On coformality of moment-angle complexes

Fedor Vylegzhanin

MSU / HSE vylegf@gmail.com

International School "Toric Topology, Combinatorics and Data Analysis" (October 3-9, 2022, Euler IMI)

Plan

• Moment-angle complexes

• (Co)formality

Known results

• Non-coformal moment-angle complexes

• Coformal moment-angle complexes

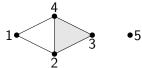
2/11

Simplicial complexes

A simplicial complex \mathcal{K} on vertex set V is a family of subsets $I \subset V$ called simplices, that satisfies two conditions:

• $\{v\} \in \mathcal{K}$ for every $v \in V$ ("no ghost vertices");

• if $J \in \mathcal{K}$ and $I \subset J$, then $I \in \mathcal{K}$.



 $\begin{array}{c} 2 \\ \{\varnothing, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1,2\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{2,3,4\}\}. \end{array}$

Flag complexes and flagification

A complex \mathcal{K} is flag if any set of pairwise adjacent vertices is a simplex. For any \mathcal{K} , there is unique flag complex \mathcal{K}^f with the same 1-skeleton, called the flagification of \mathcal{K} . More explicitly:

$$\mathcal{K}^{f} := \{J \subset [m] : \{i, j\} \in \mathcal{K}, \forall i, j \in J\} \supset \mathcal{K}.$$

Polyhedral products

Definition

(X,A) a pair of spaces, $\mathcal K$ a simplicial complex on $[m]:=\{1,\ldots,m\}$ \Rightarrow define

$$(X,A)^{\mathcal{K}} := \bigcup_{J \in \mathcal{K}} \left(\prod_{i \in J} X \times \prod_{i \in [m] \setminus J} A \right) \subset X^m.$$

A simple example: $\mathcal{K} = \bullet \bullet \Rightarrow (X, A)^{\mathcal{K}} = (X \times A) \cup (A \times X) \subset X \times X.$

Important special cases

- Davis–Januszkiewicz spaces $\mathrm{DJ}(\mathcal{K}) := (\mathbb{C}\mathrm{P}^{\infty}, \mathrm{pt})^{\mathcal{K}}$;
- Moment-angle complexes $\mathcal{Z}_{\mathcal{K}} := (D^2, S^1)^{\mathcal{K}}$.

Theorem (Buchstaber-Panov, 2000)

There is a homotopy fibration $\mathcal{Z}_{\mathcal{K}} \to \mathrm{DJ}(\mathcal{K}) \to (\mathbb{C}\mathrm{P}^{\infty})^m$.

Fedor Vylegzhanin (MSU/HSE)

On coformality of m.-a. complexe

Quasi-isomorphisms

By a dg-algebra (A, d) we mean an associative differential graded algebra $(d^2 = 0, a \cdot (b \cdot c) = (a \cdot b) \cdot c, d(a \cdot b) = d(a) \cdot b + (-1)^{|a|} a \cdot d(b)).$

Definition

dg-algebras (A, d_A) and (B, d_B) are quasi-isomorphic if there are dg-algebras (Γ_i, d_i) and maps of dg-algebras

$$(A, d_A) \stackrel{f_1}{\longleftarrow} (\Gamma_1, d_1) \stackrel{f_2}{\longrightarrow} (\Gamma_2, d_2) \stackrel{f_3}{\longleftarrow} \dots \stackrel{f_n}{\longrightarrow} (B, d_B)$$

such that the induced maps in homology

$$H(A, d_A) \stackrel{(f_1)_*}{\longleftarrow} H(\Gamma_1, d_1) \stackrel{(f_2)_*}{\longrightarrow} H(\Gamma_2, d_2) \stackrel{(f_3)_*}{\longleftarrow} \dots \stackrel{(f_n)_*}{\longrightarrow} H(B, d_B)$$

are isomorphisms.

The condition $H(A, d_A) \simeq H(B, d_B)$ is necessary. But not sufficient!

Formality and coformality

Let \Bbbk be a commutative ring with unit. For a topological space X, there are two dg-algebras over \Bbbk : $C^*(X; \Bbbk)$ with the cup product and $C_*(\Omega X; \Bbbk)$ with the Pontryagin product.

Definition

- X is k-formal if $C^*(X; k)$ is quasi-isomorphic to $H^*(X; k)$.
- X is k-coformal if $C_*(\Omega X; \mathbb{k})$ is quasi-isomorphic to $H_*(\Omega X; \mathbb{k})$.

(Coformality) in rational homotopy theory

For $k = \mathbb{Q}$, the classic definitions of formality and coformality are different (in terms of Sullivan models and Quillen models). Our approach is equivalent to the classic one: see [Saleh'17, arXiv:1609.02540].

What is known about (co)formality of $\mathcal{Z}_{\mathcal{K}}$ and $\mathrm{DJ}(\mathcal{K})$?

- (Notbohm,Ray'03) $\mathrm{DJ}(\mathcal{K})$ is k-formal for any k and $\mathcal{K}.$
 - Proof: \Bbbk -formality of \mathbb{CP}^{∞} + some colimit arguments.
- (Panov, Ray'07) $DJ(\mathcal{K})$ is \mathbb{Q} -coformal $\Leftrightarrow \mathcal{K}$ is flag.
 - Obstructions to coformality: higher Samelson products in $\pi_*(\Omega DJ(\mathcal{K}))$.
- (Baskakov'03; Denham,Suciu'07; Buchstaber,Limonchenko'19; Zhuravleva'19; ...) Several families of simplicial complexes, such that Z_K is not formal.
 - Obstructions to formality: higher Massey products in $H^*(\mathcal{Z}_{\mathcal{K}}; \Bbbk)$.
- (Bosio, Meersseman'04; Grbić, Theriault'07; Gitler, Lopez de Medrano'12; Iriye, Kishimoto'14; Fan, Chen, Ma, Wang'14; ...) Several families of simplicial complexes, such that Z_K is formal and coformal over any k.
 - Proof: the homotopy types of such Z_K are known (wedges of spheres, connected sums of sphere products)
- No known examples of non-coformal moment-angle complexes!

Main result

Notation: \mathcal{K}_J is the full subcomplex of \mathcal{K} on vertex set $J \subset [m]$.

Theorem (V.'22)

If $\mathcal{Z}_{\mathcal{K}}$ is coformal over a field \Bbbk , then the map $H_*(\mathcal{K}_J; \Bbbk) \to H_*(\mathcal{K}_J^f; \Bbbk)$ is surjective for every $J \subset [m]$.

Therefore: if we obtain "new classes in homology" when passing from \mathcal{K} to \mathcal{K}^{f} , then $\mathcal{Z}_{\mathcal{K}}$ is not coformal.

Example: 1-skeleton of a cross-polytope Let $\mathcal{K} = \text{sk}_1(S^0 * S^0 * S^0)$, so $\mathcal{K}^f = S^0 * S^0 * S^0$. Hence $H_2(\mathcal{K}; \Bbbk) = 0$, $H_2(\mathcal{K}^f; \Bbbk) = \Bbbk$, thus $\mathcal{Z}_{\mathcal{K}}$ is not coformal. Another proof: the homotopy equivalence

$$\mathcal{Z}_{\mathcal{K}} \simeq (S^5)^{\vee 8} \vee (S^6)^{\vee 24} \vee (S^7)^{\vee 24} \vee (S^8)^{\vee 7} \vee \mathrm{FW}(S^3, S^3, S^3),$$

where FW is the fat wedge. Fat wedges are not coformal.

Sketch of the proof

For any 1-connected space X and any field \Bbbk we have the Milnor–Moore spectral sequence

$$E^2_{
ho,q}\cong \operatorname{Tor}^{H_*(\Omega X;{\mathbb k})}_{
ho}({\mathbb k},{\mathbb k})_q, \quad E^\infty\simeq H_*(X;{\mathbb k}).$$

Fact: if X is k-coformal, then $E^2 = E^{\infty}$. For $X = \mathcal{Z}_{\mathcal{K}}$ there is an additional grading $E_{p,q}^r = \bigoplus_{q=-n+2|\alpha|} E_{p,-n,2\alpha}^r$. We compute some graded components:

$$\begin{split} E^2_{p,-|J|,2J} &\cong \widetilde{H}_{p-1}(\mathcal{K}^f_J; \Bbbk); \quad E^{\infty}_{p,-|J|,2J} \cong \operatorname{Im}\left(\widetilde{H}_{p-1}(\mathcal{K}_J; \Bbbk) \to \widetilde{H}_{p-1}(\mathcal{K}^f_J; \Bbbk)\right). \\ \text{Therefore: if } E^2 &= E^{\infty}, \text{ then } \widetilde{H}_{p-1}(\mathcal{K}_J; \Bbbk) \twoheadrightarrow \widetilde{H}_{p-1}(\mathcal{K}^f_J; \Bbbk). \end{split}$$

An open question

 $E^2 \neq E^{\infty}$ implies that there are non-trivial differentials. Can we describe them using higher commutator products in $H_*(\Omega \mathcal{Z}_{\mathcal{K}}; \mathbb{k})$ and/or higher Whitehead products in $\pi_*(\mathcal{Z}_{\mathcal{K}})$?

For the 1-skeleton of the cross-polytope: yes, the only non-trivial differential in MMSS corresponds to the higher product $[[u_1, u_2], [u_3, u_4], [u_5, u_6]]$.

Coformality of $\mathcal{Z}_{\mathcal{K}}$, flag case

The following is proved using rational homotopy theory (Sullivan models):

Proposition (R.Huang'21)

Let F
ightarrow E
ightarrow B be a fibration of simply connected spaces, such that

- $\pi_*(F) \otimes \mathbb{Q} \to \pi_*(E) \otimes \mathbb{Q}$ is injective ("TNHZ condition");
- ❷ E is Q-coformal.

Then F is \mathbb{Q} -coformal.

We apply this result:

- $\mathcal{Z}_{\mathcal{K}} o \mathrm{DJ}(\mathcal{K}) o (\mathbb{C}\mathrm{P}^{\infty})^m$ is a fibration (Buchstaber, Panov'00);
- $\pi_*(\mathcal{Z}_{\mathcal{K}}) \to \pi_*(\mathrm{DJ}(\mathcal{K}))$ is injective, since the fibration $\Omega \mathcal{Z}_{\mathcal{K}} \to \Omega \mathrm{DJ}(\mathcal{K}) \to \Omega(\mathbb{C}\mathrm{P}^{\infty})^m$ splits;
- $DJ(\mathcal{K})$ is Q-coformal for flag \mathcal{K} (Panov, Ray'07).

Therefore, moment-angle complexes for flag \mathcal{K} are \mathbb{Q} -coformal. Their \mathbb{Z}_p -coformality is an open question.

References

- V. M. Buchstaber and T. E. Panov. *Toric topology*, volume 204 of *Mathematical Surveys and Monographs*.
 AMS, Providence, RI (2015). arXiv:1210.2368
- S. A. Abramyan, T.E. Panov. Higher Whitehead products for moment-angle complexes and substitutions of simplicial complexes. Proc. Steklov. Math, 305(2019), 7–28. arXiv:1901.07918
 - R. Huang. Coformality around fibrations and cofibrations.
 Preprint (2021). arXiv:2108.08446
- F. E. Vylegzhanin. Pontryagin algebras and the LS-category of moment-angle complexes in the flag case.
 Proc. Steklov. Math., 317(2022), to appear. arXiv:2203.08791

F. Vylegzhanin. Milnor-Moore spectral sequence for moment-angle complexes.
In numeration (20022)

In preparation... (2023?)