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Abstract—We consider the problem of constructing a cryptosystem with a public key based
on error-resistant coding. At present, this type of cryptosystems is believed to be able to
resist the advent of quantum computers and can be considered as a method of post-quantum
cryptography. The main drawback of a code-based cryptosystem is a great length of the public
key. Most papers devoted to reducing the cryptosystem key length consisted in replacing the
Goppa codes used in the original cryptosystem with some other codes with a requirement that
the system remains secure against attacks by a quantum computer. Here we propose another
approach to the key length reduction that is stated as a task of a simple description of an
error set which has either errors of weights greater than half the minimum distance or errors
that cannot be corrected without an additional secret knowledge. If a code structure allows
to give such a description of an error set, then the complexity of most attacks (for instance,
information-set decoding) significantly increases.

Key words : McEliece cryptosystem, information-set decoding, generalized Reed–Solomon code,
post-quantum cryptography.
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1. INTRODUCTION

Methods of error-resistant coding have been used in cryptography for a long time. Using them,
one of the first public key cryptosystems [1] and one of the first digital signature systems [2] were
developed. However, unlike the algebraic cryptosystems based on the factoring problem [3] and
discrete logarithm calculation [4], coding cryptosystems are almost not used in practice. Although
coding cryptosystems have gain over algebraic ones in ciphering/deciphering time [5], their usage
is largely restricted by a number of objective and subjective factors.

Firstly, algebraic systems were developed earlier than coding systems, and they immediately
passed a number of security tests. This fact, in the lack of evidence of the resistance of public key
cryptosystems, is a certain security guarantee.

Secondly, for the first public key cryptosystems (the McEliece cryptosystem) a public key usually
has a larger length as compared to algebraic systems (for instance, the RSA systems).

Further investigation of coding cryptosystems allowed to significantly reduce the public key
size [6, 7], and the development of new methods for solving the factoring problem [8] made the
public key size increase so much that public key sizes for different systems became commensu-
rable [9]. Nevertheless, algebraic cryptosystems remain the main instrument for cryptographic
security nowadays.
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ON NEW PROBLEMS IN ASYMMETRIC CRYPTOGRAPHY 185

This situation began to change in recent years due to the emergence of the notion of post-
quantum cryptography [10] and the development of a number of fields where cryptographic methods
can be used.

Active investigations in the field of creating the so-called quantum computer, which performs
computations at a quantum level, led to the construction of algorithms focused on this computer.
One of the main achievements in quantum algorithm theory is Shor’s development of a polynomial
algorithm for solving the factoring problem with a quantum computer [11]. The invention of this
algorithm means that after creation of a powerful enough quantum computer, security systems
based on algebraic cryptosystems (forming the vast majority) will be compromised. Thereby, the
concept of post-quantum cryptography arose, i.e., cryptography that would remain secure after
the development of quantum computers. The decoding complexity for linear codes underlying the
coding cryptosystems is NP -hard [12], and it seems that quantum computers will not be capable
of solving this task in polynomial time.

The modern practice in sensor networks, cloud computing, and a number of other areas in info-
communication technologies puts forth the task of creating the so-called “light cryptography,” i.e.,
cryptographic algorithms providing a sufficient level of security while using devices with limited
computational resources [13]. For the purposes of light cryptography, coding cryptosystems turn
out to be more promising [14] than algebraic ones. Coding cryptosystems require less operations
and use linear algebra operations, the implementation of which is superior to arithmetic operations.

All of the above determined a new raise of interest in coding cryptography and probably a new
applied phase in its development.

As was mentioned above, there were a number of attempts to overcome the main disadvantage
of coding cryptosystems, a large length of a public key. The main idea of these improvements
was to replace the binary Goppa code used in the original McEliece cryptosystem with some other
code with a specific structure that allows reducing the public key size. For instance, in [6] Goppa
codes were replaced with subcodes of quasicyclic generalized Reed–Solomon codes. This made it
possible to obtain a cryptosystem with key size from 6000 to 11000 bits and with security ranging
from 280 to 2107. In [15] the authors suggested to use quasi-cyclic moderate-density parity-check
(QC-MDPC) codes. This led to significantly reducing the public key to 0.6KB, which makes
cryptosystem based on these codes practical. A similar cryptosystem based on quasi-cyclic low-
density parity-check (QC-LDPC) codes was suggested in [16].

The main drawback of the replacement of Goppa codes with QC-LDPC or QC-MDPC codes is
that their usable iterative decoding algorithms do not guarantee correcting errors of given weight t
even for relatively small weights. Moreover, practical QC-MDPC and QC-LDPC coding construc-
tions usually have small minimum distance (about few dozens for codes with rate R = 1/2 and
length of several thousand).

In this paper we propose a new approach to the choice of a code to be used as a part of a coding
cryptosystem: instead of the problem of a compact description of a public key on account of the
code structure, we set forth the problem of choosing a triple (C0, E , ϕ), where C0 is a secret (n, k, d)
code, E a set of errors, and ϕ a polynomial complexity procedure which maps the set of input errors
to the set of errors corrected by the code. Thus, the problem is posed of describing a set of errors
(not necessarily those with a small weight) correctable by C0. The structure of this code should
be hidden. Classical attacks on the ciphertext (for example, information-set decoding [17]) face a

much harder task than correction of errors of weight less than
d− 1

2
, since they have to correct

errors of weight greater than
d− 1

2
, and this is how the reducing of the public key length is achieved.

This, in turn, allows to switch to significantly shorter codes with preserving the necessary attack
complexity.
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2. McELIECE CRYPTOSYSTEM

The first coding cryptosystem was the McEliece cryptosystem proposed in 1978 in [1]. As a
public key, a binary k × n matrix G was used which can be given as a matrix product

G = SG0P , (1)

where S is a nonsingular k × k matrix, G0 is a generator matrix of a binary (n, k, d) code C0 for
which there is a “simple” (usually polynomial time) decoding algorithm ξ for errors with multiplicity

less than half the code distance t =
d− 1

2
, and P is an n× n permutation matrix. We should note

that the matrix SG0 generates the same set of codewords as G0, i.e., the code C0.

The ciphertext for a message x in the McEliece system is generated as follows:

1. Generate a random vector e of length n from the set Et of the vectors of weight t;

2. Calculate a ciphertext

y = xG+ e. (2)

It is assumed that a legal receiver knows the matrices S, G, and P in the product (1), which
are a private key of the cryptosystem. In this case the receiver finds an encrypted message in the
following way:

1. Multiplies y by P−1:

yP−1 = xSG0 + eP−1;

2. Decodes the obtained vector using the code C0 with generator matrix SG0. Since the vector
eP−1 is of weight t, the result of the decoding is xS;

3. Calculates x as x = xSS−1.

The idea of the McEliece system is that the error vector eP−1 does not change its weight after
applying P−1 to the ciphertext y; i.e., it lies in the same vector set as the original error vector e.
That is why a legal user does not need to know an error vector for deciphering, since any error
vector with weight less than t is decoded with code C0 using the same algorithm.

The public key of the McEliece cryptosystem is the matrix G. Actually, the security of the
described system is based on the decoding complexity for a linear code C with an arbitrary structure.
After the matrix transformation given by (1), the algebraic structure of the code matrix with a
simple decoding algorithm ξ is hidden. Right multiplication by P maps the original code to an
equivalent code C to which the simple decoding algorithm ξ cannot be applied.

3. ATTACKS ON CODING CRYPTOSYSTEMS

In this section, we consider a classification of attacks on coding cryptosystems (regardless of the
choice of a specific code for a cryptosystem).

There are two main types of attacks on a coding cryptosystem: decoding attacks and structural
attacks. Their main difference is that a decoding attack is oriented at extracting an encrypted
message x from a ciphertext y = xG + e via decoding y with the use of some specially se-
lected algorithm. A structural attack aims at recovering a secret key (S,G0,P ) from a public key
G = SG0P using some available information about the structure of the code C0 with generator
matrix G0. We should note that it is not necessary to find the original factorization G = SG0P .
Usually, it suffices to find some factorization (S′,G′

0,P
′) such that G = S′G′

0P
′, as was done in the

Sidelnikov–Shestakov attack on the cryptosystem based on generalized Reed–Solomon codes [18].
In this paper, we will not dwell on the analysis of structural attacks in relation to the cryptosys-
tem proposed by us, since we focus in more detail on decoding attacks. Moreover, it cannot be
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guaranteed that there does not exist a structural attack for a given cryptosystem. It is known that
the majority of successful attacks (of polynomial complexity) on various coding cryptosystems are
precisely structural attacks.

Decoding attacks can be classified as follows:

1. Brute force attack on the information vector set; it is performed by exhaustive search over all
possible vectors x until the equality wt(xG − y) = t is obtained. The number of attempts for
this attack for an (n, k) code C can be estimated from above as 2min(k,n−k);

2. Brute force attack on the error vector set; it is performed by exhaustive search over all possible
vectors e until the equality wt

(
(y − e)HT) = 0 is obtained, where H is a parity-check matrix

corresponding to the public generator matrix G. The complexity of this attack depends on the
cardinality of the set of errors added at the encryption stage. If the cryptosystem is based on
a binary (n, k) code correcting t errors that are randomly added during the encryption stage,

then the average number of attempts for this attack is

(
n

t

)
;

3. Attack based on searching for error free information sets. A detailed description of this attack
is given in the next section.

We should note that the goal of any attack is to find a code with a simple decoding in the class
of equivalent codes if it is known that a simple decoding ξ exists for at least one of the codes.
The difference between the two types of attacks, structural and decoding, is that in the case of
decoding attacks general decoding methods for linear codes with an arbitrary structure are used,
while successful application of a structural attack allows to use a polynomial time decoder ξ.

3.1. Information Set Decoding

The minimum distance decoding problem for a code with an arbitrary structure, as was already
noted in the introduction, is NP -hard [12]. Decoding of errors of multiplicity up to t (up to half
the code distance) is relatively simpler but also has exponential complexity, although no proof of
its NP -hardness has been presented so far. In any case, no polynomial algorithms for solving this
problem are currently known.

Next, we describe the information set decoding (ISD) algorithm, on which most “promising”
attacks on the McEliece cryptosystem are based.

The purpose of the ISD algorithms is to recover a message x from a given vector y = xG + e,
where G is a generator matrix of an (n, k) code C with minimum distance d = 2t+1 and wt(e) ≤ t.

Let I be a subset of size k of the coordinate set [n] := {1, 2, . . . , n} such that I is the information
set of a code C and GI is a submatrix of G consisting of columns with indices from I. Similarly,
let eI be a vector consisting of the coordinates of e with indices from I.

The ISD algorithm works as follows:

1. Select a random information set I ⊂ {1, 2, . . . , n};
2. If wt(y − yIG

−1
I G) ≤ t, then yI does not contain any error, which means wt(eI) = 0. Then

u = yIG
−1
I . Otherwise, return to Step 1.

It is easily seen that the probability Pk that a given information set does not contain errors is
estimated from below as

Pk ≤

(
n− t

k

)

(
n

k

) =

(
n− k

t

)

(
n

t

) . (3)

This means that the average number of attempts to find an error-free information set is not

greater than

(
n

t

)/(
n− k

t

)
, which is significantly less than for the exhaustive search over all error
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vectors. Thus, to reach the necessary security range of a McEliece cryptosystem, codes with larger
lengths n are required. In particular, McEliece suggested using the (1024, 524, 101) Goppa code
correcting t = 50 errors, for which the public key length is 536 576.

The ISD attack had already been mentioned in [1] and was further developed in numerous papers
(see, e.g., [19] and references therein). There are different interpretations and modifications of the
original ISD algorithm. Several different improvements have been proposed, such as improvements
based on the generalized birthday paradox. In [20], it was shown that the complexity exponent for
information set decoding is Õ(20.0494n), which is presently the best known result.

3.2. Complexity of Decoding Attacks on the McEliece Cryptosystem

We provide an example of evaluating the attack complexity. (Here and in what follows, the
attack complexity means the average number of elementary operations required to find a message x
given a ciphertext y). For the classical McEliece cryptosystem based on the (1024, 524, 101) Goppa
code correcting t = 50 errors, we have the following:

• The complexity of the attack based on the exhaustive search over the information vector set is
2n−k(n − k)k = 2518;

• The complexity of the attack based on the exhaustive search over the error vector set is

k(n− k)

(
n

t

)
= 524 · 500 ·

(
1024

50

)
≈ 2302;

• The complexity of the attack based on searching for an error-free information set can be esti-
mated from above as (

n

t

)

(
n− k

t

)k(n − k) =

(
1024

50

)

(
500

50

) 524 · 500 ≈ 272.

As is noted above, the complexity of the last attack turns out to be the least. Thus, the security
level (by the security level of a cryptosystem we understand the smallest complexity among all known
attacks) of the classical McEliece cryptosystem can be estimated by the minimum complexity among
the considered attacks, which is 272.

Next, we discuss ways to increase the complexity of this attack by modifying the set of errors.

4. CONSTRUCTION OF A SET OF ERRORS CORRECTED BY A CODE

All decoding algorithms described in the literature cited above are somehow or other based on
the fact that they correct “light” errors with weights much less than the codeword length. However,
any linear code is capable of correcting a considerable number of errors with large weight. Let a
linear code C0 of length n be defined over a field F. We divide the space F

n into cosets of C0.
It is clear that C0 can correct only one error vector from each coset, but this can be any vector
from this class. This means that in expression (2) any (not necessarily “light”) vectors can be used
as a random masking vector (error vector e) if they belong to different cosets. In this case, the
complexity of the information set decoding algorithm increases significantly (it grows exponentially
with t), and to ensure the required system security, a code of a much smaller size can be used.

However, another problem arises here, which was easily solved (and was not even regarded as
a problem) in the original McEliece system. How to generate an error set that a legal user will
decode using the code C0 with a generator matrix G0? In fact, we must specify a set of errors E
from which the error vector used in encryption (2) is randomly selected.

First, we formulate the properties that this set should possess. We denote by E0 the set of error
vectors e corrected by the code C0 using the polynomial time decoding algorithm ξ and denote
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by ϕ(C0) some invertible transformation of the code (of its generator matrix, i.e., of the basis). As
a result of this transformation, a code C = ϕ(C0) is generated. Let, in addition, ω be the required
security level of the cryptosystem.

Now we can formulate requirements for the set E :
(a) An algorithm V for generating a random vector e ∈ E exists and is of polynomial complexity;
(b) There is an invertible linear transformation ϕ(C0) of polynomial complexity that maps the

code C0 to a code C;
(c) ϕ−1(E) ⊂ E0, and |ϕ−1(E)| ≥ ω;
(d) For the code C0, the algorithm ξ for correcting errors from E exists and is of polynomial

complexity;
(e) The decoding complexity for errors from the set E in the code C is not less than ω; in particular,

|E| ≥ ω, i.e., the set cardinality must prevent brute force search over all its elements aimed at
breaking the cryptosystem.

Taking into account the introduced notation, the proposed generalized encryption scheme S can
be described as follows:

• Public key in the proposed system: the generator matrix G = ϕ(G0) and the algorithm V ;
• Private key: the inverse transformation ϕ−1, the matrix G0, and the decoder ξ;
• Encryption algorithm:

1. By using the algorithm V , select a random vector e ∈ E ;
2. Given x, calculate the ciphertext

y = xG+ e; (4)

• Decryption algorithm:

1. Calculate y′ = ϕ−1(y) = xϕ−1(G) + ϕ−1(e) = xG0 + e′, where e′ ∈ E0;
2. Using the algorithm ξ, find x.

Although at first sight the decoding problem (4) completely coincides with problem (1), it
should be more difficult due to the fact that correcting errors from E by a code C with an arbitrary
structure is a more difficult task than correction of errors of small multiplicity. This directly follows
from the fact that for given n and k, the probability Pk in (3) is a monotone decreasing function

of t, i.e., t < t′ ≤ n

2
implies Pk(t) � Pk(t

′).

Evaluating the efficiency of a coding cryptosystem. The security of a cryptosystem
defined by the encryption algorithm (4), taking into account conditions (a)–(e) imposed on the
set E , is given under a direct attack (i.e., an attack based on decoding of errors from E in the
code C) by the parameter ω. If errors from E are not coset leaders (the “lightest” ones in a coset),
then decoding them for the code C (without knowing the inverse transformation ϕ−1) can only be
performed by exhaustive search over either the codewords from C or the error set E . Thus,

ω = min{2k, 2n−k, |E|}.

By the construction, |E| ≤ 2n−k. Taking into account the fact that while decoding by exhaustive
search over the codewords from C, the decoding complexity does not depend on E , it is natural to
call the cryptosystem (4) optimal if |E| = 2n−k and use the quantity

τ =
log2 |E|
n− k

(5)

to evaluate how “completely” the correcting properties of the code are exploited.

The formulated criterion of “completeness” of a coding cryptosystem is not sufficient nor even
the most important from the point of view of practical use of the cryptosystem. It does not take into
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account the size of the public key of the cryptosystem (i.e., of the code used in it), which is usually
discussed as the main disadvantage of code-based cryptosystems. Therefore, along with the defined
parameter, when evaluating the cryptosystem we also consider the size of the code used. Further,
in addition to the brute force attack, there are a number of non-brute-force attacks, the complexity
of which must be taken into account when evaluating a cryptosystem. In addition, a small value of
the parameter τ indicates that “resources” of the code underlying the cryptosystem are not fully
used, which means that it is potentially possible to improve the cryptosystem by expanding the
set of errors which will subsequently be corrected by the decoder. On the contrary, values τ close
to one allow us to state that the code underlying the cryptosystem is used quite efficiently, which
means that further expansion of the set E0 by adding “heavy” error vectors to it will only slightly
reduce the key length.

For example, for the classical McEliece cryptosystem based on the (1024, 524) Goppa code,
τME is estimated as

τME ≥
log2

(
1024

50

)

500
≈ 0.5681,

and the public key length is 1024 · 524 = 536576.

5. CRYPTOSYSTEM BASED ON THE BINARY IMAGE
OF A GENERALIZED REED–SOLOMON CODE

5.1. Generalized Reed–Solomon Code and Its Binary Image

Here and in what follows we assume that the considered codes are defined over the field Fq,
q = 2m, m > 0.

The construction of a set E fulfilling conditions (a)–(e) from Section 4 for a random code C
is a difficult task. Nevertheless, the binary image of a generalized Reed–Solomon code (RS code)
over Fq has a polynomial algorithm V for constructing such sets of sufficiently large cardinality.

First, we recall the definition of the generalized RS code GRSn,k(α,v).

Definition 1. Fix a finite field Fq. Select nonzero elements v1, . . . , vn ∈ Fq and different ele-
ments α1, . . . , αn ∈ Fq. Let v = (v1, . . . , vn) and α = (α1, . . . , αn). For any 0 ≤ k ≤ n, define the
generalized Reed–Solomon code as

GRSn,k(α,v) =
{
(v1f(α1), v2f(α2), . . . , vnf(αn)) | f(x) ∈ Fk[x]

}
,

where Fk[x] stands for the set of polynomials f(x) over Fq with degrees at most k − 1.

It is known that along with an ordinary RS code, GRSn,k(α,v) is also a maximum distance
separable (MDS) code, i.e., has minimum distance d = n− k+1. The main reason why this paper
considers the generalized RS code is that for given n and k the cardinality of the set of different
GRSn,k(α,v) codes is significantly greater than the number of different Reed–Solomon codes, which
prevents a structural attack on the cryptosystem based on GRSn,k(α,v). The generator matrix of
GRSn,k(α,v) is denoted by G′. This matrix is defined over the field Fq and is of size k × n.

Let us fix a basis Fq/F2. We consider a binary image of GRSn,k(α,v), i.e., a code with codewords
obtained from the codewords of GRSn,k(α,v) by replacing symbols over Fq with their binary
images. Finally, we obtain a binary (nm, km) code with a km × nm generator matrix G′

b. We
denote this code by Cb.

The code Cb in the binary Hamming metric has minimum distance not less than that of
GRSn,k(α,v), and it is capable of correcting any error burst provided that the burst covers no
more than t symbols of a received codeword if they are considered as elements of Fq. If only the
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burst length is limited to 1 ≤ �i ≤ m, but there is no limitation on the starting and ending positions

of an error burst, then the number of guaranteed correctable error bursts is
⌊n− k

4

⌋
=

⌊ t
2

⌋
. This

follows from the fact that any
⌊ t
2

⌋
error bursts of length 1 ≤ �i ≤ m cannot corrupt more than t

symbols over Fq, and therefore a received vector will be corrected by the GRSn,k(α,v) code when
making the inverse transformation F

mn
2 �→ F

n
q .

Before proceeding to the description of the cryptosystem, we introduce the notion of a syn-
chronous and nonsynchronous error burst.

Definition 2. An error burst of length 1 ≤ �i ≤ m is synchronous if for its starting position i
there exists an r ∈ N ∪ 0 such that i ≥ mr + 1 and at the same time i+ �i − 1 ≤ m(r + 1), i.e., all
nonzero elements of the burst are localized in one subvector er+1 of the vector e = (e1,e2, . . . ,en).
Otherwise, the burst is said to be nonsynchronous.

5.2. Basic Description of the Cryptosystem Protocol

Now we present a description of a public-key cryptosystem based on the binary image of a gen-
eralized Reed–Solomon code. In fact, this section presents a high-level description of the proposed
cryptosystem, and a presentation of its individual components will be given in subsequent sections
of the paper.

The public generator matrix of the cryptosystem has the form

G = SG′
bQ, (6)

where G′
b is a secret binary generator matrix of a code Cb, and S is an arbitrary nonsingular binary

matrix of size mk ×mk. The binary mn×mn matrix Q is selected according to Theorem 1 from
the matrix set described in Section 5.3.

Now we describe the procedures for key generation, encryption, and decryption.

• Generation of secret and public keys:

1. Select a generator matrix G′ of the code GRSn,k(α,v) and construct its binary image G′
b;

2. Construct a random nonsingular binary matrix S of size mk ×mk;

3. According to Theorem 1, construct an mn×mn matrix Q and select the corresponding class
of error vectors Vi;

4. Calculate a public generator matrix G = SG′
bQ;

5. The public cryptosystem key is (G,Vi);

6. The private cryptosystem key is the set (Q,G′
b,S).

• Encryption of the open text x ∈ F
km
2 is processed as follows:

1. Select a random vector e ∈ Vi ⊂ F
mn
2 consistent with the matrix Q, so that the error vector

eQ−1 can be corrected by the code with generator matrix G′
b;

2. Calculate the ciphertext y ∈ F
mn
2 :

y = xG+ e.

• Decryption of the vector y ∈ F
mn
2 is processed as follows:

1. Calculate the product of y and Q−1:

yQ−1 = xSG′
b + eQ−1;

2. The vector yQ−1 is transformed into a q-vector and then decoded by the t-error-correcting
code GRSn,k(α,v), whence x′ = xS ∈ F

k
q , a vector of length k over Fq, is found;

3. The vector x′ ∈ F
k
q is mapped to a binary vector x′′;
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4. The encrypted message x can be found as

x = x′′S−1.

As is noted above, the main requirement that the pair (Q,e) must satisfy is that the vector
eQ−1 should be correctable by the code with generator matrix G′

b, i.e., should contain no more

than t synchronous or
⌊ t
2

⌋
nonsynchronous error bursts of length up to m. Below we will show how

the structures of the vectors e and matrices Q should be consistent so that eQ−1 ∈ E0, where E0
is the set of errors correctable by the GRSn,k(α,v) code.

5.3. Selection of (Q,e) in the Proposed Cryptosystem

Let us show how the pair (Q,e) should be chosen so that the error vector eQ−1 is correctable
by the binary image of the generalized Reed–Solomon code (the q-ary representation of the vector
eQ−1 is correctable by the code GRSn,k(α,v)); in this case we say that the vector e is consistent
with the matrix Q.

Let us introduce the following notation: A(Q,e) means that a vector e is consistent with a

matrix Q, i.e., eQ−1 contains at most
⌊ t
2

⌋
nonsynchronous error bursts of length up to m.

For simplicity, we also introduce the following notation for various families of matrices Q and
vectors e.

The family of matrices Q:

• We say that a matrix Q belongs to family Q1 if Q = diag(M ) is a binary matrix of sizemn×mn,
where diag(M) means a block-diagonal mn ×mn matrix the main diagonal of which contains
nonsingular lower triangular matrices M i of sizes mi ×mi, m+ 1 ≤ mi ≤ 2m+ 2,

∑
mi = mn.

• We say that a matrix Q belongs to family Q2 if Q = diag(M ) is a binary matrix of sizemn×mn,
where diag(M) means a block-diagonal mn ×mn matrix the main diagonal of which contains
nonsingular matrices M i, and for any two adjacent matrices M i1 and M i2 on the main diagonal

(
M i1 0
0 M i2

)

that have sizes mi1 ×mi1 and mi2 ×mi2 , the following holds:
• mi1 +mi2 = 2m;
• In the matrix Q, matrices of sizes mi1 ×mi1 and mi2 ×mi2 alternate;
• Let M 1 be of size m1 ×m1 and M 2 of size m2 ×m2; then, if m1 < m2, in each block of two
consecutive matrices (

M i1 0
0 M i2

)

the matrix of a larger size is upper triangular. If m1 > m2, then the matrices of a larger size
is lower triangular.

Note that the main difference between matrices Q from the families Q1 and Q2 is that matrices
from Q1 obey constraints on the structure of blocks M i (they must be lower triangular), while the
choice of sizes mi of each of the blocks remains quite flexible: m+ 1 ≤ mi ≤ 2m+ 2,

∑
mi = mn.

Elements of Q2 obey constraints on both the sizes of adjacent matrices mi1 + mi2 = 2m and
the structure of larger matrices M i. Below it will be shown that the constraints imposed on the
structure of matrices from Q2 make it possible to add errors of larger weights at the encryption
stage than in the case where the encryption uses matrices from Q1.
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The family of vectors e:

• We say that a vector e belongs to family V1 if e contains up to
⌊ t
4

⌋
nonsynchronous error bursts

of length up to m;
• We say that a vector e belongs to family V2 if e contains up to

⌊ t
3

⌋
nonsynchronous error bursts

of length up to m;
• We say that a vector e belongs to family V3 if e contains up to

⌊ t
2

⌋
nonsynchronous error bursts

of length up to m.

Consistency of e and Q ∈ Q1. A key stage in designing a cryptosystem presented in
Section 5.2 is choosing of a matrix Q which is a component of the public and secret keys and of
an error vector e introduced at the encryption stage. In order to make the introduced families of
matrices Q1 and Q2 consistent with the types of error vectors V1, V2, and V3, we prove several
lemmas.

Lemma 1. Let a vector e be a nonsynchronous m-burst. Let e′ = eQ−1, where Q ∈ Q1. Then
e′ contains at most four synchronous m-bursts.

Proof. Let us consider the worst case. Define a binary vector e of length mn such that this
vector contains mn−m zeros and the error burst has a starting coordinate which is a multiple of
m−1. Let, for simplicity, this packet consist of ones. Then, if we represent e as e = (e1,e2, . . . ,en),
ei = (ei1 , . . . , eim), eij ∈ F2, the vector e contains two consecutive vectors ei and ei+1 such that
ei = (0, 0, . . . , 0, 1), ei+1 = (1, 1, . . . , 1, 0), and wt(ei+1) = m−1. All the other ej , j /∈ {i, i+1}, are
zero vectors of length m. Let the matrix Q−1 corresponding to the nonzero segment of the vector e
contain two matrices M i1 andM i2 with sizes mi1 ×mi1 and mi2 ×mi2 , respectively. Consider the
vectors e′i = (0, 0, . . . 0,ei) and e′i+1 = (ei+1, 0, . . . , 0) of lengths mi1 and mi2 , respectively. When
calculating e′ = eQ−1, the segment of e′ corresponding to the product of (e′i,e

′
i+1) and Q−1 has

the form

(êi, êi+1) = (e′iM i1 ,e
′
i+1M i2).

Since the vector êi contains one in the last position, e′iM i1 coincides with the last row of the
matrix M i1 , which is of weight at most mi1 . In the worst case (from the point of view of error
propagation), the vector êi starts with 1. The vector êi+1 is a product of a vector containing m−1
ones in the beginning, all the other mi2 −m+ 1 symbols being 0. Thus, e′i+1M i2 is of the form

êi+1 = (êi+1,1, êi+1,2, . . . , êi+1,m−1, 0, . . . , 0),

where êi+1,m−1 can be nonzero. In the worst case, êi+1,m−1 = 1.

Thus, the vector (êi, êi+1) of length mi1 +mi2 , where 2m+2 ≤ mi1 +mi2 ≤ 4m+4, contains an
error burst of length up to mi1 +m− 1 ≤ 3m+1. Obviously, this error burst is covered by at most
four synchronous m-bursts, which means that the transformation Q−1 makes the weight (in the
q-ary Hamming metric) of the error vector, which must then be decoded by the code GRSn,k(α,v),
at most 4 times as large.

If in the matrix Q−1 the segment of the vector e where (ei,ei+1) are located corresponds to a
unique matrix M i of size at most 2m+ 2, then the vector (e′i,e

′
i+1)M i covers no more than four

symbols of the field Fq.

By the construction of the matrix Q, no such error burst of length at most m in the segment
(ei,ei+1) of length 2m of the vector e can have more than two corresponding block submatrices
M i1 and M i2 .

Thus, no such error burst of length m can cover after the transformation Q−1 more than four
symbols of Fq. �
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Thus, if Q ∈ Q1 and e ∈ V1, then A(Q,e) holds.

Now let us show what upper constraints must be imposed on the mi in matrices Q ∈ Q1 so that
an arbitrary error burst of length up to m covers after the transformation Q−1 as few symbols of
the field Fq as possible, which would increase the number of added errors. The lower constraint
mi ≥ m+1 remains valid to ensure that no error burst of length at most m in the segment (ei,ei+1)
of length 2m can correspond to more than two block matrices M i1 and M i2 in Q−1. Recall that
in the worst case, multiplication of the error burst by the matrix Q−1 generates a burst of length
mi +m− 1 ≥ 2m. It is clear that such a burst can cover no more than three consecutive symbols
of Fq. For an error burst length of at most 2m+1, the number of consecutive covered field symbols
for vectors of length m in eQ−1 is not greater than three. Thus, if we obtain an upper constraint
on mi from

mi +m− 1 ≤ 2m+ 1,

i.e., mi ≤ m + 2, then instead of adding
⌊ t
4

⌋
error bursts of length up to m to the vector e it is

possible to add
⌊ t
3

⌋
error bursts of length up to m. Note that adding

⌊ t
2

⌋
errors does not guarantee

that the vector eQ−1 is decodable for the above-described structure of Q.

Thus, we have the following.

Lemma 2. Let a vector e be a nonsynchronous m-burst. Let e′ = eQ−1, where Q ∈ Q1, and
let the sizes mi of the blocks M i satisfy the inequality m+ 1 ≤ mi ≤ m+ 2. Then e′ contains no
more than three synchronous m-bursts.

Thus, if m+ 1 ≤ mi ≤ m+ 2, Q ∈ Q1, and e ∈ V2, then A(Q,e).

In the general case, when adding no more than
⌊ t
�

⌋
error bursts, � ≥ 2, of length up to m, for

the vector eQ−1 to be decodable (i.e., to ensure the consistency of the vector e and the matrix
Q ∈ Q1) the lower constraint mi ≥ m+ 1 implies the upper constraint

mi ≤ (�− 1)m−m+ 2.

Consistency of e and Q ∈ Q2. It was shown above that sizes mi of blocks M i of matrices
Q ∈ Q1 significantly affect the number of bursts of errors that can be added during encryption. It is
also clear that in the absence of constraints on the indices of starting positions of error bursts, up

to
⌊ t
2

⌋
error bursts of length up to m can be corrected, where t is the number of errors corrected by

the GRSn,k(α,v) code. However, it was shown above that under the only constraint mi ≥ m+ 1,
where the mi are sizes of square matrices entering the matrix Q ∈ Q1, the largest number of error

bursts added at the encryption stage cannot be greater than
⌊ t
3

⌋
. Only in this case it is possible

to guarantee their correction by the code GRSn,k(α,v) after applying the transformation Q−1.

Let us show that if Q ∈ Q2 and, moreover, for the sizes mi1 and mi2 of any two adjacent non-
singular matrices M i1 and M i2 we have mi1 +mi2 = 2m, then taking into account the constraints
on large matrices in the Q2 family, the matrix Q is consistent with e ∈ V3; i.e., at the encryption

stage it would be possible to add the maximum number,
⌊ t
2

⌋
, of nonsynchronous error bursts.

Lemma 3. If Q ∈ Q2 and a vector e is a nonsynchronous m-burst, then the vector eQ−1

contains no more than two synchronous m-bursts.

Proof. It is clear that for eQ−1 to contain no more than two synchronous m-bursts, it is
necessary and sufficient that multiplying the vector (ei,ei+1) of length 2m, which contains an
error burst of length up to m at arbitrary m consecutive positions, by the corresponding section of
length 2m of the matrix Q−1 does not lead to “propagation” of bursts.
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Clearly, this is achieved in the case where the corresponding section of Q−1 is of the form

(
M i1 0
0 M i2

)

,

where M i1 and M i2 are square matrices of sizes mi1 ×mi1 and mi2 ×mi2 , and mi1 +mi2 = 2m.
If at the same time the matrices of sizes mi1 × mi1 and mi2 × mi2 alternate in Q, then no error
burst of weight m will be at the intersection of more than two matrices in Q.

If, moreover, the additional constraints on the structure of larger matrices M i are fulfilled (they
are upper triangular if the size of the first block matrix M 1 is less than the size of M2, and they
are lower triangular if the size of the first block matrix M1 is greater than the size of M2), then,
whatever the burst lying in (ei,ei+1), being multiplied by Q−1 it does not “propagate” to adjacent
symbols, and therefore the vector e′ = eQ−1 will have the same structure as the vector e generated
at the encryption stage.

The only difference between the vectors e′ and e is that the lengths of error bursts in e′ can
amount to 2m, but the Hamming weight of e′ calculated over the field Fq will not exceed t, which
guarantees its decodability by the code GRSn,k(α,v). �

Consistency of e and Q: the main result. Combining Lemmas 1–3, we formulate a theorem
connecting the families Q1 and Q2 with the families V1, V2, and V3 of vectors e so that eQ−1 does
not contain more than t synchronous error bursts of length up to m, i.e., is decodable by the code
GRSn,k(α,v).

Theorem 1. The following statements are valid :

• If Q ∈ Q1, e ∈ V1, and for all blocks M i of sizes mi ×mi we have m+ 1 ≤ mi ≤ 2m+ 2 and∑
mi = mn, then A(Q,e) holds;

• If Q ∈ Q1, e ∈ V1 ∪ V2, and for all blocks M i of sizes mi ×mi we have m+ 1 ≤ mi ≤ m+ 2
and

∑
mi = mn, then A(Q,e) holds;

• If Q ∈ Q2 and e ∈ V1 ∪ V2 ∪ V3, then A(Q,e) holds.

Thus, at the stage of the designing of a cryptographic system based on the binary image of a
generalized Reed–Solomon code, presented in Section 5.2, the developer chooses a corresponding
pair (Q,e) in accordance with Theorem 1. The choice of a pair allows to control the flexibility of
parameters that specify the matrix Q and the number of errors added at the encryption stage.

It should be specially noted that in contrast to the classical McEliece cryptosystem, where the
public generator matrix defines a linear code equivalent to the secret one, this is not the case in our
situation: right multiplication of the generator matrix G′

b by Q ∈ Q1∪Q2 defines a transformation
of columns in G′

b, so SG′
bQ is not a generator matrix of the binary image of GRSn,k(α,v). The

equivalence of codes would be preserved if Q were a block permutation of length n, the block length
being m, i.e., if Q defined a permutation of symbols of Fq. Since the code Cb corrects the maximum
number of error bursts of length up to m, this set of bursts will be not correctable by the code
with generator matrix SG′

bQ with high probability, which is a key factor underlying the proposed
cryptosystem.

Next, we consider decoding attacks on the proposed class of cryptosystems.

5.4. Analysis of Some Attacks

When considering attacks, we depart from the fact that up to
⌊ t
4

⌋
error bursts of length up to m

are added at the encryption stage to the vector e, although all the obtained results can easily be

generalized for an arbitrary number of bursts
⌊ t
�

⌋
, � ≥ 2.
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Direct attacks. Recall that direct attacks are reduced to the exhaustive search over either
information vectors x or error vectors e. The complexity of direct attacks can be estimated from
above as follows:

• The maximum number of rounds to recover x: min{2mk, 2m(n−k)}, in each round a vector of
length mk or m(n−k) is multiplied by a public parity check or generator matrix, which requires
m2k(n− k) operations;

• The maximum number of rounds to recover e:

(
mn

�t/4

)
2m−1, in each round a vector e is sub-

tracted from a received vector y and the syndrome is calculated, which requires m2k(n − k)
operations.

Thus, the complexity Cdir of a direct attack can be estimated as

Cdir = O
(
m2k(n− k) ·min

{
2mk, 2m(n−k),

(
mn⌊ t
4

⌋
)

2m−1
})

.

Attacks based on information set decoding. It is known that for the classical McEliece
cryptosystem, the information set decoding attack is the most effective; it determines the complexity
of breaking the cryptosystem and influences the choice of code parameters (and hence the length
of the public and secret keys) required for achieving a given security level.

Since
⌊ t
4

⌋
error bursts of length up to m are added to the vector e of length mn, to find an

error-free information set one has to find
⌊ t
4

⌋
starting positions of each of the error bursts and

assume that the length of each error burst is equal to m. The number of rounds to find these

positions is not greater than

(
mn

�t/4

)
. Thus, the complexity of finding an error-free information

set is

CISD =

(
mn⌊ t
4

⌋
)

m2k(n− k).

If we look for an information set among the complement of the set of
⌊ t
4

⌋
disjoint error bursts

of length m, then the last estimate can be refined:

CISD =
m(n− 1)(m(n − 1)−m)(m(n − 1)− 2m) . . .

(
m(n− 1)−m

⌊ t
4

⌋)

(⌊ t
4

⌋)
!

m2k(n− k).

Syndrome attack. The essence of the syndrome attack is to calculate the public parity check
matrix H from the public generator matrix G and then reduce the problem of finding x from the
expression y = xG+ e to solving the corresponding syndrome equation by multiplying both parts
by HT. Since

G = SG′
bQ,

we have
H = LH ′

b(Q
−1)T,

where H ′
b is a parity check matrix corresponding to the generator matrix G′

b and L is some
nonsingular matrix of size m(n− k)×m(n− k) over F2. It is clear that L does not affect the code
properties. Therefore, we will assume that L = I. In this case the syndrome Z of a ciphertext y
has the form

Z = yHT = eQ−1(H ′
b)

T.

However, due to the randomness in the choice of Q, the parity check matrix H can correspond
to a code with distance much smaller than the distance of the code Cb. Thus, using a syndrome
attack does not guarantee finding the vector of error bursts generated at the encryption stage.
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5.5. Key Lengths

We will upper estimate the complexity Ccomp of cryptanalysis of the cryptosystem proposed in
this paper by the quantity

Ccomp = O(min{Cdir, CISD}).
Thus, to obtain a given security level W of the system it is necessary to choose an (n, k) code
(probably, truncated) GRSn,k(α,v) over Fq so that to ensure W ≤ Ccomp. Then the length of
the public key will be Lpub = knm2. Thus, an optimal (in terms of the key length) cryptosystem
having security level W is determined by a triple (n, k,m) of parameters, n ≤ 2m − 1 = q − 1,
k < n, for which ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

knm2 → min,

Ccomp ≥ W,

n ≤ 2m − 1,

0 < k < n.

We consider several examples.

Example 1. Let W = 272. Consider the truncated generalized (76, 18) Reed–Solomon code over
the field Fq, q = 27, obtained from the generalized Reed–Solomon code over Fq. This code has
distance 59 and corrects any 29 independent q-ary errors. Further, consider the binary image of
this code by representing each element of Fq as a binary vector of length 7. This results in a binary
(532, 126) code C correcting up to 29 error bursts of length up to 7. If we take this code as a
basis for constructing the cryptosystem described above, then the complexity of cryptanalysis of
the system is estimated as follows:

1. 2mkm2k(n − k) > 2141 is the complexity of the brute force attack on information vectors;

2. 2m(n−k)m2k(n− k) > 2421 is the complexity of the brute force attack on information vectors for
the dual code;

3.

(
mn

�t/4

)
2m−1m2k(n− k) > 272 is the complexity of the brute force attack on all error vectors;

4. The complexity of the information set decoding attack is estimated as

CISD =
7 · 75 · (7 · 75− 7) · (7 · 75− 14) · . . . · (7 · 75− 49)

7!
· 49 · 18 · 58 > 275.

Thus, the security level of the cryptosystem is Wc ≈ 272 ≈ W . In this case, the key length is
Lpub = 76 · 18 · 72 = 67032, which is more than 8 times smaller than the key length of the McEliece
cryptosystem based on the (1024, 524, 101) Goppa code and having security level 272.

The “completeness” of the error set according to equation (5) is estimated from below as

τGRS =
log2 |E|
m(n− k)

=

log2

((
mn

�t/4

)
2m−1

)

m(n− k)
≈ 0.1405,

which is significantly inferior to the estimate of this value for the McEliece cryptosystem τME ≈
0.5681. First of all, this indicates that the binary image of the generalized Reed–Solomon code
is capable of correcting a much wider error set than the set generated in this cryptosystem. This
means that it might be possible to further reduce the length of the public key, which will actually
be done in the examples below.

Let us give one more example of cryptosystem parameters under the assumption that at the

encryption stage
⌊ t
3

⌋
error bursts of length up to m are added. Recall that the sizes of the

matrices M i are chosen from the set {m+ 1,m+ 2}. In this case, estimates for the complexity of

cryptanalysis are obviously obtained from similar relations in the case of adding
⌊ t
4

⌋
bursts.
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Example 2. LetW = 272. Consider the generalized (63, 15) Reed–Solomon code over the field Fq,
q = 26, obtained from the generalized Reed–Solomon code over Fq. This code has distance 48 and
corrects any 24 independent q-ary errors. Further, consider the binary image of this code obtained
by representing each element of Fq as a binary vector of length 6. This results in a binary (378, 90)
code C correcting up to 24 error bursts of length up to 6. If we take this code as a basis for
constructing the cryptosystem described above, then the complexity of the cryptanalysis of the
system is estimated as follows:

1. 2mkm2k(n − k) > 2104 is the complexity of the brute force attack on information vectors;

2. 2m(n−k)m2k(n− k) > 2302 is the complexity of the brute force attack on information vectors for
the dual code;

3.

(
mn

�t/3

)
2m−1m2k(n− k) > 272 is the complexity of the brute force attack on all error vectors;

4. The complexity of the information set decoding attack is estimated as

CISD =
6 · 62 · (6 · 62− 6) · (6 · 62− 12) · . . . · (6 · 62− 96)

8!
· 36 · 15 · 48 > 275.

Thus, the security level of the cryptosystem is Wc ≈ 272 ≈ W . In this case, the key length is
Lpub = 63 ·15 ·62 = 34020, which is more than 15 times smaller than the key length of the McEliece
cryptosystem based on the (1024, 524, 101) Goppa code and having security 272.

The “completeness” of the error set according to equation (5) is estimated from below as

τGRS =
log2 |E|
m(n− k)

=

log2

((
mn

�t/3

)
2m−1

)

m(n− k)
≈ 0.19147,

which is still less than that of the McEliece cryptosystem but greater than that for the cryptosystem
based on the truncated generalized (76, 18) Reed–Solomon code.

To conclude this section, we consider another example of cryptographic parameters assuming

that
⌊ t
2

⌋
error bursts of length up to m are added at the encryption stage. Recall that in this

case there are some additional constraints on the matrix Q, which were considered above. Then
estimates of the complexity of cryptanalysis are obviously obtained from similar relations for the

case of adding
⌊ t
4

⌋
or

⌊ t
3

⌋
error bursts.

Example 3. Let W = 272. Consider the truncated generalized (46, 10) Reed–Solomon code over
the field Fq, q = 26, obtained from the generalized Reed–Solomon code over Fq. This code has
distance 37 and corrects any 18 independent q-ary errors. Further, consider the binary image of
this code obtained by representing each element of Fq as a binary vector of length 6. This results
in a binary (276, 60) code C correcting up to 18 error bursts of length up to 6. If we take this code
as a basis for constructing the cryptosystem described above, then the complexity of cryptanalysis
of the system is estimated as follows:

1. 2mkm2k(n − k) > 273 is the complexity of the brute force attack on information vectors;

2. 2m(n−k)m2k(n− k) > 2229 is the complexity of the brute force attack on information vectors for
the dual code;

3.

(
mn

�t/2

)
2m−1m2k(n− k) ≈ 273 is the complexity of the brute force attack on all error vectors;

4. The complexity of the information set decoding attack is estimated as

CISD =
6 · 45 · (6 · 45− 6) · (6 · 45− 12) · . . . · (6 · 45− 63)

9!
· 36 · 10 · 36 > 274.
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Thus, the security level of the cryptosystem is Wc ≈ 273 > W . In this case, the key length is
Lpub = 46 ·10 ·62 = 16560, which is more than 32 times smaller than the key length of the McEliece
cryptosystem based on the (1024, 524, 101) Goppa code and having security 272.

The “completeness” of the error set according to equation (5) is estimated from below as

τGRS =
log2 |E|
m(n− k)

=

log2

((
mn

�t/2

)
2m−1

)

m(n− k)
≈ 0.2746,

which is still less than that of the McEliece cryptosystem but greater than that for the cryptosystem
based on the truncated (76, 18) and (63, 15) generalized Reed–Solomon codes.

6. CONCLUSION

In this paper, we have considered the general problem of designing a public key cryptosystem
based on error-correcting codes.

We have formulated conditions which a coding cryptosystem must obey to guarantee a required
security level.

We have proposed a criteria τ to compare cryptosystems, which evaluates the interrelation
between the cardinality of the error set added to the cryptosystem to provide its security and the
number of check symbols of the code underlying the cryptosystem. Thus, the quantity 1− τ may
be considered as the measure of a potential to improve the cryptosystem by further increasing the
error set.

To demonstrate the theoretical possibility of the construction of cryptosystems for which meeting
the conditions formulated in the paper is possible, we have described a scheme obeying the proposed
conditions. This construction is based on binary images of generalized Reed–Solomon codes. We
have shown that the construction has a smaller key length for given security parameters as compared
to the McEliece cryptosystem based on binary Goppa codes.

As a result of analysis of the cryptosystem properties, we have shown that the most promising are
cryptosystems where the number of added errors is much greater than half the minimum distance,
while information set decoding is no more the most efficient decoding attack strategy.

The results of the paper show that designing coding cryptosystems based on the use of masking
vectors (error vectors) of small Hamming weight is not efficient, since such systems are sensitive to
attacks based on searching for an error-free information set. The use of error vectors that are not
the lightest in their cosets can significantly reduce the efficiency of the information set decoding
attack. Thus, the problem arises of finding transformations that map light representatives of cosets
of codes into heavier ones. To the best of our knowledge, this problem has not been solved in
coding theory so far. We hope that this problem may turn out to be useful both in cryptography
and in other applications of error-correcting coding theory.
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