data median 6% of energy of

he local source with the most powerful orientation. Based on this, we

ollow the common practice in MEG inverse modelling and reduce local
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Fig. 5. Parametric curves of power depletion in the  𝑝𝑤𝑟 and  𝑐𝑜𝑟 subspaces parameterized by projection rank for ReciPSIICOS and Whitened ReciPSIICOS projections 

for Elekta Neuromag 102 magnetometers array (panel A), 204 gradiometers (panel B) and 306 magnetometers and gradiometers (Panel C) and and 275 radial 

gradiometers CTF array (panel D). The inserts show the logarithm of marginal gain, log ( 𝑑𝑃 𝑐𝑜𝑟 ∕ 𝑑𝑘 ) − log ( 𝑑𝑃 𝑝𝑤𝑟 ∕ 𝑑𝑘 ) , as a function of projection rank. The optimal 

projection rank is the value which sets the logarithm of marginal gain in power depletion to zero, which corresponds to the 45 ◦ angle of power suppression curves 

tangent. 
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g  
orward matrix dimension to two ( Mosher et al., 1999 ). While this rep-

esents a working solution, it is important to keep in mind that in some

eep cortical and subcortical regions the fraction of energy contributed

y the third dimension can be as high as 20% which may potentially im-

rove spatial resolving power of MEG given that the forward modeling

ccuracy is preserved for these typically deep regions. 
v

10 
For an arbitrary orientation vector at some 𝑖 -th vertex 𝛉𝑖 =
 𝜃𝑥 
𝑖 
, 𝜃

𝑦 
𝑖 
] 𝑇 , the corresponding dipole topography is 𝐠 𝜃𝑖 

𝑖 
= [ 𝐠 𝑥 

𝑖 
, 𝐠 𝑦 

𝑖 
] 𝛉𝑖 , where

 

𝑥 
𝑖 
, 𝐠 𝑦 

𝑖 
are the topographies of the two orthogonally oriented dipoles in

he tangential plane at the 𝑖 -th vertex. By varying the orientation an-

le we can obtain an infinite set of power subspace topography vectors

ec ( 𝐠 𝜃𝑖 ( 𝐠 𝜃𝑖 ) 
𝑇 
) ! 
𝑖 𝑖 
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Expanding these auto-products of topographies of the oriented

ipoles in terms of the topographies 𝐠 𝑥 
𝑖 
, 𝐠 𝑦 

𝑖 
, 𝑖 = [1 , … , 𝑁] oriented along

 and 𝑦 axis of the local tangential plane we obtain 

𝑒𝑐 
(
𝐠 𝜃𝑖 
𝑖 
( 𝐠 𝜃𝑖 

𝑖 
) 𝑇 
)
= 𝐠 𝜃𝑖 

𝑖 
⊗ 𝐠 𝜃𝑖 

𝑖 
= ( 𝐆 𝑖 𝛉𝑖 ) ⊗ ( 𝐆 𝑖 𝛉𝑖 ) 

= ( 𝜃𝑥 𝑖 ) 
2 𝐠 𝑥 𝑖 ⊗ 𝐠 𝑥 𝑖 + 𝜃𝑥 𝑖 𝜃

𝑦 
𝑖 

(
𝐠 𝑥 𝑖 ⊗ 𝐠 𝑦 

𝑖 
+ 𝐠 𝑦 

𝑖 
⊗ 𝐠 𝑥 𝑖 

)
+ ( 𝜃𝑦 

𝑖 
) 2 𝐠 𝑦 

𝑖 
⊗ 𝐠 𝑦

𝑖

(22

In the above for compactness we have replaced the operation of vec-

orized outer product of two vectors with an equivalent operation of

ronecker product of these two vectors since 𝑣𝑒𝑐( 𝐚 , 𝐛 ) = 𝐚 ⊗ 𝐛 . 
Therefore, in order to accommodate the arbitrary orientation con-

traint, elements 𝐠 𝑖 ⊗ 𝐠 𝑖 in Eqs. (9) and (14) have to be replaced by

 𝐠 𝑥 
𝑖 
⊗ 𝐠 𝑥 

𝑖 
, 𝐠 𝑥 

𝑖 
⊗ 𝐠 𝑦 

𝑖 
+ 𝐠 𝑦 

𝑖 
⊗ 𝐠 𝑥 

𝑖 
, 𝐠 𝑦 

𝑖 
⊗ 𝐠 𝑦 

𝑖 
] . 

Arbitrary orientations lead to a slightly more cumbersome manip-

lation for the cross-products of topographies. Similarly to the auto-

roducts step sums of vectorized outer-products of topographies of dif-

erent arbitrarily oriented sources present in Eq. (13) can be expanded

sing Kronecker product notation as 

𝑣𝑒𝑐 
(
𝐠 𝜃𝑖 
𝑖 
( 𝐠 𝜃𝑗 

𝑗 
) 𝑇 
)
+ 𝑣𝑒𝑐 

(
𝐠 𝜃𝑗 
𝑗 
( 𝐠 𝜃𝑖 

𝑖 
) 𝑇 
)
= 𝐠 𝜃𝑖 

𝑖 
⊗ 𝐠 𝜃𝑗 

𝑗 
+ 𝐠 𝜃𝑗 

𝑗 
⊗ 𝐠 𝜃𝑖 

𝑖 
= ( 𝐆 𝑖 𝛉𝑖 ) ⊗ ( 𝐆 𝑗 𝛉𝑗

+( 𝐆 𝑗 𝛉𝑗 ) ⊗ ( 𝐆 𝑖 𝛉𝑖 ) = 𝜃𝑥 𝑖 𝜃
𝑥 
𝑗 ( 𝐠 

𝑥 
𝑖 ⊗ 𝐠 𝑥 𝑗 + 𝐠 𝑥 𝑗 ⊗ 𝐠 𝑥 𝑖 ) + 𝜃𝑥 𝑖 𝜃

𝑦 
𝑗 
( 𝐠 𝑥 𝑖 ⊗ 𝐠 𝑦 

𝑗 

+ 𝐠 𝑦 
𝑗 
⊗ 𝐠 𝑥 𝑖 ) + 𝜃

𝑦 
𝑗 
𝜃𝑥 𝑖 ( 𝐠 

𝑦 
𝑖 
⊗ 𝐠 𝑥 𝑗 + 𝐠 𝑥 𝑗 ⊗ 𝐠 𝑦 

𝑖 
) + 𝜃

𝑦 
𝑖 
𝜃
𝑦 
𝑗 
( 𝐠 𝑦 

𝑖 
⊗ 𝐠 𝑦 

𝑗 
+ 𝐠 𝑦 

𝑗 
⊗ 𝐠 𝑦 

𝑖 
) . (23

Therefore, elements 𝑣𝑒𝑐 
(
𝐠 𝜃𝑖 
𝑖 
( 𝐠 𝜃𝑗 

𝑗 
) 𝑇 
)
+ 𝑣𝑒𝑐 

(
𝐠 𝜃𝑗 
𝑗 
( 𝐠 𝜃𝑖 

𝑖 
) 𝑇 
)

in Eq. (13) are

o be replaced with 

[
𝐠 𝑥 𝑖 ⊗ 𝐠 𝑥 𝑗 + 𝐠 𝑥 𝑗 ⊗ 𝐠 𝑥 𝑖 , 𝐠 

𝑥 
𝑖 ⊗ 𝐠 𝑦 

𝑗 
+ 𝐠 𝑦 

𝑗 
⊗ 𝐠 𝑥 𝑖 , 𝐠 

𝑦 
𝑖 
⊗ 𝐠 𝑥 𝑗 

+ 𝐠 𝑥 𝑗 ⊗ 𝐠 𝑦 
𝑖 
, 𝐠 𝑦 

𝑖 
⊗ 𝐠 𝑦 

𝑗 
+ 𝐠 𝑦 

𝑗 
⊗ 𝐠 𝑦 

𝑖 

]
. 

The rest of the procedure for building the projector is unaltered. 

.6. Monte Carlo simulations 

In order to compare the proposed algorithms with other relevant

ource reconstruction methods we ran several Monte Carlo simulations.

o simulate the MEG signals, we used cortical surface model with 20000

ertices reconstructed from anatomical MRI data using FreeSurfer soft-

are ( Fischl, 2012 ). The forward model matrix 𝐆 for freely oriented

ipolar sources was computed with Brainstorm software ( Tadel et al.,

011 ) using the overlapping spheres procedure. Each location on the

ortical grid was served by two topography vectors confined to the lo-

ally tangential plane as determined by the first two right singular vec-

ors of the local [ 𝑀 × 3] forward matrix. 

In different experiments, we studied the interaction of two or three

ources. For each Monte Carlo trial, a random set of pairs or triplets of

ipolar sources was picked as the target stimulus-related sources. One

undred epochs were generated and then averaged to obtain the event

elated field (ERF). The activations of target sources 𝐬 ( 𝑡 ) were modeled

ith 10-Hz sinusoids. 

The simulated data mimicked two experimental conditions: the first

ith highly correlated source activation timeseries and the second with

ncorrelated ones. To model these two extreme cases, the phase differ-

nce between activation timeseries was set to zero for the correlated

ondition and to 𝜋2 for the uncorrelated condition. Each trial onset was

ittered with respect to the task onset by adding a random shift gener-

ted from zero-mean normal distribution with the standard deviation

orresponding to 𝜋8 phase difference. 

We modeled task irrelevant activity with 1000 task-unrelated cere-

ral sources whose locations and timeseries varied with each epoch.

ource locations were mapped on the nodes of the high resolution cor-

ical grid (20000 vertices). The activation timeseries were narrow-band

ignals obtained via zero-phase filtering of the realizations of Gaussian

pseudo)random process by the fifth order band-pass IIR filters in the

ands corresponding to theta (4-7 Hz), alpha (8-12 Hz), beta (15-30 Hz)
11 
nd gamma (30-50 Hz, 50-70 Hz) activity. Their relative contributions

ere scaled in accordance with the well-known 1∕ 𝑓 characteristic of the

EG spectrum. We scaled the brain noise components to match typical

ignal-to-noise ratio of real-life recordings. To project these sources into

he sensor space, the corresponding columns of the forward matrix was

omputed for the high resolution source grid. We simulated 100 epochs

f ERF data and for each epoch a new randomly picked set of noisy

ources was chosen and new noisy timeseries with approximately 1∕ 𝑓
pectrum were generated. We defined the SNR in our simulated data in

he sensor space as the ratio of Frobenius norms of data matrices for

he induced and brain noise components filtered in the band of interest

0.5-7 Hz), corresponding to the ERF response. 

We did not perform whitening of the data (and the model) with re-

pect to noise covariance 𝐂 𝑛 . In the ERP setting this covariance could be

stimated from a small number of samples over the pre-stimulus inter-

al. Whitening with respect to such a noisy covariance estimate would

equire regularization for which there is no universally working recipe

 Engemann and Gramfort, 2014 ). Also, the whitening changes the for-

ard operator which would then require recomputing ReciPSIICOS and

hitened ReciPSIICOS projections. The former is fast and the latter is

ay slower and takes about 5-10 minutes on a regular PC and normally

eeds to be done once per forward model. However, in the case of 500

onte-Carlo simulations per condition with new noise samples on every

C trial this would result into a very significant computational burden

hat we decided to avoid. Given that the proper whitening may improve

he source localization accuracy, the results reported here for the low

NR cases can be conservative. 

The high resolution grid of 20,000 vertices was used only for data

imulation. For the source reconstruction process we employed a 4

imes sparser cortex grid with 5000 vertices. Both projectors (10) and

17) were computed using the sparser grid. We ran 500 simulations and

ompared two versions of the proposed ReciPSIICOS method against the

lassical adaptive vector LCMV beamformer ( Sekihara et al., 2001 ) and

NE techniques. 

We have also projected the data into the principal subspace cap-

uring 95% of variance in the forward model matrix. This helps us to

mprove the condition number of data covariance matrices. In addition,

e follow a safe strategy and augment matrix inversions with a sim-

le Tikhonov regularization, however, the regularization parameters are

sually very small and fall into 10 −3 − 10 −2 range. 

.7. Performance metrics 

In our Monte Carlo simulation analysis, goodness of localization was

stimated using three metrics: source localization bias, point spreading

adius and ratio of successful detection. While the data were simulated

sing dense cortical model with 20,000 sources, source reconstruction

rocedure was based on the sparse cortical model with 5000 sources to

ake the reconstruction procedure more realistic. We considered sepa-

ately the scenarios with two and three target sources. In order to run

he comparative analysis for each Monte Carlo trial we repeated the

ollowing steps: 

1. Given the simulated data with target sources 𝐫 𝑗 0 = [ 𝑥 𝑗 , 𝑦 𝑗 , 𝑧 𝑗 ] , where

𝑗 = {1 , … , 𝑁 𝑠𝑟𝑐 } for number of sources 𝑁 𝑠𝑟𝑐 = 2 or 𝑁 𝑠𝑟𝑐 = 3 , estimate

the power of each source 𝐙 = [ 𝑧 1 , … , 𝑧 𝑀 ] using the four studied

methods (ReciPSIICOS, Whitened ReciPSIICOS, LCMV, MNE). The

sources with estimated power below the threshold 𝛼 are considered

as inactive. 𝛼 is computed as a fraction of maximal estimated power

value among all sources as 𝛼 = 𝑎 ⋅max ( 𝐙 ) , 0 ≤ 𝑎 ≤ 1 . To mimic real-

life situation, we choose the parameter 𝑎 individually for each Monte

Carlo iteration and each method, according to the following proce-

dure. We scan through the grid of different values of 𝑎 . Each thresh-

old value results in a specific number of connected regions (clus-

ters). We then choose the highest value of the threshold that results

into the number of sources that were simulated 𝑁 . In case we can
𝑠𝑟𝑐 
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not find such a threshold value, we repeat the above procedure for

𝑁 𝑠𝑟𝑐 − 1 sources. Sources with estimated power exceeding 𝛼 are con-

sidered as active and assigned to the closest target source in terms

of the Euclidean distance. 

2. All active sources are divided into 𝐶 clusters 𝐒 𝑐𝑙 = { 𝐫 𝑐𝑙 1 , … , 𝐫 𝑐𝑙 
𝑁 

𝑐𝑙 
} , 𝑐𝑙 =

{1 …𝐶} , 𝐶 ≤ 𝑁 𝑠𝑟𝑐 , according to their correspondence to one of the

target sources, where 𝑁 

𝑐𝑙 is the number of sources in each cluster.

In each cluster find the source with maximal estimated power 

( 𝐫 ∗ ) 𝑐𝑙 = argmax 𝑗 ( 𝐙 ( 𝐫 𝑐𝑙 𝑗 )) , 

where 𝑗 ∈ 1 …𝑁 

𝑐𝑙 , 𝑐𝑙 = {1 , 2} or 𝑐𝑙 = {1 , 2 , 3} . 
3. Calculate the average Euclidean distance between the local maxima

in each cluster and the corresponding target source. The obtained

value reflects the source localization bias and is measured in meters: 

𝐵 = 

1 
𝐶 

𝐶 ∑
𝑐𝑙=1 

‖( 𝐫 ∗ ) 𝑐𝑙 − 𝐫 𝑐𝑙 0 ‖2 

4. To estimate the point spreading radius, first normalize the estimated

power values inside each cluster 

𝐙̃ ( 𝐫 𝑐𝑙 𝑗 ) = 

𝐙 ( 𝐫 𝑐𝑙 
𝑗 
) 

∑𝑁 

𝑐𝑙 

𝑗=1 𝐙 ( 𝐫 𝑐𝑙 
𝑗 
) 
, 

where 𝑗 ∈ 1 …𝑁 

𝑐𝑙 , 𝑐𝑙 = {1 …𝐶} , and then calculate the distance be-

tween each source belonging to the current cluster and the source

with maximal estimated power. The point spreading radius is then

the averaged sum of computed distances weighted with the normal-

ized power values 

𝑃 𝑆 = 

1 
𝐶 

𝐶 ∑
𝑐𝑙=1 

𝑁 

𝑐𝑙 ∑
𝑗=1 

𝐙̃ ( 𝐫 𝑐𝑙 𝑗 ) ‖𝐫 𝑐𝑙 𝑗 − ( 𝐫 ∗ ) 𝑐𝑙 𝑖 ‖2 . 
5. If the number of detected clusters 𝐶 is lower than the number of

modeled sources (2 or 3), this simulation is considered as an unsuc-

cessful detection. Also, if the source localization bias is higher than

2 cm, which means that the peak of reconstructed activity is 2 cm

away from the initial location, this case is also considered as an un-

successful detection. The detection ratio is then defined as the ratio

of successful detection across all simulations. 

For all simulations, we computed statistical distributions of the met-

ics of interest and the corresponding median values. We used localiza-

ion bias and point spreading area as accuracy metrics for each method.

The described procedure and considered metrics give the highly in-

uitive output and result into criteria which are usually used in the man-

al expert evaluation of source reconstruction results. Moreover, the ob-

ained characteristics of LCMV and MNE reconstruction perfectly fit the

revious results ( Rana et al., 2018 ), which also confirms the consistency

f the chosen metrics. 

.8. MEG data acquisition and handling 

We applied the ReciPSIICOS and Whitened ReciPSIICOS algorithms

o the MEG datasets from two experiments that involved auditory pro-

essing. The behavioral tasks and MEG recording systems were different

n these experiments. 

.8.1. Dataset 1 

The first dataset contained MEG data for one healthy subject and

ne ASD patient. The data were collected at Moscow MEG facility with

lekta-Neuromag Vectorview 306 system (Elekta Oy, Finland) with 204

lanar gradiometers and 102 magnetometers. The subjects participated

n a passive listening session. During the experiment, the 40 Hz auditory

timuli sequence was presented monaurally in the left ear. The session

onsisted of 80 trials. MEG data were recorded with 1000 Hz sampling

requency. The data were preprocessed using the Elekta MaxFilter TM 

oftware that performs spatial and temporal projections to suppress
12 
ata components emanating from sources with the origin outside the

phere inscribed into the MEG helmet inner border, see ( Taulu and

imola, 2006 ) for technical details and ( Nenonen et al., 2012 ) for a study

xploring the effects of MaxFilter TM on the ERF data. 

To compute the auditory steady-state responses (ASSR), we consid-

red the low gamma-band oscillations as the primary focus of the analy-

is. The preprocessed data were band-pass filtered in the 35–45 Hz band

sing a band-pass FIR filter with 128 taps. The obtained signals were

poched 500 ms prior- and 1 s post-stimulus and averaged to obtain the

RF. 

The sensor-space covariance matrix was computed for the average

RF. The length of the ERF timeseries (including the pre-stimulus inter-

al) was 1.5 s (1500 samples) for the virtual sources count of 𝑀 = 50 .
his number of samples was sufficient for the estimation of the sensor-

pace covariance matrix. Based on the individual 1.5 T MRI scans for-

ard model, matrices comprising topographies of freely oriented dipoles

n the 20,000 mesh grid nodes were calculated individually for the two

articipants. 

.8.2. Dataset 2 

The second dataset was collected in one subject using a CTF-275

EG system. The data were recorded in the Montreal Neurological In-

titute, McGill University, Canada by Elizabeth Bock, Peter Donhauser,

rancois Tadel and Sylvain Baillet for Brainstorm tutorial ( Tadel et al.,

011 ). The subject received auditory stimuli binaurally through intra-

ural earphones (air tubes + transducers). The stimuli included a total

f 200 regular beeps (440 Hz) and 40 easy deviant beeps (554.4 Hz, 4

emitones higher). The inter-stimulus interval was randomized and uni-

ormly sampled between 0.7 s and 1.7 s seconds. The subject was in a

eating position. He was instructed to press a button with the right index

nger when detecting a deviant stimulus. Auditory stimuli were gener-

ted with the MATLAB Psychophysics toolbox. MEG data were acquired

t 2400 Hz. The data were saved from the CTF acquisition software with

he 3-rd gradient correction option. 

The anti-aliasing low-pass filter with cutoff frequency of at 600 Hz

as applied and the data were saved with the 3-rd order gradient correc-

ion option offered by the CTF acquisition software. Eye artifacts were

emoved using ICA decomposition. The data were bandpass filtered in

he 1-70 Hz band using a band-pass FIR filter with 128 taps. The ob-

ained signals were epoched 100 ms prior- and 500 ms post-stimulus

nd averaged separately for deviant and standard stimuli. To obtain an

MN component, we computed the difference between the deviant and

tandard responses. 

.8.3. Forward and inverse operators 

Forward operators were computed via Brainstorm software

 Tadel et al., 2011 ) using an overlapping spheres model. MNE inverse

perator was computed in agreement with its implementation in the

rainstorm software and for LCMV we used vector beamformer for-

ulation ( Sekihara et al., 2001 ). Due to the typically high SNR in the

RF/ERP data, no noise covariance was supplied to either of the algo-

ithms. ReciPSIICOS and Whitened ReciPSIICOS inverse operators, as

ell as all the simulations and analysis, were performed using custom

ATLAB scripts. 

. Results 

.1. Monte Carlo simulation study 

The performance of ReciPSIICOS and Whitened ReciPSIICOS pro-

ections was tested using Monte Carlo simulations, according to the

ethodology described in Section 2.6 . To perform a comparative analy-

is for each simulation, the source power was estimated using four tech-

iques discussed above: ReciPSIICOS, Whitened ReciPSIICOS, LCMV

nd MNE. Simulated data were generated using a dense cortical grid of

0000 sources, and source reconstruction procedure used a four times
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parser cortical model with 5000 sources. This study design allowed to

erform a more realistic simulation analysis, though naturally entails

mall additional persistent bias in all considered metrics. 

.1.1. Two interacting sources 

Source reconstruction results for a single trial of Monte Carlo simu-

ations with two active sources are shown in Fig. 6 . The left and right

anels show the results for the synchronous and asynchronous pairs of

ources, correspondingly. For each Monte-Carlo iteration, such as the

ne depicted in Fig. 6 , the pair of symmetrically located dipolar sources

as picked randomly. SNR in the ERP corresponding to the simulated

ata was set to 4. Each subplot on the graph demonstrates cortical dis-

ribution of the estimated variance and the scatter plots allow to ap-

reciate the dynamic range of the obtained solutions. As expected, in

he case of the asyncronous sources, ReciPSIICOS, Whitened ReciPSI-

COS and LCMV demonstrated spatially tight activation distributions,

hile MNE-produced map was characterized by a significantly greater

ortical spread. For synchronous sources, the LCMV beamformer clearly

howed a signal cancellation effect and completely failed to localize true

ources, while the proposed projection remained operable in both Re-

iPSIICOS and Whitened ReciPSIICOS versions. 

It is important to note that, as evident from this single MC-trial ex-

mple ( Fig. 6 ), the proposed projection did not adversely affect spa-

ial spatial resolution of the beamformer-based inverse solution in the

synchronous case and kept operating in the scenario with synchronous

ources whereas the original adaptive LCMV failed to recover the sim-

lated sources. The MNE technique was insensitive to the correlation

etween sources and showed qualitatively identical results in both syn-

hronous and asynchronous cases. We would also like to point out that

he the magnitude of and dynamic range of ReciPSIICOS and Whitened

eciPSIICOS obtained solutions appeared to be noticeably greater than

hose delivered by the MNE and the LCMV techniques. 

As we will show in the later sections, the norms of the inverse opera-

or rows for the LCMV and the two techniques proposed here are of com-

arable magnitude. Therefore the increased magnitude of the output in

oth synchronous and asynchronous cases is explained by the proper ori-

ntation of the corresponding spatial filter (row of the inverse operator)

imed at emphasizing target source activity and not using activation of

ynchronous sources to chase the minimum variance requirement. The

act that the increase in magnitude was observed in both synchronous

nd asynchronous cases can be explained by the fact that the sources

resent in the realistically simulated brain noise are used by the greedy

CMV solution to further minimize the output variance. 

To generalize the observations described above we performed 500

onte Carlo simulations with 500 trials and used the three metrics de-

ailed in section 2.7 : source localization bias, radius of point spread-

ng and ratio of successful detection to compare the performance of the

our methods. We investigated the performance for various SNR and

orward model inaccuracies and presented them as medians computed

ver all 500 MC iterations for each condition. To generate the spatially

tructured perturbation for the forward model matrix we used the head

odels computed for 10 subjects and calculated the pairwise differences

etween the forward models for each pair of subjects. We then computed

he structured noise matrix as the average of these pairwise differences.

e then standardized the resulting structured noise matrix and added it

o the true forward model. We adjusted the amount of noise by parame-

er 𝛿 used to scale the noise matrix. The use of a decimated version of the

ortex for source localization as compared to the data generation step

esults into an additional contribution to the forward modelling errors. 

Fig. 7 demonstrates the results of comparative analysis of perfor-

ance as a function of SNR (panel A) and forward model inaccuracies

panel B). Consider first the noise-free forward model operator (panel

). All four methods, except for the adaptive LCMV in the synchronous

ase, demonstrate stable performance for SNR > 2 . In case of uncorre-

ated source activations, ReciPSIICOS and Whitened ReciPSIICOS, as

ell as LCMV beamformer, demonstrate high performance: detection
13 
atio is close to 100%, localized area is compact and coincides with the

imulated location. At the same time, MNE demonstrates low localiza-

ion bias and, as expected, a greater point spreading radius. It detects

nly one source for 40% of trials MNE. These localization characteris-

ics perfectly fit the findings described in the recent study ( Rana et al.,

018 ). 

Considering the right panel of Fig. 7 .A, one can see that for corre-

ated signals LCMV performance drops significantly and does not im-

rove with the growing SNR. Due to severe signal cancellation the de-

ection ratio characteristics is below 10%, which means that only in

0% of cases LCMV detects two activation blobs with the maximum

alue not further than 2 cm from the simulated locations. While the

hree methods reach equally good localization bias at the level compa-

able with the uncorrelated case, they can be further analyzed on the

asis of the two other quality metrics. Whitened ReciPSIICOS demon-

trates noticeably lower radius of spreading at the expense of a slightly

educed detection ratio as compared to the ReciPSIICOS. We can also

ee that even in the synchronous case both proposed methods outper-

orm the MNE. Fig. 8 demonstrates distribution of the localization bias

nd point-spreading area for synchronous and asynchronous cases cor-

esponding to SNR = 4 slice of dependencies in 7 .A. 

Since the performance of all inverse solvers, and those based on the

CMV principle in particular, depends on the forward model inaccura-

ies, in panel B of Fig. 7 we analyzed the extent to which the inaccuracies

n forward modeling affected the three characteristics of the inverse so-

utions obtained by the four different solvers. For uncorrelated sources,

ne can observe that the localization bias is low enough for all meth-

ds (only slightly higher for MNE) and increases insignificantly with

he increase of forward model error. As expected, the area of activity

preading grows for all beamformer-based methods, but remains within

he acceptable range for the typical MEG forward model noise levels of

0% ( Mosher et al., 1999 ). MNE’s performance appears to be not ad-

ersely affected by the explored range of FM inaccuracy levels. 

For correlated sources, the performance of ReciPSIICOS pars that

f the MNE with a slightly higher detection ratio pertinent to the Re-

iPSIICOS. The Whitened ReciPSIICOS shows more compact solutions

han the other three techniques and a higher detection ratio. In the syn-

hronous case, due to general deterioration of performance of all three

eamforming methods, the effects of forward model inaccuracies are

ignificantly less pronounced than in the situation with asynchronous

ources. 

Projection rank is the only user defined parameter of the ReciPSI-

COS and Whitened ReciPSIICOS techniques. Fig. 9 depicts the three

erformance metrics considered above as functions of the projection

ank for the two methods in synchronous and asynchronous cases. From

hese plots, both ReciPSIICOS approaches are characterized by a smooth

nd relatively flat performance profiles as a function of projection rank.

ote that the projection rank has a different meaning for ReciPSIICOS

nd Whitened ReciPSIICOS. Increased projection for ReciPSIICOS cor-

esponds to a less restrictive situation when the variance from the cor-

elation subspace is expected to leak more intensively into the power-

nly subspace. At the same time, the greater the projection rank for the

hitened ReciPSIICOS method, the stronger is the suppression of the

ndesired variance from the correlation subspace, which happens at an

xpense of the variance in the power-only subspace. These simulations

ere conducted for the Neuromag probe and agree well with subspace

ower ratio plots in Fig. 5 . 

.1.2. Three interacting sources 

The majority of the present solutions to the correlated sources

roblem in beamforming (see Introduction) handle pairs of correlated

ources by suppressing the source correlated with the target one by

eans of an extra zero constraint. In principle, these existing techniques

an be extended to the triplets, quadruplets and etc. of potentially cor-

elated sources. However, such an extension would lead to significant

omputational demands and would require methods for fusing the ob-
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Fig. 6. Estimated source power for one Monte Carlo simulation. The pair of active symmetric sources was picked randomly and activated synchronously (left panel) 

and asynchronously (right panel). The source reconstruction was performed using four techniques: ReciPSIICOS, Whitened ReciPSIICOS, LCMV and MNE. The noise 

was set to SNR = 4 . Each subplot shows the estimated amplitudes (y-axis, scale is individual) for each of 5000 sources (x-axis). 
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Fig. 7. Monte Carlo simulation study results. Comparison of ReciPSIICOS, Whitened ReciPSIICOS, LCMV and MNE localization for synchronous and asynchronous 

sources according to three metrics: localization bias, area of point spreading and detection ratio. A . Dependence of estimated metrics on SNR. B . Dependence of 

estimated metrics on forward model inaccuracy. 
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c  
ained results. The approach proposed here takes care of all correlated

ources simultaneously. In this section we will focus on the example

f three correlated sources. The data were modelled as described in

ection 2.6 and the three target sources were picked randomly, but so

hat they were no closer than 4 cm apart. We first consider sources acti-

ated with sinusoidal functions with a zero phase shift, but slightly jit-

ered in time (see Fig. 11 .B). A representative case (a single Monte Carlo

rial) is shown in Fig. 10 . Panel A illustrates locations of three randomly

icked sources in the right frontal, right ventral and left parietal areas.

e can see that in this scenario the LCMV beamformer produces a com-

letely incorrect activation map, ReciPSIICOS and MNE detect all three

ources and demonstrate the comparable results. The Whitened ReciP-

IICOS shows an outstanding performance, as the obtained activations

re extremely focal and they successfully capture the initial activity. 

These findings are generalized using 500 Monte Carlo trials in

ig. 11 . Distribution of localization bias and point spreading radius for

ifferent methods over 500 Monte Carlo trials are shown as histograms

n Fig. 11 .A. Dashed lines depict the median values. According to the

rst two metrics, it can be concluded that in the case of multiple active

ources Whitened ReciPSIICOS significantly outperforms the competing

ethods, even the simple ReciPSIICOS. ReciPSIICOS and MNE show the

imilar performance, as we could see previously with two sources. Clas-

ical LCMV has the worst performance and basically fails. 

Panel C of the Fig. 11 demonstrates the distribution of the number

f detected sources, where the first point corresponds to the ratio of

ll trials when all three ground-truth sources were found. Thus, in 63%

f all simulations, Whitened ReciPSIICOS was able to localize all three

ources while ReciPSIICOS performance was at 48%, MNE had a slightly

ower performance at 44% and LCMV did not find the three sources in

ny simulation. 
L  

15 
Fig. 12 demonstrates the same metrics for the three moderately cor-

elated sources activated with sinusoidal functions with 𝜋3 relative phase

hift. This shift results in 0.5 pairwise correlation. As we can see, LCMV

eamformer fails to detect three simulated sources in more than 80%

f cases, whereas the methods from ReciPSIICOS family handle this sit-

ation well and loose one source only in 20% of cases. The bias and

preading metrics are also superior to the classical methods. 

.2. Real MEG data 

In this section we describe the results of applying the proposed

ethodology to the real MEG datasets taken from two different experi-

ents. The detailed descriptions of the paradigms and the datasets used

re provided in Section 2.8 . 

.2.1. Dataset 1 

In this experiment, subjects received monaural auditory stimuli in

he left ear. The following results were computed at a latency of 250

s post-stimulus corresponding to the maximum amplitude of the re-

ponse. Figs. 13 and 14 show the estimated source power for both sub-

ects and all considered methods. The source reconstruction revealed,

s expected, most prominent activations in superior temporal gyrus,

amely primary auditory cortex. Since the left ear received the stim-

lus, we expected to observe a stronger activation in the contralateral,

ight hemisphere and a weaker activation in the left hemisphere. 

For the first subject ( Fig. 13 ), it can be seen, that ReciPSIICOS, in

omparison with LCMV beamformer and MNE, reveals more focal ac-

ivations with the anticipated distinct maximum in the right auditory

ortex and a lower, but still nonzero, activation in the left hemisphere.

CMV beamformer demonstrates a similar ipsilateral activation but an
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Fig. 8. Distribution of localization bias and area of point spreading metrics for 500 Monte Carlo simulations. Noise level is adjusted so that SNR = 4 . The results are 

computed for ReciPSIICOS (A), Whitened ReciPSIICOS (B), LCMV (C) and MNE (D). 
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bsolutely incorrect contralateral pattern. MNE detects only the right

emisphere blob activation. For this subject, Whitened ReciPSIICOS

hows the results similar to the simple ReciPSIICOS, but the latter pro-

ides more focal activations. Notably, the amplitudes reconstructed with

he LCMV beamformer technique are approximately 400 times lower in

he dynamic range than those reconstructed with ReciPSIICOS, with the

aximal power of 8 ⋅ 10 −26 and 2 ⋅ 10 −24 respectively. 

The results for the second subject ( Fig. 14 ) are similar to those for the

rst one. The best localization is demonstrated by ReciPSIICOS, while

CMV does not capture the activity in the contralateral hemisphere and

NE localizes two spreaded activity blobs. Unlike it is the case with

NE, the cortical distributions obtained with both versions of ReciPSI-

COS show bilateral focal blobs of activity in the superior temporal re-

ions corresponding to the primary auditory areas. The blobs of activity

btained with ReciPSIICOS appear to be more focal than those produced

y MNE and those by Whitened ReciPSIICOS. In the activity vs. source

ndex plots this corresponds to sparser (with fewer dots) and narrower

opulated peaks of activity. In this subject ReciPSIICOS delivers more

ocal activation than the Whitened ReciPSIICOS approach. 

Fig. 15 shows the comparison of reconstructed source timecources

or ReciPSIICOS and LCMV for two subjects, correspondingly. Panel A

hows the calculated auditory steady-state responses at 40 Hz. Panel

 demonstrates the primary auditory cortex source location which was

ighly active in both ReciPSIICOS and LCMV solutions. The timecources

f the picked source are shown on Panel C with their envelopes. The blue
 p  

16 
ine corresponds to ReciPSIICOS, and the orange solid line corresponds

o LCMV. As the amplitudes of LCMV activations are by the order of

agnitude lower than for ReciPSIICOS, for the visualization purposes,

e showed the rescaled LCMV with orange dashed line and highlighted

rea. What is noticeable here is that for both subjects the ReciPSIICOS

econstruction reveals that the analyzed gamma activity is modulated at

 5-Hz secondary frequency (i.e. theta rhythm), which agrees with the

revious study ( Doesburg et al., 2012 ). Panel D shows the distribution of

atio of norms for the LCMV and ReciPSIICOS derived spatial filters. The

edian value is slightly lower than 1, which confirms that the observed

mplitude differences can not be explained by the difference in spatial

lter norms. The obtained results are consistent across subjects. 

Additionally we have explicitly plotted the SNR maps as a ratio of the

ost-stim and the pre-stim activation power of the steady-state auditory

esponses over the hemisphere contralateral to the stimulation where

he signal cancellation effect appeared to be most pronounced. As we

an see the SNR distribution over the superior temporal cortex and ad-

acent areas delivered by the proposed methods appears to be several

imes higher than that observed in the LCMV. The LCMV peaks over

he medial cortex. As a gauge we also show MNE solution that reliably

iscovers contralateral activation. 

.2.2. Dataset 2 

The second dataset contains MEG data for the subject that partici-

ated in the auditory oddball paradigm and was instructed to press the
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Fig. 9. Dependence of localization bias, area of 

spreading and detection ratio on the projection 

rank for ReciPSIICOS and Whitened ReciPSI- 

ICOS techniques. Dashed lines shows the ranks 

picked for ReciPSIICOS and Whitened ReciPSI- 

ICOS analysis correspondingly. 
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utton with the right index finger in response to the deviant stimuli.

he stimulation was produced binaurally. Here we are focused on the

ocalization of MMNm component ( Näätänen et al., 1994 ), so after the

reprocessing described in Section 2.8.2 we calculated the differential

RF, which is shown on Fig. 17 , panel A. The peak of MMNm component

s reached at 159 ms post-stimulus, so the inverse problem was solved

or this time sample. Panel C shows the activation timeseries for one

ortical source (Panel B) highly active both in ReciPSIICOS and LCMV

olutions at the target time sample (159 ms post-stimulus). First, as ex-

ected, the amplitude reconstructed with LCMV (orange solid line) is

ignificantly lower than the amplitude reconstructed with ReciPSIICOS

blue solid line). In order to compare these two solutions, we rescaled

he LCMV solution so that the amplitudes at the target time sample were

qual (the area highlighted in orange). It is clearly seen that ReciPSI-

COS technique allows identifying the source that has one burst signif-

cantly different from the background activity. This burst corresponds

o the MMNm component. The amplitude of the corresponding peak for

CMV beamformer is comparable with several other distributed along

he whole timecourse. To prove that such a difference between the re-

onstructed amplitudes is due to the signal cancellation effect of the

CMV, but not due to the difference in the spatial filter norms, we cal-
17 
ulated for each source the ratio of LCMV coefficients norm to the Re-

iPSIICOS coefficients norm. The obtained distributions are shown in

anel D. The mean value equals to 0.96 and the standard deviation is

.14. 

Fig. 18 demonstrates the estimated activation maps for ReciPSIICOS,

hitened ReciPSIICOS, LCMV and MNE. While the LCMV beamformer

hows the high estimated amplitudes only in primary auditory cortex in

he right hemisphere, ReciPSIICOS technique allows to localize activity

n both hemispheres. At the same time, Whitened ReciPSIICOS tech-

ique shows similar activity in the primary auditory cortices in both

emispheres and an activation in the left motor cortex, which we ex-

ected to see due to the motor component of the task. MNE inverse

olver found a highly spreaded activation and only in the left hemi-

phere. 

Based on the above, we can state that the experimental data anal-

sis results match those observed for simulated data. The performance

f the LCMV beamformer appears to be significantly affected by the

resence of correlations between cortical sources while ReciPSIICOS

nd Whitened ReciPSIICOS remain operable and deliver compact source

aps with expected bilateral activation in the primary auditory cortex

nd a noticeably greater dynamic range. 
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Fig. 10. Modeling the case of three interacting sources. A . The locations of three randomly picked sources. B . Source activation maps reconstructed with ReciPSIICOS, 

Whitened ReciPSIICOS, LCMV and MNE. 
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Fig. 11. Simulation of three synchronously active sources. A . Distribution of two reconstruction quality metrics: estimation bias and point spreading value, for four 

reconstruction techniques: ReciPSIICOS, Whitened ReciPSIICOS, LCMV and MNE. B . One representative Monte Carlo trial: three cortical sources are randomly picked 

and activated with the synchronous sinusoidal functions with a random time jitter. C . Distribution of the number of detected sources for all simulations. 
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.2.3. Non-positive definiteness induced by projection 

The proposed approach uses a heuristics expressed in Eq. (19) . This

tep is needed to guarantee that the data covariance matrix modified

y the proposed projection remains positive definite (PD). The extent to

hich this manipulation is justified depends on the amount of “energy ”

tored in the negative eigenvalues of the reshaped and projected data.

e assessed this amount using the expression (24) for the correlation

atrices of real MEG datasets. 

We estimated the contribution of negative eigenvalues into the total

igenvalue power in terms of 𝐿 1 -norm: 

 

− = 

∑𝑁 

− 
𝑙 

𝑖 =1 |𝜆− 𝑖 |∑𝑀 

𝑖 =1 |𝜆𝑖 |
, (24)

here 𝜆𝑖 , 𝑖 = 1 …𝑀 – all eigenvalues of the projected matrix ̃𝐂 𝑥 and 𝜆− 
𝑖 
,

 = 1 …𝑁 

− 
𝑙 

are the negative eigenvalues. The contribution of positive

igenvalues in the total power is then 𝑝 + = 1 − 𝑝 − . 

Fig. 19 demonstrates the contribution of positive eigenvalues 𝑝 + as a

unction of projection rank for ReciPSIICOS and Whitened ReciPSIICOS

alculated on Dataset 1 (panel A) and Dataset 2 (panel B). While ReciP-
19 
IICOS implies the projection on the power subspace, Whitened ReciP-

IICOS performs the projection away from correlation subspace, so in

rder to align the results, each subplot on Fig. 19 has two x-axes. The

ower x-axis corresponds to the ReciPSIICOS and its values are arranged

n the descending order. The upper x-axis corresponds to the Whitened

eciPSIICOS and is arranged in the ascending order. Dashed lines show

he ranks picked for the analysis. The ratio of positive eigenvalues dif-

ers from subject to subject, but in all cases, regardless of the MEG type

CTF or Neuromag), it reaches at least 80% and is typically higher. We

herefore suggest the future users of our approach to explicitly moni-

or the fraction of energy 𝑝 − contributed by the negative eigenvalues as

efined in (24) and make sure it stays below 20%. 

. Discussion 

In agreement with the results of other groups and based on our own

nalysis, we can state that the adaptive beamformers outperform global

ethods for solving the inverse problem in cases when the sources can

e well described by a small number of focal sources. In this scenario

he adaptive beamformers tend on average to deliver more focal source
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Fig. 12. Simulation of three moderately correlated sources. A . Distribution of two reconstruction quality metrics: estimation bias and point spreading value, for four 

reconstruction techniques: ReciPSIICOS, Whitened ReciPSIICOS, LCMV and MNE. B . Example of representative trial: three cortical sources are randomly picked and 

activated with the sinusoidal functions with relative phase shift of 𝜋
3 

and random time jitter. C . Distribution of number of detected sources for all simulations. 
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istribution maps than the methods based on the global optimization.

owever, the performance of adaptive spatial filters deteriorates signif-

cantly in the presence of correlated sources. 

In this paper we have developed a novel method to supply robust-

ess to the beamforming technique when operating in the environment

ith correlated sources. Our approach is based on the consideration

f the sensor-space data covariance matrix as an element in a 𝑀 

2 -

imensional space. Using the MEG data generative model, we formulate

he generative equation for the data covariance matrix and recognize

hat it contains contributions modulated by the diagonal elements of the

ource-space covariance matrix that span  𝐾 𝑝𝑤𝑟 subspace as well as its off-

iagonal elements that represent coupling of neuronal sources and con-

ributing variance to the coupling subspace  𝐾 𝑐𝑜𝑟 . Our method then builds

 projector away from the subspace modulated by coupling and applies

t to the data covariance matrix, effectively removing the contributions

rought into the data covariance matrix by the non-orthogonality of the

nderlying source timeseries. 

Strictly speaking, the principal subspaces  𝐾 𝑝𝑤𝑟 and  𝐾 𝑐𝑜𝑟 non-trivially

verlap. However, the mutual spatial structure of the auto-terms and
20 
ross-terms allows us to partly disentangle the two subspaces and selec-

ively suppress the variance in one of them while sparing the other. 

We have developed two methods for building the projector. The first

ethod simply fills 𝑀 

2 ×𝑁 matrix 𝐆 𝑝𝑤𝑟 with ”topography vectors ” as

olumns and attempts to find the subspace with the smallest dimen-

ion that captures maximum variance. This is done via SVD of 𝐆 𝑝𝑤𝑟 

nd the first 𝐾 left singular vectors are then used to build the projec-

or into the subspace they span. This projection is exactly complemen-

ary to that described in Ossadtchi et al. (2018) where our goal was to

uppress the contribution of volume conduction to the data covariance

atrix. 

The second approach is somewhat more complex. It projects the ob-

erved data correlation away from the  𝐾 𝑐𝑜𝑟 subspace. To minimize the

xtent to which such a projection affects the variance in the  𝐾 𝑝𝑤𝑟 sub-

pace we perform the projection in the space whitened with respect to

he spatial structure of  𝐾 𝑝𝑤𝑟 subspace. 

Both methods require specifying only a single parameter – rank of

he projection 𝐾. In Section 2.4 , we suggest a natural procedure for the

nformed choice of 𝐾 that is based on balancing the rate at which the
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Fig. 13. Power distribution of ASSR at 250 ms post-stimulus reconstructed with ReciPSIICOS, Whitened ReciPSIICOS, LCMV and MNE for the Subject 1. 

Fig. 14. Power distribution of ASSR at 250 ms post-stimulus reconstructed with ReciPSIICOS, Whitened ReciPSIICOS, LCMV and MNE for the Subject 2. 
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Fig. 15. A . Auditory steady-state responses at 40 Hz. B . The cortical source is highly active in both ReciPSIICOS and LCMV solutions at the gamma peak. C . The 

timeseries of a picked source in the primary auditory cortex reconstructed with ReciPSIICOS (solid blue line) and LCMV (solid orange line) techniques. ReciPSIICOS 

delivers the timeseries amplitude with the magnitudes that is significantly greater than that obtained with the original LCMV. To facilitate a meaningful comparison, 

an appropriately scaled timeseries estimate with LCMV technique is also shown. D . The distribution of ratios of LCMV weight norms to ReciPSIICOS weight norms 

calculated for each source. 

Fig. 16. SNR maps of the auditory steady-state responses computed a ratio of the post-stim and the pre-stim activation for a subject receiving 40 Hz auditory 

stimulation over the hemisphere contralateral to the stimulation where the signal cancellation effect is most pronounced. 
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ariance is depleted from  𝐾 𝑝𝑤𝑟 and  𝐾 𝑐𝑜𝑟 subspaces with growing projec-

ion rank. Overall, we found that the method is quite robust (see Fig. 9 )

o variations of this parameter in the broad range around the optimal

alue. 

We have also shown that the proposed modification to the original

eamforming approach is quite stable and stays functional when op-

rated with realistically accurate forward models. Thus, the proposed

echnique does not require tuning many parameters and its simplicity

s comparable to that of the MNE approach where only regularization

arameter 𝜆 needs to be adjusted. Our simulations showed that for un-

orrelated sources the proposed modification of the covariance matrix
22 
oes not adversely affect the performance of the adaptive LCMV beam-

orming technique. Moreover, in the presence of sources with corre-

ated activity the beamformer built on the basis of ReciPSIICOS pro-

ected covariance matrix remains operable and retains adequate local-

zation performance unlike the classical LCMV beamformer. Therefore,

he proposed approach can be considered as a modification of the orig-

nal LCMV technique that relaxes the requirement for source timeseries

eing uncorrelated. 

Additionally, as illustrated in in Fig. 15 (D) the magnitudes of ReciP-

IICOS beamformer weight vectors are comparable to those of the LCMV

eamformer obtained using the original covariance matrix. Nonethe-



A. Kuznetsova, Y. Nurislamova and A. Ossadtchi NeuroImage 228 (2021) 117677 

Fig. 17. A . The differential ERF timecourses (deviant - standard responses). B . The cortical source highly active both in ReciPSIICOS and LCMV solutions at the 

MMNm peak. C . Timeseries of the picked source in the primary auditory cortex reconstructed with ReciPSIICOS (solid blue line) and LCMV (solid orange line) 

techniques. ReciPSIICOS delivers timeseries amplitude with magnitude significantly greater than that obtained with the original LCMV. To facilitate a meaningful 

comparison appropriately scaled timeseries estimate with LCMV technique is also shown. D . The distribution of ratios of LCMV weight norms to ReciPSIICOS weight 

norms calculated for each source. 
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ess, the maximum output amplitude of the ReciPSIICOS beamformer

xhibits a drastic growth (in some data up to two orders of magnitude!)

s compared to the standard LCMV. This property allows for obtain-

ng potentially more informative cortical activation maps of a greater

ontrast ( Figs. 13, 14, 18 ). We suggest that this result may indirectly

auge the prominence of source-space correlations typically present in

he data. 

The curves illustrating balance between the suppression of variance

n the  𝐾 𝑝𝑤𝑟 and  𝐾 𝑐𝑜𝑟 vary for two different MEG systems. According to

he curves in Fig. 5 , sensor-array of the Elekta Neuromag system allows

or a greater suppression of the undesired variance in the  𝐾 𝑐𝑜𝑟 subspace

ractically without affecting that in  𝐾 𝑝𝑤𝑟 as compared to the probe of the

TF system. MEG systems based on the optically pumped magnetome-

ers with the sensors located closer to the scalp capture higher spatial

requency harmonics of the magnetic field as compared to the tradi-

ional SQUID-based MEG machines. We suggest that the area under the

urves shown in Fig. 5 can be used as a design parameter to optimize

he sensor layout of the future MEG systems. 
d  

23 
As follows from Fig. 16 the timeseries estimated with ReciPSIICOS

eamformer are also characterised by a greater SNR than those obtained

ith MNE or the original LCMV beamformer. Also based on our simu-

ations the difference in the output SNR in the LCMV and modified co-

ariance beamforming approach is observed only in the environments

ith correlated sources and therefore can be used as a measure of the

xtent to which correlated sources are present in the data. It is impor-

ant to realize that there should not necessarily be several well defined

ources whose activity is highly correlated. For example it can be the

ase that several not so strongly correlated sources with the target source

ill be exploited by the adaptive beamformer weights to minimize the

ariance at the beamformer output. Our approach drastically reduces

hances for this to happen by removing the source synchrony traits from

he data covariance matrix. It acts without explicitly finding such cor-

elated sources but bases its operation on the generative model of the

ensor-space data covariance matrix. 

Based on the simulations and experimental analysis, we conclude

hat the introduced here ReciPSIICOS and Whitened ReciPSIICOS proce-

ures represent a simple, efficient and data-independent solutions that



A. Kuznetsova, Y. Nurislamova and A. Ossadtchi NeuroImage 228 (2021) 117677 

Fig. 18. Reconstructed power distribution with ReciPSIICOS, Whitened ReciPSIICOS, LCMV and MNE for MMNm component at 159 ms post-stimulus. 

Fig. 19. Contribution of positive eigenvalues of matrix ̃𝐂 𝑥 in total eigenvalue power as a function of the projection rank for ReciPSIICOS and Whitened ReciPSIICOS 

for the first MEG dataset (panel A ) and the second dataset (panel B ). Dashed lines show the projection ranks picked for the following analysis. 
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W  
mprove the robustness of the adaptive beamforming when operating

n the environment with correlated sources. While the original adaptive

CMV beamformer stops operating under these conditions, ReciPSIICOS

ovariance modification procedure allows to build beamformers that re-

ain spatial resolution properties and maintain high detection ratio when

ealing with both synchronous and asynchronous sources. 

.1. Limitations 

We did not explicitly study the performance of the proposed ap-

roach as a function of the distance between coupled sources. By design

f the proposed projection procedure, the components contributed to the

ata covariance by a pair of correlated proximal sources 𝑖 and 𝑗, more

recisely, sources with similar topographies, and sources with dissimi-
24 
ar topographies will be affected differently by both projections. In case

f ReciPSIICOS, for proximal sources, the projection into the ”power

ubspace ” will not be able to sufficiently weaken the 𝐠 𝑖 𝐠 𝑇 𝑗 + 𝐠 𝑗 𝐠 𝑇 𝑖 term

nd the relative contribution to the modified data covariance matrix

rom synchronous sources with similar topographies will be more pro-

ounced than that from the pair of sources with dissimilar topographies.

his will lead to a stronger signal cancellation in cases when a pair of

ynchronous sources with similar topographies are present in the data.

owever, the closer the source topographies are, the more difficult it

s to cancel these sources because of the limited number of degrees of

reedom. In the Whitened ReciPSIICOS case we will observe a similar be-

avior since the whitening step will attempt to spare from the projection

he contribution from the pair of sources with similar topographies. The

hitened ReciPSIICOS approach potentially allows for explicit specifi-
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Q  
ation of the ”refractory zone ” around each 𝑖 -th source when construct-

ng the span of the source-correlation subspace. This may alleviate the

ndesired behavior when the variance of the close-by highly coupled

ources is projected from the data covariance matrix. In both projections

his undesired behavior can be hypothetically alleviated if the projectors

re built using only active source topographies. This, however, would

ake the method data-dependent which we wanted to avoid. 

Also more computationally expensive, dual- and multi-core beam-

orming approaches ( Diwakar et al., 2011 ) might be an option here.

owever, given a large number of factors that may affect the perfor-

ance of both methods, a separate study is needed to systematically

ompare the multi-core beamforming approach against the methods pro-

osed here. 

The suggested projection procedure does not take into account the

iemannian nature of the manifold of the correlation matrices. Surpris-

ngly, however, the eigenvalue spectrum of the ReciPSIICOS projected

atrix remain largely positive. Only a small fraction of eigenvalues are

egative and their magnitude is negligible and makes no more than 20%
raction of the total sum of the eigenvalue magnitudes. We return this

rojection back to the manifold of correlation matrices by simply re-

lacing the negative eigenvalues with their absolute values. Although

ur results show that this is a reasonable working strategy, the proposed

ethodology would definitely benefit from the constraints imposed by

he configuration of the natural manifold of correlation matrices. Ap-

roaches could be adopted in the future similar to the one described in

igham (2002) for finding the element on the manifold of correlation

atrices that is the closest to the projected matrix. Overall, until a bet-

er solution is adopted to ensure the validity of the obtained imaging

esults, we recommend exploring the eigenvalue spectrum of the pro-

ected matrix and checking that the percentage of the ”energy ” brought

nto it by negative eigenvalues does not exceed the 10-20% threshold

f the total sum of absolute eigenvalues. We also recommend match-

ng the results against MNE technique that is known for its robustness

nd although not explicitly designed to image focal sources was shown

o manage well when applied to localization of somatosensory sources

 Komssi et al., 2004 ). 

In this paper we focused on improving the adaptive beamforming

pproach that is best applied in the scenario when a few focal sources

eget the observed data. Such source configurations are likely to be en-

ountered with ERP/ERF data and represent a set of common assump-

ions used in the derivation of beamformer for neuroimaging applica-

ions starting from the original paper ( Van Veen et al., 1997 ). Our ap-

roach does not make any additional assumptions about source distribu-

ion and therefore we used the very same model, which was nevertheless

hown capable of handling extended sources ( De Munck et al., 1988 ).

owever, recent findings suggest that the activity underlying even early

RP/ERF components may comprise a complex constellation of sources

nd therefore novel advanced methods for solving the inverse problem

ay be needed such as those combining focal and distributed source as-

umptions ( Hauk and Stenroos, 2014 ). Furthermore, recent phenomeno-

ogical advances convincingly illustrate that a large proportion of brain

ctivity is present in the form of cortical waves ( Alexander et al., 2013 )

hich should motivate the development of novel approaches for source

stimation accommodating these novel findings such as Petrov (2012) . 
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