
ISSN 0032-9460, Problems of Information Transmission, 2022, Vol. 58, No. 2, pp. 122–136. c© Pleiades Publishing, Inc., 2022.
Russian Text c© The Author(s), 2022, published in Problemy Peredachi Informatsii, 2022, Vol. 58, No. 2, pp. 24–40.

CODING THEORY

Theoretical and Experimental Upper and Lower

Bounds on the Efficiency of Convolutional Codes

in a Binary Symmetric Channel

A. A. Kurmukovaa,b, c,∗, F. I. Ivanova,b,∗∗, and V. V. Zyablova,∗∗∗

aKharkevich Institute for Information Transmission Problems,
Russian Academy of Sciences, Moscow, Russia

bHigher School of Economics—National Research University, Moscow, Russia
cSkolkovo Institute of Science and Technology (Skoltech), Moscow, Russia

e-mail : ∗Anastasiia.Kurmukova@skoltech.ru, ∗∗fivanov@hse.ru, ∗∗∗zyablov@iitp.ru

Received December 12, 2021; revised March 8, 2022; accepted March 11, 2022

Abstract—We propose a new approach to the analytical estimation of the error burst probabil-
ity, the probability of erroneous decoding, and the probability of error per bit for convolutional
codes with Viterbi decoding in a binary symmetric channel (BSC). Upper and lower estimates
of the probability of error per bit and of the erroneous decoding probability are based on active
distances and the distance spectrum of active distances for a convolutional code. The esti-
mates are derived for rate 1/2 convolutional codes, but they can also be generalized to any
convolutional code with rate 1/n. Calculation of the estimates described here has linear time
complexity in the error burst minimal length if code distance properties are known. The compu-
tational complexity does not depend on the crossover probability of a BSC. Simulation results
show that the considered estimates are rather tight, especially for small crossover probabilities.
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1. INTRODUCTION

Convolutional codes introduced by Elias in [1] have been studied for more than 60 years. Al-
though convolutional codes are inferior in error correction performance to such codes as polar [2]
or low-density parity-check (LDPC) codes [3], these codes can significantly reduce the bit-error
rate (BER) for a given signal-to-noise ratio (SNR) [4]. Neither polar nor LDPC codes possess
this property [4]. Apart from convolutional codes, only several classes of codes have this property,
for instance, Hamming codes [5], some classes of LDPC codes with low-density generator matrices
(LDGM) [6], repeated code constructions [7].

The property of BER reduction is very important for inner codes in any concatenated schemes.
This is a major reason why convolutional codes are widely used in different concatenated schemes
such as woven codes [8] and in other sequential and parallel constructions [9,10]. Also, the recursive
systematic convolutional encoder has gained great popularity in turbo codes [11,12]. It also shows
great performance in concatenation with other linear codes, for example, in a parallel scheme with
a systematic polar code (SPC) with iterative decoding as in [13].

Thus, analytical methods for the error probability estimation for convolutional codes are an
important direction of research. There are several works devoted to the theoretical analysis of the
performance of convolutional codes. A classical approach to estimation of the error probability
based on the analysis of generating functions was presented in [14]. For the binary symmetric
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channel, there is a tightened Meeberg bound [15]. In [16], simple Markov chain based models are
used to evaluate the BER of convolutional codes for short constraint lengths. However, simulation
results provided in this paper show that for a low input probability of error, the proposed estimation
is rather imprecise. Some modifications of this technique were described in [17], where it was
proposed to represent a particular convolutional code as a reduced Markov chain. In this case,
Viterbi decoding [18] can be considered as a special transition process between states of a Markov
chain. BER estimation for punctured convolutional codes was considered in [19]. Finally, in [20]
it was shown how to estimate the BER for any convolutional code for both quantized AWGN
(additive white Gaussian noise) and binary symmetric channels. However, the proposed technique
is rather difficult in implementation and has high complexity for convolutional codes with large
memory.

In this paper, we propose a new technique to estimate bit and frame error rate for convolutional
codes with maximum likelihood decoding in a binary symmetric channel. The proposed approach
is based on the distance spectrum of active distances and analytical estimates for the probability
of error bursts with a given length [21, 22]. A frame error rate (FER) estimate for terminated
convolutional codes was described in [23]. Here we propose simple theoretical low-complexity
upper and lower bounds on the BER of convolutional codes.

2. CONVOLUTIONAL CODES

2.1. Convolutional Code with Recursive Encoder

In this paper, we for simplicity consider rate 1/2 convolutional codes with a recursive systematic
encoder. At the same time, the obtained results can be generalized to convolutional codes with
rate 1/n, n > 1, n ∈ N. All results here are valid for the BSC and the Viterbi decoder.

The generator matrix for rate 1/2 convolutional codes with a systematic encoder with feedback
is given using the ratio of polynomials:

G(D) =

(
1

g(2)

g(1)

)
, (1)

where the generator polynomials are

g(�)(D) = g
(�)
0 + g

(�)
1 D + g

(�)
2 D2 + . . . + g(�)m Dm, g

(�)
i ∈ {0, 1},

for � = 1, 2. The code memory is denoted here by m, and the code rate is 1/2. The feedback
structure of the encoder corresponds to the denominator in the generator matrix. The generator
polynomials must be co-prime and of the same degree. The encoder state at each time moment can
be written either using m register bits or as a decimal number s: 0 ≤ s < 2m. The total number
of different states is 2m.

A codeword of a convolutional code can be written using a polynomial in indeterminate D (delay
operator):

v(D) = v0 + v1D + v2D
2 + . . . , vi ∈ {0, 1}2, i ∈ N ∪ {0},

where (v0,v1,v2, . . .) is a sequence of output tuples of size 2. A codeword of the convolutional code
is semi-infinite and can also be uniquely defined with a sequence of input information bits and an
initial encoder state.

It is convenient to use the code trellis to represent convolutional codewords and visualize the de-
coding process. The trellis is represented in the form of encoder states at successive time moments.
A transition from state st at time moment t to state st+1 at time moment t+1 corresponds to some
input bit and some output tuple. The initial encoder state is usually assumed to be t = 0. Each
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Fig. 1. Trellis for the (13, 17) convolutional code with a recursive encoder.

codeword has a unique corresponding sequence of output tuples, a unique sequence of trellis states,
and a unique sequence of input bits. Thus, each codeword can be written as a path in the trellis
(a sequence of encoder states). The trellis representation is important for understanding distance
properties of convolutional codes.

In Fig. 1 we provide an example for a recursive systematic convolutional encoder of memory
m = 3 with generator polynomials g(1) = 1 +D +D3 and g(2) = 1 +D +D2 +D3, which can be
written in octal form: (13, 17). In Fig. 1 the path shown in bold corresponds to the beginning of
one of the codewords. For a detailed explanation of the trellis concept, see [18].

2.2. Active Distances and Spectrum of Active Distances

One of the most important distance properties of a convolutional code is its free distance.

Definition 1. The free distance of a convolutional code is the smallest weight of a nonzero
codeword.

Except for the free distance, convolutional codes have other important distance characteristics
that determine the probability of erroneous decoding.

For block codes, the weight spectrum of a code is usually used to estimate the FER [24]. In this
paper, we suggest to use active distances proposed in [25] and the spectrum of active distances for
the convolutional code analysis. If a usual weight spectrum of a convolutional code is considered,
then weights are nonincreasing while the codeword length grows. This situation occurs if the
codeword path merges the zero path after some time moment. That is why it is reasonable to
exclude such codewords from consideration after they merge the zero path. This is the main
difference between these two definitions: weight spectrum and spectrum of active distances.

To start with, we define an additional construction to further consider active distances.

Definition 2. The subset of codewords of a convolutional code C with one finite nonzero branch
is denoted by Cf . This subset Cf consists of codewords v(D) which have a corresponding finite
nonzero branch of some length j on the trellis path. This nonzero branch begins right after the
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initial zero state: s0 = 0, s1 �= 0, and does not have two consecutive zero trellis states before
merging with the zero path sj = sj+1 = sj+2 = . . . = 0 at some time moment j.

Codewords from the subset Cf have finite weight, and this weight for each codeword equals the
weight of the nonzero branch. When defining active distances, we consider only this first nonzero
part of a codeword. The subset Cf does not contain the zero codeword. The minimum length of a
nonzero path is m + 1, where m is the memory of the convolutional code. Hereinafter, the trellis
length is considered in terms of the number of output tuples (or the number of transitions between
trellis states). Then we denote a codeword from the subset Cf with nonzero trellis path of length j
by v(j).

Definition 3. The active distance of length j for a convolutional code C is the minimum Ham-
ming weight of a codeword v(j) from the set Cf that has a nonzero trellis path of length j:

aj = min
v(j)∈Cf

w(v(j)),

where w(v(j)) is the Hamming weight of v(j).

The free distance of a convolutional code can also be defined in terms of active distances, since
when considering the subset Cf we do not exclude codewords with the smallest nonzero weight.
Then the free distance can be introduced as the minimal active distance min

j
aj, j ≥ m + 1. It is

important to note that the free distance need not always correspond to the smallest length j.

Since the weight of a codeword v(j) ∈ Cf is determined only by the weight of the nonzero branch,
the weight of the codeword can be given using the first j output tuples:

w(v(j)) =
j−1∑
i=0

w(v
(j)
i ).

We denote the number of codewords v(j) ∈ Cf with a fixed weight w(j) by Nw(j) . Let us present
the definition of the spectrum of active distances, which was first proposed in [21].

Definition 4. The spectrum Daj of active distances aj of length j for a convolutional code is
the set

Daj =
{
j, aj , w

(j), Nw(j) | w(j) = w(v(j)), v(j) ∈ Cf
}
.

The minimum weight in the spectrum of active distances Daj is the active distance aj of length j
of the convolutional code according to the definition of the active distance. The calculation of the
code spectrum is more computationally intensive than finding the spectrum of active distances.
This is due to the exclusion of paths that follow the zero path when computing the spectrum of
active distances. The union of spectra of active distances of length j over all possible lengths forms
the whole spectrum of active distances.

Definition 5. The spectrum of active distances Da for a convolutional code is the union of the
sets Daj over all possible lengths j:

Da =
∞⋃

j=m+1

Daj ,

where m is the code memory.

The spectrum of active distances can be represented as a table. Here we provide an example of
spectra of active distances for two convolutional codes.

Example 1. In Tables 1 and 2 we present the spectrum of active distances for two convolutional
codes with a recursive encoder and memory m = 3: (13, 15) and (13, 17). The number in the table
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Table 1. Spectrum of active distances for the
(13, 15) convolutional code with recursive encoder.

w\j 4 5 6 7 8 9 10 11 12 13 14 15

6 1 1

7

8 1 1 2 2 2 1 1

9

10 2 4 6 8 8 8 6 4 2

11

12 2 5 13 19 29 34 36 34

13

14 2 6 20 38 68 100 132

15

16 1 8 25 64 132 230

17

18 8 30 93 220

19

20 6 32 121

21

22 4 32

23

24 2

25

Table 2. Spectrum of active distances for the
(13, 17) convolutional code with recursive encoder.

w\j 4 5 6 7 8 9 10 11 12 13 14 15

6 1

7 1 1 1

8 1 1 1 2

9 4 1 3 3

10 1 1 3 6 4 5 5

11 1 4 5 5 15 7 10 8

12 1 2 4 13 10 18 27 16

13 3 3 13 14 30 32 37

14 1 5 7 22 34 40 81

15 3 5 15 40 60 96

16 2 17 21 79 105

17 2 7 20 62 119

18 2 21 36 100

19 2 7 26 90

20 5 12 71

21 1 11 27

22 6 11

23 6

24 3

25 3

at the intersection of the ith row and jth column denotes the number of codewords in the subset Cf
with the weight shown in the ith row and the nonzero branch length shown in the jth column. The
spectrum coefficients with weights corresponding to active distances are set off in bold.

3. THEORETICAL ESTIMATES OF THE FRAME AND BIT ERROR RATES
FOR CONVOLUTIONAL CODES IN A BINARY SYMMETRIC CHANNEL

Here we provide upper and lower estimates for the probability of error burst and the frame error
rate and also derive an estimate for the bit error rate. It is assumed that the data transmission is
performed over a binary symmetric channel (BSC) and that the Viterbi algorithm is used for the
decoding.

3.1. Probability of Error Burst

The probability of error burst and its estimate were described in detail in [21]. Here we provide
the derivation and the final formula.

We consider a BSC with maximum likelihood decoding and crossover probability p. The Viterbi
decoder always returns a codeword that belongs to the original convolutional code C. If an error
burst occurs while decoding, then the decoded codeword v′ ∈ C differs from the transmitted
codeword v ∈ C. At the place of the error burst there is an offset from the correct trellis path. Two
error bursts in one codeword are independent if between the corresponding branches there are at
least two correct consecutive states on the trellis. Since the convolutional code is linear, we have
v + v′ ∈ C, and at the place of the error burst in this sum there is a nonzero branch with weight
defined by the spectrum Da of active distances of the convolutional code. In the decoded codeword,
an error burst occurs if there are at least

aj
2

errors at the position of ones in the sum v+ v′ at the
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place of the error burst, where aj is the minimum weight of the error burst of length j (the active
distance).

The probability of a fixed number of errors at the positions of ones and zeros in a binary sequence
can be given as follows:

P (eall, e1, j, w, p) =

(
w

e1

)(
2j − w

eall − e1

)
peall(1− p)2j−eall,

where eall is the total number of errors, e1 the number of errors between ones, j the length of
the sequence in terms of the number of tuples, w the weight of the sequence, and p the crossover
probability in the channel.

As was mentioned above, an error burst occurs if the number of errors between ones in the burst
is greater than half the weight, and the number of errors between zeros can be arbitrary. If the
number of errors between ones in the burst is exactly equal to half the weight, the error burst occurs
with probability 1/2. Thus, the probability of an error burst of a given length j and weight w for
the binary symmetric channel with crossover probability p can be written as follows:

Pburst(j, w, p) =
2j∑

i>w
2

min(w,i)∑
i1>

w
2

P (eall = i, e1 = i1, j, w, p)

+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, for odd w,

1

2

2j−w
2∑

i=w
2

P
(
eall = i, e1 =

w

2
, j, w, p

)
, for even w.

(2)

We compute a lower estimate for the probability of error burst as the probability of the most
likely error burst, i.e., the burst with the smallest weight. Then an upper estimate can be found
as the sum of the probabilities of error bursts with all possible lengths. The upper and lower
estimates for the probability of an error burst of length j can be given using active distances and
the spectrum of active distances, respectively:

Plow(j, p) = (1− p)4mPburst(j, w = aj , p) (3)

and

Pup(j, p) =
wmax∑

wi=wmin

NwiPburst(j, w = wi, p), (4)

where {wi, Nwi} ∈ Daj and m is the code memory. For the lower estimate, we also use the factor
(1 − p)4m, i.e., the probability of 2m correct bits before and after the burst, to exclude situations
where the considered sequence is a part of some larger burst. A more detailed explanation can be
found in [23].

3.2. Probability of Erroneous Decoding

A codeword of a convolutional code has infinite length in the general case. In real-life tasks, the
data size is finite and terminated convolutional codes are used. We use zero-tailed (zero terminated)
convolutional codes, but there are also tail-biting convolutional coding as a possible solution. Blocks
of finite length are transmitted through the channel. They consist of a sequence of output tuples
of the terminated convolutional code, each of them corresponding to a finite trellis path with zero
initial and final states. Since transition from any state to the zero state may take at most m
time steps (while successively writing zeros to the register), where m is the code memory, code
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128 KURMUKOVA et al.

termination slightly reduces the code rate. Thus, we transmit m information bits less, which is
usually small as compared to the block length L � m.

We estimate the probability of erroneous decoding of a block of length L using the average
fraction of blocks with at least one error burst. A lower estimate for the erroneous decoding
probability, i.e., for the frame error rate (FER), will be obtained as the average fraction of blocks
with the most likely error burst. This burst has the minimum possible weight wmin = min

j
aj. For

the probability of error burst we use the lower estimate (3) for Plow(j, p). To obtain a more accurate
lower estimate, we multiply the probability of the most likely error burst by the number of such
different bursts Nwmin

; multiplying this by the block length L in terms of the number of tuples, we
obtain a lower estimate for the FER:

FERlow(p) = LNwmin
Plow(j = jwmin

, p), (5)

where jwmin
is the length of the burst with the minimum weight, {wmin, Nwmin

} ∈ Da.

An upper estimate is derived as an additive bound by summing up the average fractions of
blocks affected by bursts of different lengths. As the error burst probability, we use the upper
estimate (4) for Pup(j, p). Since the number of bursts is already involved in this estimate, there is
no need in the additional multiplier. Thus, we obtain an upper estimate for the FER:

FERup(p) = min

⎧⎨
⎩1,

L∑
�=m+1

LPup(j = �, p)

⎫⎬
⎭ , (6)

where m is the code memory.

The upper estimate can be slightly improved, but since the probability of a block with two or
more bursts is in several orders of magnitude smaller (since the probabilities of bursts are multiplied
separately), we for simplicity take such blocks into account several times in our additive estimate.
The sum in (6) is over all possible bursts lengths, but for practical use it suffices to take only the
shortest bursts into account, which can be seen from Fig. 2. Even for few shortest bursts, the
estimate FERup(p) lies above the FER simulation curve. For small p, considering a larger number
of different burst lengths has almost no effect on the estimation accuracy.

3.3. Probability of Error per Bit

The output probability of error per bit for a convolutional code is the fraction of erroneous bits
in the decoded codeword. The erroneous bits may occur in positions of error bursts only.

We estimate the probability of error per bit, i.e., the bit error rate (BER), as the average fraction
of erroneous bits. We derive a lower estimate for the BER as the fraction of erroneous bits assuming
that the most likely burst occurs. Then the lower estimate is the weight of the most likely burst
multiplied by the probability of its occurrence in a fixed bit. For a more accurate lower bound, as
the probability of error burst with the smallest weight wmin = min

j
aj we use the lower estimate for

the burst probability in a tuple (3) multiplied by the number of such bursts (they are equiprobable)
and normalized by the number of bits in a tuple. Thus, the proposed lower estimate for the BER is

BERlow(p) =
wminNwmin

2
Plow(j = jwmin

, p), (7)

where Nwmin
is the number of bursts with the minimum weight, jwmin

is the length of a burst with
the minimum weight, {wmin, Nwmin

} ∈ Da, and the denominator n = 2 is the number of bits in a
tuple.
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Fig. 2. Burst length j versus the FER upper estimate for the (13, 17) convolutional code with recursive
systematic encoder and memory m = 3.

An upper estimate for the BER is constructed as an additive bound over the average fractions
of erroneous bits for all lengths of bursts with the maximum weight. The upper estimate for the
error burst probability in a tuple (4) takes into account the number of such bursts, so there is no
need in an additional multiplier. As in the case of the estimate BERlow, we normalize the burst
probability by the number n = 2 of bits in a tuple to obtain the probability of occurrence of a burst
in a fixed bit. Then the BER upper estimate is

BERup(p) = min

{
1,

∑
j

maxwj∈Daj
wj

2
Pup(j, p)

}
. (8)

In expression (8) we take the minimum of 1 and the estimate, since the estimate is additive and
may exceed 1. In (8) the sum is over all possible values of j, while for practical use it suffices to take
the sum over the shortest bursts only. Indeed, it can be seen from Fig. 3 that the upper estimate
converges as the summation index j in the sum (8) grows. Moreover, even for a small number of
considered burst lengths, the estimate lies above the simulation curve. For small per bit crossover
probabilities p (p ≤ 0.01), taking few shortest bursts is sufficient for a rather accurate estimation,
which also reduces the computational complexity.

3.4. Complexity of Theoretical Estimates

For the computation of the proposed estimates, one has to know active distances and the spec-
trum of active distances for a convolutional code. Note that the distance properties of the convo-
lutional code should be calculated only once.

Computation of the active distances aj for length j is based on the Viterbi algorithm and
proceeds as follows:

1. At the initial time moment t = 0, initialize one path at the zero trellis state of length 0.
2. At time moment t > 0, continue all saved paths over the trellis from states at time moment t−1

to all possible states at time moment t. Each path can be continued in 2k ways, k = 1, without
taking into account paths from the zero trellis state. From the zero trellis state, the path can be
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Fig. 3. Burst length j versus the BER upper estimate for the (13, 17) convolutional code with recursive
systematic encoder and memory m = 3.

continued only in the next nonzero state. Calculate the weights of the paths, the total number
of paths being 2m+k − 1, k = 1 (if t > m, where m is the code memory).

3. For each trellis state at time moment t, save only the path with the minimum weight; 2m paths
remain (if t ≥ m).

4. If t = j, return the weight of the path saved in the zero state at time moment t = j. If t < j,
go to Step 2.

It is convenient to represent the computation process for the active distances as moving to the
right along the trellis. Since the task is to find a nonzero trellis path of length j with the minimum
weight, it suffices to save for each state at each time moment only the path with the smallest
weight that came to this state. The complexity of this algorithm depends on the length j and on
the number of trellis states 2m, where m is the code memory. It follows from the algorithm that
the complexity of computing the active distances aj is O(j(2m+1 − 1)). Also, while computing the
active distances of length j, we can obtain all active distances for lengths less than j.

The computation of the spectrum of active distances has larger computational complexity, which
grows exponentially with the length j of the nonzero path for which the spectrum has to be
computed. The spectrum of active distances is also computed over the trellis with the only difference
that we save all paths rather than choose one for the state with the minimal weight. The path
from the zero state can only be continued to a nonzero state. The computational complexity of the
algorithm can be written as O(2j(2m+1 − 1)), where m is the code memory. From this expression
it is clear that computing the spectrum for large lengths is computationally intensive and grows
rapidly with j.

Now we estimate the complexity of the proposed estimates for the error probability for convolu-
tional codes if distance properties (active distances and the spectrum of active distances) are already
known. The complexity of computation of the lower, Plow(j, p), (3), and upper, Pup(j, p), (4), esti-
mates for the error burst probability for length j is found as the maximum number of computations
of P (eall, e1, j, w, p):

O
((

2j − aj
2

)aj
2

)
and O

((
2j − wmin

2

)wmax

2
(wmax −wmin)

)
, {wmin, wmax} ∈ Daj .

PROBLEMS OF INFORMATION TRANSMISSION Vol. 58 No. 2 2022



THEORETICAL AND EXPERIMENTAL UPPER AND LOWER BOUNDS 131

The complexity of computing lower estimates (5) and (7) for FERlow(p) and BERlow(p) does not
differ from the complexity of Plow(j = jwmin

p), where jwmin
is the length of a burst with the minimal

weight. The complexity of upper estimates (6) and (8) for FERup(p) and BERup(p) coincides
with the complexity of computing the upper estimate for the probability of error burst Pup(j, p)
multiplied by the number of considered possible weights of error bursts. In practice, it suffices to
consider about 5–8 different weights, as follows from Fig. 3. Thus, although the computational
complexity of theoretical estimates does not depend on the crossover probability p, for practical
values of p it suffices to consider only a few number of terms in the sum for rather accurate error
probability values. Also, the complexity of the theoretical estimates is linear in the length j.

3.5. Experimental Results

Here we present simulation results and their comparison to the theoretical estimates. In simula-
tions we consider the BSC with crossover probability p. Random codewords of length 1000 tuples
(2000 bits) of a terminated convolutional code with recursive systematic encoder and rate 1/2
were transmitted over the channel. We considered different convolutional codes with different code
memories.

First, we provide results for the probability of error burst. The curves in Fig. 4 are presented
for three different crossover probabilities p: 0.03, 0.008, and 0.004. For p = 0.004, we provide less
simulation points, since the time needed for obtaining the results grows rapidly for small crossover
probabilities.

It follows from Fig. 4 that the probability estimates for short error bursts are the nearest to
the simulation results, since for these lengths there are only one or several codewords into which a
codeword can be changed. When the burst length increases, the number of possible codewords to be
obtained while decoding grows rapidly. This can also be seen from Tables 1 and 2 for the spectrum of
active distances. Bursts of the shortest lengths have the highest probability and the greatest impact
in the FER and BER. From Fig. 4 we can see that while the crossover probability p decreases, the
estimates converge, which can be explained by the exponential decrease in the probability of long
error bursts. Thus, for small crossover probabilities p, the proposed estimates are rather accurate
even for long bursts.

It is known that the distribution of error bursts can be approximated with the geometric distri-
bution [26,27]. This holds only for the least likely bursts; i.e., the geometric distribution is a good
estimate for the probability of long bursts and is bad for the most likely bursts of small lengths.

In Figs. 5 and 6, FER and BER results for two convolutional codes, (13, 17) and (13, 15), with
memory m = 3 are presented. We also provide BER results for the (117, 155) code with memory
m = 6 in Fig. 7 to prove that our estimates are also applicable to codes with larger memories. For
comparison, we also present the classic additive upper bounds on the FER and BER from [14,15]
computed using the generating function for the code spectrum and the function for the per bit
error, respectively.

Estimates for the probability of erroneous decoding were also presented in [23]. These results
can be compared to those from [20] for the (13, 17) code, and it is clear that they are almost the
same. Nevertheless, the method from [20] is computationally intensive, especially for large code
memories. Moreover, the authors of [20] mention that their approach is inapplicable to codes with
memory greater than 4.

The method proposed in the present article, based on active distances of a convolutional code
and their spectrum, allows to compute estimates for codes with larger memory without using
additional computing resources. To obtain tight estimates, it is not required to consider long
bursts; considering several shortest bursts suffices. Computer programs for the computation of
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a) b)

c) d)

e) f)

Fig. 4. Probability distribution of error bursts for convolutional codes with recursive systematic
encoder and memory m = 3: a) (13, 17), p = 0.03, b) (13, 15), p = 0.03, c) (13, 17), p = 0.008, d)
(13, 15), p = 0.008, e) (13, 17), p = 0.004, f) (13, 15), p = 0.004.
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Fig. 5. FER and BER for the (13, 17) convolutional code with recursive systematic encoder and
memory m = 3.

Fig. 6. FER and BER for the (13, 15) convolutional code with recursive systematic encoder and
memory m = 3.

active distances and their spectrum are provided on GitHub [28]. Here we also present an example
of the BER for the (117, 155) convolutional code with memory m = 6 in Fig. 7, where BER upper
estimates from [14,15] are also presented for comparison.

From Figs. 5–7 it is clear that the upper and lower estimates are close to each other for small
crossover probabilities p. Thus, for these probabilities theoretical estimates are rather accurate
and there is no need to use the Monte-Carlo method to obtain experimental values, which in
practice might require much resources for small crossover probabilities p. We also compare our
upper estimates for the FER and BER with classical upper estimates from [14, 15] obtained with
the use of generating functions.
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Fig. 7. BER for the (117, 155) convolutional code with recursive systematic encoder and memory m = 6.

3.6. Comparison with Other Bounds

Estimates for the probability of erroneous decoding were also presented in [23]. These results
can be compared to those from [20] for the (13, 17) code, and it is clear that they are almost the
same. Nevertheless, the method from [20] is computationally intensive, especially for large code
memories. Moreover, the authors of [20] mention that their approach is inapplicable to codes with
memory greater than 4, while our estimates are shown to be applicable to codes with larger memory
too.

The method proposed in the present article, based on active distances of a convolutional code
and their spectrum, allows to compute estimates for codes with larger memory without using
additional computing resources. To obtain tight estimates, it is not required to consider long
bursts; considering several shortest bursts suffices. Computer programs for the computation of
active distances and their spectrum can be found on GitHub [28].

In Figs. 5–7 we present a comparison of the proposed estimates with the classical bounds
from [14, 15]. From the results it follows that the additive upper estimate proposed here is closer
than or comparable with the classical bounds. The estimate from [15] is closer to our bound and
to the simulation results than the estimate from [14], which can be explained by a more accurate
estimate using Meeberg’s bound for the probability of error in the BSC. The estimates for the
probability of error burst and active distances that we use allow to compute estimates for the FER
and BER more accurately. We also note that we also derive here a lower estimate, which was not
proposed earlier in the literature, and the lower estimate lies very near to the simulation results.

4. CONCLUSION

In this paper we have obtained most important theoretical estimates for the performance of
convolutional codes in the binary symmetric channel. Namely, we derived upper and lower estimates
for the error burst probability, FER, and BER. The proposed estimates are based on active distances
and the spectrum of active distances, and they are valid for convolutional codes of rate 1/2 with
Viterbi decoding. The obtained results can be generalized to convolutional codes of rate 1/n. We
analyzed the computational complexity for distance properties and theoretical estimates. It was
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shown that for a given length the computational complexity for active distances is exponential in
the code memory and linear in the length, while the complexity of computing the spectrum of
active distances is exponential in both the code memory and length. The time complexity for the
theoretical estimates with known distance properties is linear in the length of the shortest error
bursts and does not depend on the crossover probability in the channel. Also, we considered various
codes with various memories and presented a comparison of theoretical and simulation results for
these codes. The proposed estimates are the most tight for small crossover probabilities.

In further work, estimates for the performance of convolutional codes in a Gaussian noise channel
can also be derived using active distances and their spectra.
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