
Analysis of Normally Incident EM Waves Reflected 

from a Conformal Meta-Surface

• Shift in in-phase reflection frequency of conformal metasurface is determined with geometrical

approach

• Analysis of the proposed approach is demonstrated for three types of conformal meta-surfaces

• Faster than full wave analysis to plot reflection phase of conformed meta-surfaces

• Model works equivalently well for both TE and TM mode of EM wave polarization

• The close agreement of measured and calculated reflection phases validates the accuracy of the

proposed geometrical approach
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Abstract

Introduction 

• In-phase (0𝑜) reflection phase of meta-surface enhances radiation properties of antenna.

• The incident and reflected waves meets constructively at the far-field for antenna incorporated

with metasurface ground plane.

• Conformability (bendability), an essential attribute of body worn antennas necessitate design of

conformal meta-surfaces shift in in-phase reflection frequency degradation

of antenna performance

• Large meta-surfaces are possible solution to cover the intended band even after bending

overall increased size of antenna inconsistent with body worn device standards

• Present analytical solutions are complex and works for large antenna arrays

• Proposed approach works well on smaller meta-surface cells and arrays

Proposed Geometrical Approach for Arrays

Conclusion
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Computational points on C-array Angles formed between arcs at the center O

Proposed Geometrical Approach for Arrays

Theoretical, Simulation and Measured Results 

• Geometrical approach to determine shift in the reflection phase of conformal array is proposed

• Proposed technique makes use of the law of reflection of EM wave at the interface

• Technique is applicable for both the polarization of EM wave i.e. x- and y- and TE and TM

polarized waves

• Simulated, theoretical and measured results are in good agreement
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Law of Reflection of EM wave at the points: A – B, E – G, F – H 

A AX    A AA    B BK    B BB' '' '' ' ' '' '' '        
1

E EY E EE G GJ G GG' '' '' ' ' '' '' '     
2

F FZ F FF H HI H HH' '' '' ' ' '' '' '     
3

Formula for Ɵ1, Ɵ2, and Ɵ3 and Path Delays Δl1, Δl2, and Δl3
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Formula for Ɵshift
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Planar array of unit cell-1

C-array of unit cell-1 (r = 40mm)
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Planar array of unit cell-1

C-array of unit cell-1 (r = 40mm)
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Planar array of unit cell-2

C-array of unit cell-2 (r = 40mm)
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C-array of unit cell-2 (r = 40mm)
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