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We consider a class of sequential network interdiction problem settings where the interdictor has incom- 

plete initial information about the network while the evader has complete knowledge of the network 

including its structure and arc costs. In each decision epoch, the interdictor can block (for the duration 

of the epoch) at most k arcs known to him/her. By observing the evader’s actions, the interdictor learns 

about the network structure and costs and thus, can adjust his/her actions in subsequent decision epochs. 

It is known from the literature that if the evader is greedy (i.e., the shortest available path is used in each 

decision epochs), then under some assumptions the greedy interdiction policies that block k -most vital 

arcs in each epoch are efficient and have a finite regret. In this paper, we consider the evader’s perspec- 

tive and explore deterministic “strategic” evasion policies under the assumption that the interdictor is 

greedy. We first study the theoretical computational complexity of the evader’s problem. Then we derive 

basic constructive properties of optimal evasion policies for two decision epochs when the interdictor has 

no initial information about the network structure. These properties are then exploited for the design of 

a heuristic algorithm for a strategic evader in a general setting with an arbitrary time horizon and any 

initial information available to the interdictor. Our computational experiments demonstrate that the pro- 

posed heuristic outperforms the greedy evasion policy on several classes of synthetic network instances 

under either perfect or noisy information feedback. Finally, some interesting insights from our theoretical 

and computational results conclude the paper. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Network interdiction is typically posed as a one- or multi-stage

ecision-making problem in a network with two decision-makers,

n interdictor and an evader . The evader traverses in the network

e.g., between two fixed nodes, a source and a destination), while

he interdictor aims to disrupt to the maximum possible extent (or

ompletely stop) the evader’s movement. Perhaps, the most well-

nown and studied network interdiction problem is the shortest

ath interdiction problem [20] , where the interdictor seeks a set of

rcs whose removal subject to some budgetary constraint, maxi-

izes the cost of the shortest path between two specified nodes.

hat is, the evader is assumed to move along the shortest path be-
ween these nodes. If the interdictor is allowed to block at most k 
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rcs, then this problem is often referred to as the k - most vital arcs

roblem [12] . The shortest path interdiction problem is known to

e NP -hard [12] . Nevertheless, rather effective exact solution ap-

roaches for various versions of the network interdiction problem

xist in the literature, see, e.g., [20,38] . 

Network interdiction forms a broad class of deterministic and

tochastic optimization problems with applications mostly aris-

ng in the military, law-enforcement and infectious disease control

ontexts, see surveys in [13,35–37,39] and the references therein.

erhaps, the earliest example of the network interdiction consid-

rations can be found in a now de-classified RAND report for the

.S. Air Force in 1955 [18] , which studied the Soviet railway net-

ork. There has been a substantial increase in the interest for this

lass of optimization problems since the early 20 0 0’s given con-

erns with various homeland security issues. Recent examples of

eal-world settings, where different types of interdiction models

ave been applied include nuclear smuggling interdiction [3,27] ,

rug trafficking enforcement [14,26] , border patrol [9] , the prob-

em of interdicting a nuclear-weapon project [8] , etc. Furthermore,

https://doi.org/10.1016/j.omega.2019.102161
http://www.ScienceDirect.com
http://www.elsevier.com/locate/omega
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omega.2019.102161&domain=pdf
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interdiction models have been applied for analysis of critical infras-

tructure systems, see examples of real-life case studies in [9] for

the U.S. strategic petroleum reserve and an electrical transmission

grid. A brief overview of the network interdiction settings in the

modern military contexts can also be found in [3] . 

In the typical shortest path interdiction problem the graph rep-

resents an underlying “infiltration” or “smuggling” network (with

a finite number of possible “infiltration” or “smuggling” routes, re-

spectively) in which the evader travels or moves the illegal mate-

rials. The arc costs may correspond to appropriately defined detec-

tion (or non-detection) probabilities or the amount of the evader’s

effort required to smuggle/move a unit of illegal materials through

an arc, where graph nodes often represent some geographical lo-

cations. The interdiction actions correspond to placing sensors,

road/helicopter patrols or actual attacks (in the military contexts)

to prevent successful evasions, see discussions in [3,35,36,39] . Fi-

nally, we also refer the reader to [9,13] , where the authors provide

interesting discussions on some practical implications and insights

from various interdiction models in the literature. 

While most of the studies in the network interdiction literature

consider deterministic settings, a number of more recent works

consider the network interdiction problem in stochastic settings;

see, e.g., [17,21,29] and the survey in [28] . Typically such models

assume that either the outcomes of interdiction actions are un-

certain or there is uncertainty with respect to the evader’s ac-

tions. Then the interdictor’s objective is to optimize some utility

function over the network, e.g., minimize the expected cost of the

maximum-reliability path [29] . 

In addition, several studies consider multi-stage stochastic in-

terdiction models. One example is the study by Held et al. [19] ,

who assumes that the network’s configuration itself is subject to

uncertainty. The interdictor attempts to maximize the probability

that the minimum path cost exceeds a given threshold. Since even

computing an objective function value is time-consuming some

heuristic algorithms are proposed and their effectiveness is vali-

dated numerically. 

Furthermore, an interesting dynamic deterministic version of

the network interdiction problem has been recently considered in

[33] , where the evader can dynamically adjust her 1 movement at

every node of her path in the network by observing the interdic-

tor’s actions. The interdictor, in turn, can interdict arcs any time

the evader arrives at a node in the network. It is also assumed

that the interdictor has a limited interdiction budget. 

The current study is motivated and builds upon recent works of

Borrero et al. in [6,7] . Specifically, in their network model in [6] the

interdictor and the evader interact sequentially over multiple deci-

sion epochs (or rounds). 2 In each epoch, the interdictor can block

at most k arcs for the duration of the current decision epoch, while

the evader is assumed to be greedy, i.e., in each epoch the evader

traverses along the shortest path between two fixed nodes in the

interdicted network. The evader’s loss in each epoch (i.e., her in-

stantaneous loss) is equal to the cost of the shortest path in the

interdicted network. This modeling approach can be justified, for

example, by interdiction and evasion dynamics arising in monitor-

ing and patrolling problems, where the interdictor has to periodi-

cally reallocate his resources over different geographical locations,

see additional discussion in [6] . 

The key feature of the model in [6] is that the interdictor

has incomplete initial information about the network including its

structure and costs, but learns about the network structure and

arc costs by observing the evader’s actions (i.e., the evasion path)
1 Note that in the remainder of the paper we refer to the interdictor and the 

evader as “he/his” and “she/her,” respectively. 
2 We use the terms “decision epoch” or “round” interchangeably. 
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n each decision epoch. The learning component is motivated by

ractical settings, where the interdictor can observe the evader’s

ctions (for example, by using a satellite or a drone), but cannot

mmediately react upon those actions; see, e.g., [40] . In particular,

t is assumed that this information feedback is deterministic and

erfect that is, the interdictor learns about the existence and the

xact costs of the arcs used by the evader in the previous decision

pochs. The quality of an interdiction policy is measured using ei-

her cumulative regret or time stability. The former is defined as

he difference in the total cost (over some predefined finite num-

er of decision epochs) incurred by the evader under the current

nterdiction policy against the policy of an oracle interdictor with

rior complete knowledge of the network. Clearly, the oracle in-

erdictor implements an optimal solution of the k -most vital arcs

roblem in each decision epoch. Time stability is defined as the

umber of rounds that are necessary for the policy to gain suffi-

ient amount of information in order to implement a solution of

he k -most vital arcs problem that is also optimal in the full infor-

ation network for the remainder of the time horizon. 

The main results of [6] can be summarized as follows. First, it

s shown that for their deterministic setting, in general, there do

ot exist policies that perform better than any other policy for any

raph consistent with the initial information available to the inter-

ictor. Thus, the focus of [6] is on the greedy and robust interdiction

olicies . They are greedy because they block a set of the k -most vi-

al arcs from the network known to the interdictor in each round;

hey are robust because whenever the exact cost of the arc is not

nown to the interdictor, then the policies assume the worst-case

cenario for the evader. These policies turn out to be “efficient”

n the following sense: ( i ) They eventually find and maintain an

ptimal solution to the k -most vital arcs problem in the full infor-

ation network (i.e., an optimal solution of the oracle interdictor),

ithin a finite number of decision epochs (possibly, instance de-

endent); and ( ii ) this class of policies is not dominated that is, for

ny possible instance of the initial information available to the in-

erdictor and any policy that is not greedy and robust, there exists

 greedy and robust policy that is strictly better (with respect to

ither the cumulative regret or time stability) than the aforemen-

ioned non-greedy and/or non-robust policy for some graph that is

onsistent with the initial information available to the interdictor. 

Property ( i ) of greedy and robust policies also implies that they

ave a finite regret. Furthermore, these policies detect when the

nstantaneous regret reaches zero in real time, i.e., when an opti-

al solution of the oracle interdictor is found. In addition to these

ttractive theoretical properties, the results of computational ex-

eriments in [6] also confirm the superiority of greedy and ro-

ust interdiction policies against several other benchmark policies.

inally, in [7] the authors generalize the theoretical results and

reedy policies from [6] for a more general class of max-min linear

ixed-integer problems. 

Note that in [6,7] , similar to the vast majority of the related

nterdiction literature, the authors focus on the interdictor’s per-

pective. However, given that the outlined greedy and robust inter-

iction policies are rather intuitive and very simple to implement

which is important for their applicability in practical applications)

nd have attractive theoretical properties, it is natural to explore

he evader’s perspective. In particular, if we assume that the in-

erdictor is greedy and robust, what are good strategic policies for

he evader against greedy and robust interdiction policies? Do such

olicies have any interesting structural properties? How can they

e constructed? These research questions form the main focus of

he current study. 

Admittedly, our modeling approach is somewhat stylized and

learly not without limitations. However, our goal is to gain in-

ights about the structure and properties of the evasion policies

hat are effective against greedy and robust interdictors. We envi-
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ion that the results of the study can be further exploited for the

evelopment of more advanced interdiction models and policies,

here the evader follows more sophisticated behavior than that

ypically assumed in the standard interdiction models. 

In this paper, we consider the deterministic setting similar to

6] with an additional modification. Specifically, with respect to the

nitial information available to the interdictor, in [6] it is assumed

hat for some arcs the interdictor is aware only about some up-

er and lower bounds on their costs. In contrast, we assume that

henever the existence of the arc is known to the interdictor ini-

ially, then its cost is also known, which in fact, is a less favorable

cenario for the evader, whose perspective we consider. Further-

ore, recall that in the considered setting the feedback is perfect

hat is, whenever the arc is used by the evader, its existence and

recise cost information is revealed to the interdictor. Therefore,

nder our rather mild assumption on the initial information avail-

ble to the interdictor, the greedy and robust interdiction policies

f [6,7] reduce to simply the greedy ones. 

As mentioned earlier, the evader’s perspective is discussed by

elatively few studies. In particular, Sanjab et al. [30,31] study a

ne-stage zero-sum game, where the evader transports products

etween two specified nodes in the network and attempts to min-

mize the expected delivery time. Furthermore, the authors focus

n a bounded rationality model, that is, the risk level of a se-

ected path, or the merit of a selected attack location can be per-

eived subjectively by the decision-makers. However, in our set-

ing the bounded rationality of the evader is addressed by con-

idering strategic decisions in a multi-period deterministic setting.

dditionally, in contrast to [30,31] we assume limited information

bout the network’s structure, but not uncertainty in the evader’s

or interdictor’s) decisions. 

Eventually, our formulation of the evader’s problem can be

iewed as a particular case of online combinatorial optimization

roblem with sleeping experts [23] , which is a generalization of

he classical multi-armed bandit formulation; see, e.g., [4] . The

roblem with stochastic loss functions and adversarial availabil-

ty of actions is discussed in [1,24] . The evader’s problem is re-

ated to the online adversarial shortest path problem [1] . Never-

heless, uniform mixing assumption [1] does not hold for deter-

inistic strategies and the notion of regret (for example, per action

egret [22,23] ) compares an arbitrary policy with a policy of using

he best ranked action in the hindsight, i.e., with the greedy eva-

ion policy. A distinctive feature of our setting is that the evader’s

ctions determine the information collected by the interdictor and,

hus, influence the structure of the setting. 

In view of the discussion above, the contribution of this paper

and its remaining structure) can be summarized as follows: 

• In Section 2 , we formulate the repeated evasion model with

multiple decision epochs under the assumption that the inter-

dictor follows a greedy interdiction policy. In the deterministic

setting with perfect information feedback, this model can be

viewed as a particular class of hierarchical deterministic combi-

natorial optimization problems, which is the main focus of this

study. 
• In Section 3 , we explore the theoretical computational com-

plexity of the considered evader’s problem. We show that the

evader’s problem is NP -hard in the case of two decision epochs

as long as there are no restrictions for the initial information

available to the interdictor. This result is established for net-

works where the interdiction problem is polynomially solvable.
• In Section 4 , we provide theoretical analysis of evasion policies

in the setting with two decision epochs, where the interdic-

tor has no initial information about the network arcs. We show

that under some mild assumption, the optimal evasion decision

is either greedy, or consists of two distinct paths that intersect
(i.e., have some arcs in common) with the overall shortest path

in the network. 
• In Section 5 , we exploit these theoretical properties to develop

a heuristic algorithm for the strategic evader in a more general

setting with an arbitrary time horizon and no restrictions on

the initial information available to the interdictor. 
• In Section 6 , we perform computational experiments that

demonstrate that the proposed heuristic consistently outper-

forms the greedy evasion policy on several classes of syn-

thetic network instances. In our experiments, in addition to

perfect information feedback we also consider feedback scenar-

ios, where the information obtained by the interdictor from the

evader’s actions is noisy. 

Finally, Section 7 concludes the paper, highlights interesting in-

ights from our theoretical results and computational observations,

nd then outlines promising directions for future research. 

Notation. In the remainder of the paper we use the following

otation. Let G = (N, A ) be a connected weighted directed graph,

here N and A denote its sets of nodes and directed arcs, respec-

ively. Denote by c a a nonnegative arc cost associated with each arc

 ∈ A . For A 

′ ⊆A we define a subgraph of G induced by this subset of

rcs as G [ A 

′ ] = (N, A 

′ ) . Denote by T ∈ Z > 0 the number of decision

pochs (or rounds) and by k ∈ Z > 0 the interdictor’s budget. 

Furthermore, we define two particular nodes in G , which are

eferred to as the source, s , and destination, f , nodes, respec-

ively. Let P s f (G ) be a set of all simple directed paths from s to

 in network G . Any path P ∈ P s f (G ) is given by a sequence of

rcs (s, v 1 ) , (v 1 , v 2 ) , . . . , (v | P|−1 , f ) , which we denote by { s → v 1 →
 . . → v | P|−1 → f } for convenience. Also, let � ( P ) be the cost of path

 ∈ P s f (G ) , that is � (P ) = 

∑ 

a ∈ P c a . Finally, define 

(G ) = min 

P∈P s f (G ) 
� (P ) , 

.e., z ( G ) is the cost of the shortest path from s to f in G . 

. Mathematical model 

We consider a sequential decision-making process, where in

ach decision epoch (round) t ∈ { 1 , 2 , . . . , T } an evader and an in-

erdictor interact. The evader has full information about the under-

ying network, while the interdictor has limited information about

ts structure and costs. In particular, we assume that the inter-

ictor initially observes a subnetwork G [ A 0 ] of the given network

 = (N, A ) , i.e., he is informed only about the existence of arcs in

 0 along with their costs { c a } a ∈ A 0 . Let 

C 0 = (N, A 0 ) , 

here we refer to C 0 as the initial information available to the in-

erdictor as it contains his initial knowledge about the structure

nd costs of the network. 

In each decision epoch t ∈ { 1 , 2 , . . . , T } the following sequence

f events takes place: 

1. The interdictor chooses set I t ⊆ A t−1 of at most k arcs to be

blocked for the time of exactly one decision epoch. 

2. The evader traverses along path P t ∈ P s f (G [ A \ I t ) . We refer

to � ( P t ) as the evader’s instantaneous loss . The evader also re-

veals the arcs in P t and their costs to the interdictor. 

3. The interdictor updates the information available to him, i.e.,

A t = A t−1 ∪ P t . 

We assume that the evader attempts to minimize her cumu-

ative loss over T rounds, while the interdictor is restricted to act

reedily in each decision epoch. In addition, we make the follow-

ng assumptions: 
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A1. In each round the interdictor acts first. Furthermore, the in-

terdictor is greedy in the sense that he always blocks a set

of k -most vital arcs in the observed network, i.e., 

I t ∈ argmax { z(G [ A t−1 \ I]) : I ⊆ A t−1 , | I| ≤ k } . (1)

A2. Graph G is not trivially k -separable that is, any subset of k

arcs in G is not an s − f cut. 

A3. If there is more than one possible choice for I t , then the

interdictor blocks arcs following a well-defined deterministic

rule, which is consistent in the sense that if I t is chosen from

a collection of blocking solutions I, then it is also chosen

from any collection of solutions ̃  I ⊆ I containing I t . 

A4. The evader has full information about the graph’s structure,

costs and the interdictor’s budget, k . The evader observes the

interdictor’s actions before choosing a path and cannot use

interdicted arcs. 

A5. The interdictor is initially given information only about sub-

network G [ A 0 ]. Each round he observes path P t and cost c a 
of each arc a ∈ P t used by the evader. 

The first part of Assumption A1 is technical. The second part

of A1 can be motivated by the interdictor’s incomplete initial in-

formation about the network’s structure and costs, which is rea-

sonable from the application perspective. More importantly, as we

discuss explicitly in Section 1 , the studies in [6,7] establish a num-

ber of attractive and practically relevant features of greedy inter-

diction policies both in the shortest path interdiction and general

max-min linear mixed-integer programming settings. 

Assumption A2 is technical as it ensures that the evader’s prob-

lem is feasible at each round. Assumption A3 implies that the in-

terdictor’s policies are deterministic. The consistency assumption

mimics an analogous assumption in [6] for the evader’s policies.

For example, one can think that in each decision epoch the inter-

dictor ranks all feasible blocking solutions in the observed network

based on some criteria, e.g., their costs to the evader, resolving ties

according to any deterministic criteria. Then the interdictor selects

the highest-rank blocking solution from such a list. 

Assumption A4 implies that the evader has some degree of

monitoring of the interdictor’s actions. The second part of this as-

sumption is a standard conjecture in the interdiction, bilevel, and

general hierarchical optimization literature; see, e.g., [33,35,36,39] . 

The first part of Assumption A5 formalizes the notion of some

initial knowledge of the interdictor about the underlying network.

The second part of Assumption A5 represents the case of the per-

fect (or transparent) feedback (from the evader to the interdictor)

similar to [6,7] that are the basis for this study (recall our discus-

sion in Section 1 ). We exploit this assumption in derivations of our

theoretical results. However, we relax this assumption in our com-

putational study in Section 6 . Finally, recall that the interdictor has

full information about the costs of arcs in A 0 . Thus, A5 implies that

whenever existence of the arc is known to the interdictor at any

decision epoch, then he is also aware of its cost. 

In view of the discussion above, the evader’s problem can be

formulated as the following repeated hierarchical combinatorial

optimization problem: 

min 

P t 

T ∑ 

t=1 

� (P t ) := 

T ∑ 

t=1 

∑ 

a ∈ P t 
c a (2a)

s.t. P t ∈ P s f (G [ A \ I t ]) ∀ t ∈ { 1 , . . . , T } , (2b)

I t ∈ argmax { z(G [ A t−1 \ I]) : I ⊆ A t−1 , | I| ≤ k } ∀ t ∈ { 1 , . . . , T } , 
(2c)

A t = A t−1 ∪ P t ∀ t ∈ { 1 , . . . , T } , (2d)
here the evader’s objective function in (2a) represents the sum

f the evader’s instantaneous losses of T decision epochs. Condi-

ion (2b) ensures that P t does not include arcs, which are blocked

y the interdictor at round t . Constraint (2c) requires I t to be a set

f k -most vital arcs in G [ A t−1 ] (recall assumption A1 ), i.e., an opti-

al solution of the interdiction problem in each decision epoch,

nd thus, leads to the hierarchical decision-making structure of

he overall sequential problem. Then (2d) states that a set of arcs

nown to the interdictor at round t is updated according to as-

umption A5 . 

From the game theoretic perspective, the evader’s problem (2)

an be viewed as a finitely repeated Stackelberg game with incom-

lete information; see, e.g., [34] and the references therein. Specifi-

ally, in each decision epoch t ∈ { 1 , . . . , T − 1 } the evasion-blocking

air (P t , I t+1 ) forms a Stackelberg equilibria in the currently ob-

erved network G [ A t ]. Next, we provide formal definitions of eva-

ion and interdiction policies along with some examples. 

efinition 1. An evasion policy is a deterministic sequence of set

unctions (πt ) | t∈{ 1 , ... ,T } such that for each t ≥ 1, P πt = πt (F πt ) , P πt ∈
 s f (G [ A \ I t ]) , where F πt summarizes the initial information as well

s the history of the interdiction and evasion decisions up to round

 : 

F πt = (C 0 , I 1 , P π1 , . . . , I t−1 , P 
π
t−1 , I t ) . 

�

Note that in Definition 1 an evasion policy in round t accounts

or the sequence of previous blocking and evasion decisions. This

ssumption is necessary since the evader attempts to minimize her

umulative loss over T rounds and thus, forms an overall sequence

f evasion decisions P πt , t ∈ { 1 , . . . , T } . 
efinition 2. The evader and her policy are referred to as greedy

f she chooses the shortest path in the interdicted network in each

ound. The evader and her policy are called strategic if she solves

heuristically or exactly) sequential hierarchical optimization prob-

em (2). �

Simply speaking, the greedy evader corresponds to a decision-

aker who is myopic and optimizes only her instantaneous loss in

ach decision epoch. Alternatively, the upper-level decision-maker

n (2) can be viewed as a team of evaders, one for each decision

poch. Then the greedy policy corresponds to a scenario where the

eam is decentralized and each evader optimizes her own objective

unction, while the objective function in (2a) represents the total

eam’s loss. 

We denote by P SP 
t and P SE 

t , t ≥ 1, the evasion decisions by the

reedy and strategic evaders, respectively. Given G and C 0 , define

he cumulative loss of the evader under evasion policy π over T

ounds as follows: 

L πT (G, C 0 ) := 

T ∑ 

t=1 

� (P πt ) 

et �(G, C 0 ) be a class of all feasible evasion policies for G and C 0 .
hus, for some fixed values of k and T we say that evasion policy

∈ �(G, C 0 ) strongly dominates policy π ′ ∈ �(G, C 0 ) if L πT (G, C 0 ) <
 

π ′ 
T 

(G, C 0 ) . 

efinition 3. The interdictor is referred to as a greedy semi-oracle ,

f for any t ∈ { 1 , . . . , T } the following conditions hold: 

(i) The interdictor has complete knowledge of the evader’s pol-

icy π . 

(ii) If the k -most vital arcs problem in G [ A t−1 ] , i.e., problem (2c) ,

has multiple optimal solutions, then the interdictor selects

the one that is least favorable for the evader under policy π
in the current decision epoch t . 
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Fig. 1. The network used in Examples 1 and 2 . For the costs of arcs (1,4) and (1,5) we assume that M > 5.. 
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(iii) Furthermore, among these solutions the one with maximum

cardinality is preferred. �

In other words, the greedy semi-oracle chooses a set of the k -

ost vital arcs I t ⊆ A t−1 in G [ A t−1 ] so as to maximize the evader’s

nstantaneous loss � (P πt ) . We also provide a technical requirement

hat the interdictor maximizes | I t | as his auxiliary objective; see,

.g., Example 1 . 

Simply speaking we assume that a greedy semi-oracle has full

nformation about the network’s structure and costs, but is re-

tricted to act greedily blocking a set of the k -most vital arcs in the

urrently observed network G [ A t−1 ] . However, given his knowledge

f G he can anticipate the evader’s actions in the current round

nd thus, select solutions that are preferable for him and least fa-

orable to the evader. 

For example, assume that the policy π in Definition 3 is a

reedy evasion policy and T = 1 . Then our definition of the greedy

emi-oracle can be viewed as a pessimistic version of the evader’s

roblem (2). More precisely, if the lower-level decision-maker (the

nterdictor) has multiple optimal solutions, then he prefers the

ne that is least favorable to the upper-level decision-maker (the

vader); see [11] for further details on bilevel optimization. 

Next, we provide two illustrative examples comparing the

reedy evader against a strategic one. These examples provide us

ith further motivation of exploring the structural properties of

trategic evasion policies discussed in Section 4 . In the examples

e assume that the interdictor is a greedy semi-oracle. 

xample 1. Graph G used in this example, is provided in Fig. 1 .

et s = 1 and f = 4 be the evader’s source and destination nodes,

espectively, and M be a real number such that M > 5. We also set

 = 2 , k = 2 and A 0 = ∅ . 
First, assume that the evader is greedy. Since A 0 = ∅ we have

 1 = ∅ and in the first round the greedy evader follows the overall

hortest path given by P SP 
1 

= { 1 → 2 → 3 → 4 } . Note that A 1 = P SP 
1 

nd thus, any subset of arcs of P SP 
1 

is also an optimal solution of

he k -most vital arcs problem in G [ A 1 ]. 

Next, recall that the interdictor is a greedy semi-oracle; see

efinition 3 . Hence, he knows that the evasion policy π is greedy

nd attempts to maximize the evader’s instantaneous loss � (P π
2 

) =
(G [ A \ I 2 ]) in the second decision epoch. We conclude that the

nterdictor blocks arcs (1, 2) and (3,4), which implies that I 2 =
 (1 , 2) , (3 , 4) } and P SP 

2 
= { 1 → 5 → 4 } . Observe that | I 2 | = 2 = k

nd, therefore, the blocking solution with maximal possible car-

inality is selected. As a result, the cumulative loss of the greedy

vader is given by L SP 
2 

= 3 + M. 

Then consider a strategic evader, who sequentially traverses

hrough arc-disjoint paths P SE 
1 

= { 1 → 2 → 4 } and P SE 
2 

= { 1 → 3 →
 } . In this case I 2 = { (1 , 2) , (2 , 4) } and the cumulative loss of the

trategic evader is given by L SE = 4 + 4 = 8 < L SP . �

2 2 
Example 1 illustrates that if the evader is aware that the in-

erdictor is greedy, then she can exploit this fact to decrease her

umulative loss. Furthermore, observe that the paths used by the

trategic evader have some arcs in common with the shortest path.

n Section 4 we formally establish that this observation is, in fact,

 necessary condition for the strategic evasion policy whenever it

utperforms the greedy one under the assumption that T = 2 , k ≥ 1

nd A 0 = ∅ . 
In Example 2 provided below we demonstrate that the greedy

vasion policy can be dominated by a strategic policy for arbitrarily

arge T ≥ 2, while A 0 does not necessarily need to be empty. 

xample 2. As in the previous example consider the graph de-

icted in Fig. 1 . In contrast to Example 1 , we change A 0 in

 particular way and assume that T is arbitrarily large, i.e.,

 ≥ 2. More precisely, let A 0 be non-empty and given by A 0 =
 (1 , 3) , (2 , 4) , (1 , 4) , (1 , 5) , (5 , 4) } . 

First, we have I 1 = { (1 , 4) , (1 , 5) } regardless of the evasion pol-

cy as the interdictor acts first. Then the greedy evader traverses

long path P SP 
1 

= { 1 → 2 → 3 → 4 } . Next, at t = 2 the interdictor

locks I 2 = { (1 , 2) , (3 , 4) } , which is a set of the k -most vital arcs

n G [ A 1 ] and the evader follows P SP 
2 

= { 1 → 5 → 4 } . Furthermore,

bserve that P SP 
t = P SP 

2 
, I t = I 2 for all t ≥ 3. Hence, the cumulative

oss of the greedy evader is given by L SP 
T 

= 3 + M(T − 1) for any

 ≥ 2. 

For a strategic evader, assume that she traverses through P SE 
1 

=
 1 → 3 → 4 } at t = 1 . Then I 2 = { (1 , 4) , (3 , 4) } and P SE 

2 
= { 1 → 2 →

 } . Consequently, I t = { (1 , 2) , (3 , 4) } and P SE 
t = P SP 

2 
for all t ≥ 3. It

mplies that the cumulative loss of the strategic evader is L SE 
T 

= 8 +
(T − 2) . Therefore, for arbitrary T ≥ 2 we have: 

 

SP 
T − L SE 

T = M − 5 > 0 , 

nd thus, the greedy evasion policy is suboptimal for arbitrarily

arge values of parameter T . �

. Computational complexity 

Observe that the evader’s problem in the case of T = 1 can be

olved efficiently whenever the k -most vital arcs problem in G [ A 0 ]

dmits a polynomial time algorithm. Alternatively, the evader may

ave access to an interdiction oracle that provides optimal block-

ng decisions in the network currently observed by the interdic-

or. If such interdiction oracle exists, then for A 0 � = ∅ and T = 1 the

vader’s problem coincides with the shortest path problem in the

nterdicted network G [ A �I 1 ], which is known to be polynomially

olvable [2] . 

However, in general the k -most vital arcs problem is known

o be NP -hard [20] and thus, checking feasibility of an evasion

olution is NP -hard. A more challenging problem is to determine

hether the evader’s problem is computationally difficult, when



6 S.S. Ketkov and O.A. Prokopyev / Omega 92 (2020) 102161 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T  

o  

G

P  

i  

F  

t  

{  

s

6

 

o  

t  

i

 

t  

t  

i  

l  

t  

m  

d  

a  

W  

i

 

a  

t  

a  

b  

i  

d

 

v  

a  

p  

b  

e  

l

 

{  

k  

c  

a

 

a  

e  

3  

i

 

c  

t  

t  

w  

τ  

τ  

P  

n

 

h  

p  

s  

p  

p  
the interdiction problem is “easy” to solve. In this section we show

that the evader’s problem is NP -hard in the case of T = 2 even for

network instances where the interdiction problem can be solved

in polynomial time. Henceforth, we assume that the interdictor is

a greedy semi-oracle. 

In our complexity reduction below we assume that arc set A

consists of two disjoint subsets, namely, the arcs that are either re-

movable or unremovable by the interdictor, respectively. The notion

of unremovable arcs is technical and made without loss of general-

ity as we can make all arcs removable by a polynomial time mod-

ification of the original graph. Specifically, we can simply replace

each unremovable arc ( i , j ) by k + 1 parallel arcs of equal costs.

This construction guarantees that after the removal of at most k

arcs, at least one of these arcs remains intact and thus, nodes i

and j remain connected by a directed arc. Alternatively (e.g., if

parallel arcs are not allowed), we can replace each unremovable

arc by k + 1 paths of length two by adding k + 1 and 2(k + 1)

of new nodes and arcs, respectively, which results in the same

outcome. 

Next, we define the classical 3-SAT problem, which is known to

be NP -complete [16] : 

Problem 3-SAT. 

Instance : collection F = { F 1 , . . . , F m 

} of clauses on a finite set of

variables U , | U| = n, such that | F i | = 3 for i ∈ { 1 , . . . , m } . 
Question : is there a truth assignment τ for U that satisfies all

the clauses in F ? �
Boolean formula F = F 1 ∧ F 2 ∧ . . . ∧ F m 

is satisfied under assign-

ment τ if and only if each clause is true. Clause F j is true if and

only if it contains either literal x i j such that τ (x i j ) = true or literal

x i j such that τ ( x i j ) = false . 

We also define the decision version of the evader’s problem

( EP ) for T = 2 : 

Problem 2-EP. 

Instance : network G together with source and destination nodes,

subset of arcs A 0 known to the interdictor, the interdiction budget

k ∈ Z > 0 and threshold h ∈ R > 0 . 

Question : is there two paths P 1 , P 2 ∈ P s f (G ) of total cost at most

h that can be traversed sequentially by the evader given that the

interdictor is a greedy semi-oracle? �
The proof of our main result below is based on the reduction

from the 3-SAT problem, where for any instance of 3-SAT we con-

struct a particular instance of the 2-EP problem. Following the dis-

cussion above we construct the instance of 2-EP such that feasibil-

ity of any evasion solution can be checked in polynomial time with

respect to the number of arcs, i.e., the k -most vital arcs problem in

both G [ A 0 ] and G [ A 1 ] is polynomially solvable. Our construction is

inspired and similar to the one used in [25] , where it is shown

that the problem of finding two minimum-cost arc-disjoint paths

with non-uniform costs (e.g., changing over time or type of flow)

is strongly NP -complete. However, our problem setting requires a

somewhat different arc cost structure and the use of unremovable

arcs defined at the beginning of this section. 

Specifically, given boolean formula F = F 1 ∧ F 2 ∧ . . . ∧ F m 

, let p i 
be the number of occurrences of variable x i in F . For each variable

x i we construct a lobe as illustrated in Fig. 2 . 

The lobes are connected to one another in series with w 1 =
s and w n +1 = f . Recall that s and f are source and destination

nodes, respectively. For each clause F j , we add two nodes y j , z j , j ∈
{ 1 , . . . , m } together with arcs ( s , y 1 ), (z j , y j+1 ) , j ∈ { 1 , . . . , m − 1 }
and ( z m 

, f ) of cost 0. Finally, to connect clauses to variables we add

the following arcs with zero costs: (y j , u 
i 
q ) and (v i q , z j ) , if the q -

th occurrence of variable x i is the literal x i , which is a literal in

clause F j ; (y j , u 
i 
q ) and ( v i q , z j ) , if the q -th occurrence of variable x i

is the literal x i , which is a literal in clause F j . We refer to Fig. 3

that illustrates the constructed graph for F = (x 1 ∨ x 2 ∨ x 3 ) ∧ ( x 1 ∨
x 2 ∨ x 3 ) ∧ ( x 1 ∨ x 2 ∨ x 3 ) . 
heorem 1. Problem 2-EP is strongly NP-complete for the class

f network instances where the interdiction problem (in G [ A 0 ] and

 [ A 1 ] ) is polynomially solvable. 

roof. ⇒ Consider a “yes”-instance of 3-SAT . Thus, there ex-

sts assignment τ such that boolean formula F = F 1 ∧ F 2 ∧ . . . ∧
 m 

is satisfied under τ . Assume that we construct a graph for

his instance as outlined in the discussion above. Next, let A 0 =
 (s, y 1 ) , (z m 

, f ) , (z j , y j+1 ) , j ∈ { 1 , . . . , m − 1 }} ∪ B 0 , where B 0 is the

et of unremovable arcs, h = 3 m + n and k is such that 3 m ≤ k ≤
 m + n, where M ≥ 2. 

Observe that I 1 = A 0 \ B 0 , since the interdictor is a greedy semi-

racle. Actually, k is sufficiently large to block all arcs in I 1 and in-

erdiction of I 1 maximizes the cost of the shortest path in G [ A 0 �I 1 ],

.e., I 1 ∈ argmax { z(G [ A 0 \ I]) : | I| ≤ k, I ⊆ A 0 } . 
At t = 1 let the evader choose path P 1 that is constructed in

he following way. It traverses through the lower part of the i -

h lobe, if τ (x i ) = true, and it traverses through the upper part,

f τ (x i ) = false . Observe that � (P 1 ) = 3 m + n . The information col-

ected by the interdictor is updated and thus, A 1 = A 0 ∪ P 1 . Note

hat set of arcs A 1 consists of path P 1 together with parallel unre-

ovable arcs and set A 0 �B 0 that contains m + 1 distinct arcs that

o not form a path from s to f . Furthermore, any evasion decision

t t = 1 does not include arcs in A 0 and goes through all the lobes.

e conclude that the interdiction problem in both G [ A 0 ] and G [ A 1 ]

s polynomially solvable. 

The presence of unremovable arcs of sufficiently large costs that

re parallel to arcs in P 1 enforces the interdictor to remove arcs in

he order of their costs. That is he blocks arcs of zero cost first

nd then blocks arcs of unit cost. Recall that k ≥ 3 m . Therefore, the

locking decision at t = 2 consists of at least 3 m arcs of P 1 includ-

ng all arcs with zero cost. We conclude that I 2 ⊆P 1 and I 2 ∩ I 1 = ∅
ue to the fact k ≤ | P 1 | = 6 m + n . 

Then there exist at least m un-blocked subpaths { y j → u i 
k 

→
 

i 
k 

→ z j } or { y j → u i k → v i k → z j } that correspond to the variable

ssignments in τ . Together with arcs ( s , y 1 ) and ( z m 

, f ) they form

ath P 2 that is arc-disjoint with P 1 by their construction and can

e traversed by the evader at t = 2 . The cumulative loss of the

vader equals h = 3 m + n . Hence, the answer to the evader’s prob-

em is “yes.”

⇐ Consider a “yes”-instance of the evader’s problem with A 0 =
 (s, y 1 ) , (z m 

, f ) , (z j , y j+1 ) , j ∈ { 1 , . . . , m − 1 }} ∪ B 0 , h = 3 m + n and

 is such that 3 m ≤ k ≤ 6 m + n . Then there exist two paths that

an be traversed sequentially by the evader and their total cost is

t most h . 

Observe that the choice of I 1 does not depend on the evader’s

ctions. Path P 1 goes through either the upper or the lower part of

ach lobe. Therefore, path P 1 in the evader’s decision has cost h =
 m + n, while P 2 has zero cost. Furthermore, the fact that k ≥ 3 m

mplies that P 2 is arc-disjoint with P 1 . 

Next, we note that as the cost of P 2 is zero, then it needs to

ontain arcs ( s , y 1 ) and ( z m 

, f ). Furthermore, P 2 needs to traverse

hrough arcs (z j , y j+1 ) , j ∈ { 1 , . . . , m − 1 }} and each lobe through

he zero cost arcs. We construct assignment τ in the following

ay: if P 1 traverses through the lower part of the i -th lobe, let

(x i ) = true and, if it traverses through the upper part, then let

(x i ) = false . According to this assignment due to the existence of

 2 each clause F j , j ∈ { 1 , . . . , m − 1 }} , is satisfied, which implies the

ecessary result. �

We conclude that the evader’s problem is computationally

ard even when T = 2 and the network instances admit a

olynomial-time solution of the k -most vital arcs problem. The

trong NP -completeness of 2-EP also implies that there is no fully

olynomial-time approximation scheme (or FPTAS) for the evader’s

roblem unless P = NP [16] . For future work it can be of interest
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Fig. 2. Construction of the i -th lobe corresponding to variable x i , where p i is the number of occurrences of variable x i in the clauses. Yellow dashed arcs are unremovable, 

and each of them has cost M that is a sufficiently large constant parameter. The cost of removable arcs is either 0 or 1 as depicted for each arc. 

Fig. 3. The graph corresponding to a 3-SAT instance with F = (x 1 ∨ x 2 ∨ x 3 ) ∧ ( x 1 ∨ x 2 ∨ x 3 ) ∧ ( x 1 ∨ x 2 ∨ x 3 ) . Here n = 3 is the number of lobes (or variables), m = 3 is the 

number of clauses, unremovable arcs and the arc costs within the lobes are not depicted (we refer to Fig. 2 for the detailed depiction of the lobes). Nodes w 1 = s and w 4 = f

are the source and destination nodes of the constructed graph, respectively. Suppose τ (x i ) = 1 for all i ∈ { 1 , . . . , 3 } . Green and blue arcs form paths P 1 and P 2 , respectively, 

i.e., the solution of the evader’s problem with T = 2 , A 0 = { (s, y 1 ) , (z m , f ) , (z j , y j+1 ) , j ∈ { 1 , . . . , m − 1 }} ∪ B 0 , where B 0 is the set of unremovable arcs, h = 3 m + n, k is such 

that 3 m ≤ k ≤ 6 m + n and M ≥ 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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1

o explore whether constant factor approximation algorithms exist

or 2-EP and how the complexity of the problem changes if k is

ounded by a constant. 

In view of the above in the remainder of the paper we explore

nalytical properties of the optimal evasion policies in a simple

ase, i.e., T = 2 and A 0 = ∅ , and then exploit them to propose a

euristic algorithm (for an arbitrary set of initial information and

ny time horizon) that outperforms a greedy approach. 

. Basic analysis of evasion policies 

In this section we provide basic analysis of evasion policies for

he case of two decision epochs when no initial information is

vailable to the interdictor, i.e., T = 2 and A 0 = ∅ . Specifically, un-

er some rather mild assumption we show that an optimal solu-

ion of the evader’s problem is either greedy, or consists of two

istinct paths that intersect with the shortest path in the non-

nterdicted network. The latter observation gives us a basis for

eveloping a heuristic approach of finding strategic evasion de-

isions; see Section 5 . Then we demonstrate that for k = 1 the

reedy evasion policy is optimal. Finally, it can be rather easily

hown that for sufficiently large values of k an optimal evasion so-

ution consists of two arc-disjoint paths. 

In the remainder of this section to simplify our derivations we

ssume that the costs of all possible paths from s to f are distinct.

hus, we can enumerate them in the strictly increasing order of
heir costs, i.e., 

 (P (1) ) < � (P (2) ) < . . . < � (P (μ) ) , (3)

here |P s f (G ) | = μ. Denote by ν( P ) the index of path P ∈ P s f (G )

n the above ordering. 

emma 1. Let A 0 = ∅ , k ≥ 1 and assume that the evader is greedy.

enote by r the index of path traversed by the evader at t = 2 , i.e.,

 = ν(P SP 
2 

) . Then for any z ∈ { 1 , 2 , . . . , r − 1 } path P ( z ) is blocked by

he interdictor at t = 2 . 

roof. The results follows from the definition of the greedy evader.

ince A 0 = ∅ and k ≥ 1, we have r > 1. �

Next, we provide some basic necessary conditions for an eva-

ion solution to be optimal when T = 2 and A 0 = ∅ . 
heorem 2. Assume that the interdictor is a greedy semi-oracle with

 0 = ∅ and k ≥ 1 . Let T = 2 and r = ν(P SP 
2 

) , where r ≥ 2 . If P OPT 
1 

=
 

(i ) and P OPT 
2 

= P ( j) is an optimal solution of the evader’s problem for

 = 2 , then either i = 1 and j = r, or P ( i ) and P ( j ) satisfy the following

onditions: 

 

(i ) ∩ P (1) � = ∅ and P ( j) ∩ P (1) � = ∅ , (4) 

 (P (1) ) + � (P (r) ) > � (P (i ) ) + � (P ( j) ) , (5) 

 < i < r, 1 < j < r and i � = j. (6) 
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Proof. First, suppose that the greedy evasion policy is optimal.

By the definition of r we have that the greedy evader traverses

through P (1) and P ( r ) sequentially. Hence, i = 1 and j = r. 

Conversely, assume that the optimal evasion policy is not

greedy, which implies that condition (5) holds. Thus, we need to

show that conditions (4) and (6) are satisfied. 

If condition (6) does not hold, then we consider the following

possible scenarios: 

(i) We have that either i ≥ r , or j ≥ r . If i ≥ r , then by assumption

(3) the following inequalities hold: 

� (P (1) ) ≤ � (P ( j) ) , � (P (r) ) ≤ � (P (i ) ) , 

which implies that (5) is violated and results in a contradic-

tion. The case j ≥ r is similar; 

(ii) We have that i = 1 . Clearly in this case the greedy evasion

solution is optimal and (5) is not satisfied (recall that the

greedy evader traverses through P (1) at t = 1 ); 

(iii) We have that j = 1 . In other words, path P (1) is not blocked

by the interdictor at t = 2 . Since the interdictor is a greedy

semi-oracle and the evader traverses through P ( i ) and P (1) 

sequentially we conclude that P ( i ) and P (1) are arc-disjoint,

i.e., P (i ) ∩ P (1) = ∅ . Thus, conversely, if the evader is greedy,

then path P ( i ) cannot be blocked by the interdictor at t = 2

as A 0 = ∅ . From Lemma 1 we observe that i ≥ r and thus, we

can simply refer to the discussion above in ( i ). 

We conclude that condition (6) is satisfied. 

Finally, assume that (4) is violated and thus, either P ( i ) or P ( j ) 

is arc-disjoint with P (1) . Hence, if the evader is greedy and A 0 =
∅ , then either P ( i ) or P ( j ) , respectively, cannot be blocked at t = 2 .

Therefore, we have that either i ≥ r or j ≥ r (recall again Lemma 1 ),

which contradicts (6) and hence, completes the proof. �

This result implies that there exist two mutually exclusive alter-

natives: either the greedy evasion policy is optimal or there exists

another evasion solution (better than the greedy one), which con-

sists of two distinct paths that both have some arcs in common

with the shortest path from s to f in the non-interdicted graph,

see (4) . 

Clearly, one natural question arising next is whether these two

distinct paths of the latter alternative are either arc-disjoint or in-

tersect by themselves as well. In particular, from Example 1 in

Section 2 one may hypothesize that an optimal evasion solution for

T = 2 and A 0 = ∅ is either greedy, or consists of two arc-disjoint

paths of minimal total costs. While it is often the case in many

simple problem instances, nevertheless this hypothesis does not

hold in general. Specifically, next we construct an instance of the

evader’s problem, where an optimal evasion solution consists of

two distinct paths that intersect along some arcs that are also con-

tained in the shortest path from s to f . The latter fact illustrates

that the necessary conditions given by (4) –(6) in Theorem 2 hold. 

Example 3. Consider the network depicted in Fig. 4 . Let s = 1 and

f = 11 . Assume also that T = 2 , k = 3 and A 0 = ∅ . Observe that in

the first decision epoch the greedy evader follows the shortest path

P SP 
1 

= { 1 → 2 → . . . → 11 } of cost zero, while the interdictor blocks

set of arcs I 1 = { (1 , 2) , (4 , 5) , (10 , 11) } . Hence, in the second round

the evader must traverse through path P SP 
2 

= { 1 → 12 → 11 } with

her total loss of L SP 
2 

= 0 + 11 = 11 over two rounds. 

Next, it can be verified that the cost of any arc-disjoint evasion

solution from s to f is at least 11. Nevertheless, consider a strategic

evader who first traverses through path P SE 
1 

= { 1 → 3 → 4 → . . . →
11 } . Then the interdictor’s solution is I 1 = { (4 , 5) , (6 , 7) , (8 , 9) } to

block all paths of cost 8. Then the strategic evader follows path

P SE 
2 

= { 1 → 10 → 11 } and her cumulative loss over two rounds

is given by L SE 
2 

= 1 + 9 = 10 < L SP 
2 

. Thus, in this example neither

greedy nor arc-disjoint evasion solutions are optimal. �
However, both greedy and arc-disjoint evasion solutions can be

hown to be optimal for specific values of parameter k . First, it can

e shown that the greedy evasion policy is optimal when k = 1 ,

.e., the interdictor blocks one arc in each decision epoch. 

roposition 1. Assume that the interdictor is a greedy semi-oracle

ith A 0 = ∅ . Let T = 2 and k = 1 . Then the greedy evasion solution is

ptimal. 

roof. Recall from Lemma 1 that if the evader is greedy and A 0 =
 , then for any z ∈ { 1 , 2 , . . . , r − 1 } path P ( z ) is blocked at t = 2 by

he interdictor. Since the interdictor’s budget k = 1 we conclude

hat all paths P ( z ) , z ∈ { 1 , 2 , . . . , r − 1 } , have an arc in common, i.e.,

here exist e ∈ A such that e ∈ P ( z ) for all z ∈ { 1 , 2 , . . . , r − 1 } . 
Assume that the greedy evasion decision is not optimal. Then

he optimal solution, namely, paths P ( i ) and P ( j ) must satisfy con-

itions (4)–(6) of Theorem 2 . In particular, we have that 1 < i ,

 < r and thus, these two paths have arc e in common that is,

 ∈ P ( i ) ∩ P ( j ) . Following the discussion above arc e also belongs to

he shortest path P (1) . Observe that with A 1 = P (i ) the greedy semi-

racle interdictor must block e and, thus, P ( j ) cannot be traversed

y the strategic evader at t = 2 . It contradicts with our earlier as-

umption that P ( i ) and P ( j ) form an optimal evasion solution. �

emark 1. Moreover, if k is sufficiently large, then for T = 2 it

s rather easy to observe that if the interdictor is a greedy semi-

racle with A 0 = ∅ , then an optimal evasion solution consists of

wo arc-disjoint paths. Specifically, since A 0 is empty, then in the

rst decision epoch there are no interdicted arcs. Consider an eva-

ion path in the first decision epoch of any optimal evasion so-

ution. If the value of k is larger than or equal to the number of

rcs in this path, then by the definition of a greedy semi-oracle all

rcs in this path are interdicted in the second decision epoch. Thus,

he evader’s consequent evasion path cannot contain arcs from her

revious evasion path. �

Next, recall that in Example 1 the loss of the greedy evader

s equal to 3 + M, while the optimal evasion solution has cost 8.

ence, for any constant β ∈ R > 0 and sufficiently large values of pa-

ameter M we have: 

βL SE 
2 < L SP 

2 , 

hich implies that in general the greedy evasion solution cannot

pproximate an optimal evasion solution with any constant factor.

he next example demonstrates that the latter property also holds

or any arc-disjoint evasion solution. 

xample 4. Consider the network depicted in Fig. 5 . Assume that

 = 2 , A 0 = ∅ and k = 2 . The greedy evader follows the shortest

ath of cost zero in the first decision epoch, i.e., P SP 
1 

= { 1 → 2 →
 . . → | V |} . The interdictor blocks any k = 2 arcs of P SP 

1 
and thus,

he evader must use two arcs of cost M in the second round. Ob-

erve that L SP 
2 

= 0 + 2 M = 2 M. 

On the other hand, any arc-disjoint solution contains all arcs

f cost M and thus, its cost is equal to M 

| A | 
2 . We conclude that

he approximation factor of any arc-disjoint solution is O (| A |) and

herefore, not bounded by a constant. �

To summarize the discussion of this section, we conclude

hat in general both greedy and arc-disjoint evasion solutions

an be suboptimal. Moreover, an optimal evasion solution may

e somewhat non-trivial even for T = 2 and A 0 = ∅ as long as

 is at least two (recall Proposition 1 for k = 1 ), but also not

oo large ( Remark 1 ). However, the necessary conditions given by

heorem 2 provide us an intuition that we can exploit in the de-

ign of a heuristic algorithm for the strategic evader, which we dis-

uss next. 
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Fig. 4. The network used in Example 3 . The arc costs are depicted inside each arc. 

Fig. 5. The network used in Example 4 . The arc costs are depicted inside each arc, where M > 0. 
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Algorithm 1: Heuristic algorithm for the strategic evader. 

1 Input: Directed graph G = (N, A, C) , the source and 

destination nodes for the evader, the maximum number of 

arcs that can be blocked by the interdictor k , index of the 

current time epoch τ , set of arcs A τ−1 that are known to the 

interdictor, heuristic parameters α ∈ (0 , 1] and q ∈ Z > 0 

2 Output: Evasion decisions for the next one or two time 

epochs 

3 t ← − τ, I τ ← − arg max { z(G [ A τ \ I ]) : | I | ≤ k } 
4 P 

SP 
τ ← − the shortest path in G [ A \ I τ ] 

5 A 

′ 
τ ← − A τ−1 ∪ P 

SP 
τ

6 I 
′ 
τ+1 ← − arg max { z(G [ A 

′ 
τ \ I ] : | I | ≤ k } 

7 P 

SP 
τ+1 

← − the shortest path in G [ A \ I ′ τ+1 
] 

8 Current Best Decision ← − {P 

SP 
τ } current (greedy) evasion 

decision 

9 Current BestSolut ion ← − � (P 

SP 
τ ) + � (P 

SP 
τ+1 

) 

10 δτ ← − α ·
(
� (P 

SP 
τ ) + � (P 

SP 
τ+1 

) 
)

a threshold that depends on 

the heuristic parameter α

11 for (b (1) , . . . , b (q ) ) ∈ P 

SP 
τ do 

12 begin 

13 P SE 
τ ← − the shortest path in G [ A \ (I τ ∪ ( 

⋃ q 
i =1 

b (i ) ) ] 

14 if � (P SE 
τ ) < δτ and P SE 

τ ∩ P 

SP 
τ � = ∅ then 

15 begin 

16 A 

′′ 
τ ← − A τ−1 ∪ P SE 

τ

17 I 
′′ 
τ+1 

← − arg max { z(G [ A 

′′ 
τ \ I ] : | I | ≤ k } 

18 P SE 
τ+1 

← − the shortest path in G [ A \ I ′′ τ+1 
] 

19 if � (P SE 
τ ) + � (P SE 

τ+1 
) < Current BestSolut ion then 

20 begin 

21 Current Best Decision ← − { P SE 
τ , P SE 

τ+1 
} 

22 Current BestSolut ion ← − � (P SE 
τ ) + � (P SE 

τ+1 
) 

23 end 

24 end 

25 end 

26 return Current Best Decision 
. Heuristic algorithm for the strategic evader 

In this section we propose a heuristic algorithm for the strategic

vader. The key idea of the algorithm is motivated by theoretical

bservations provided in the previous section, namely, Theorem 2 ,

nd is based on the two-step “look-ahead” concept. However, in

ontrast to Section 4 we do not assume that A 0 = ∅ . 
In the algorithm in each decision epoch the evader has two op-

ions: either she follows the greedy policy, or seeks for two alter-

ative paths that can be traversed sequentially with the cumulative

ost less than the loss obtained by the greedy approach. The pair

f alternative paths is generated in a heuristic manner (see the de-

ails further in this section) by blocking a subset of arcs of some

redefined cardinality of the shortest path in the network and then

erifying that conditions (4) and (5) of Theorem 2 hold. It is im-

ortant to note that because of its two-step look-ahead scheme our

lgorithm can be applied in an iterative manner for any arbitrary

ime horizon T . 

We assume that the heuristic has access to an interdiction ora-

le that returns a set of k -most vital arcs in the network, currently

bserved by the interdictor. In general, the k -most vital arcs prob-

em is known to be NP -hard [32] . However, it can be rather effec-

ively solved by decomposition algorithms; see, e.g., [20] , that are

ypically faster than a naive branch-and-bound approach. More-

ver, taking into account the structure of the problem, the decom-

osition algorithms can often be speeded up, if we store previous

vasion decisions. Next, we discuss the key features of our algo-

ithm in details and describe its links to Theorem 2 . We refer to

lgorithm 1 for the pseudocode. 

At the beginning of the τ -th epoch the evader observes the in-

ormation collected by the interdictor up to time t = τ, i.e., set

 τ−1 and the corresponding blocking decision I τ . First, in lines

 − 9 of Algorithm 1 we compute the evader’s loss if she follows

he greedy policy. (Note that we use P 

SP 
τ and P 

SP 
τ+1 

to denote these

aths as they do not necessarily coincide with P SP 
τ and P SP 

τ+1 
due to

he iterative nature of the heuristic.) 

Then in lines 13 − 24 we seek for a pair of alternative paths

hat can provide a better decision for the evader, e.g., if T = 2

nd A 0 = ∅ , then our construction ensures that these paths sat-

sfy conditions (4) and (5) of Theorem 2 . However, recall that
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Theorem 2 holds for A 0 = ∅ and does not take into consideration

problems with A 0 � = ∅ . The latter is a more challenging case as the

properties of alternative paths depend on the set of initial informa-

tion; see, e.g., Example 2 . Therefore, we resort to generating these

paths in a heuristic manner as detailed below. 

Specifically, to construct the first alternative path we first block

q ∈ Z > 0 arcs of P 

SP 
τ together with set I τ and identify the shortest

path in the interdicted network, which is assumed to be the first

alternative path; see line 13 of Algorithm 1 . As we block q arcs of

the shortest path, P 

SP 
τ , the newly constructed path, referred to as

P 

SE 
τ , does not coincide with P 

SP 
τ . 

In line 14 we verify, first, whether P 

SE 
τ contains some arcs

in common with P 

SP 
τ and, furthermore, whether its loss is suf-

ficiently small. The former requirement is motivated by condi-

tion (4) of Theorem 2 , while the latter requirement is controlled

via the heuristic parameter α and is linked to the evader’s loss un-

der the greedy policy; see line 14 of Algorithm 1 and our addi-

tional comments below. If both of these requirements are satisfied,

then in line 18 we generate the second alternative path, P 

SE 
τ+1 

, in a

greedy manner by assuming that P 

SE 
τ is traversed at t = τ . In line

19 we check whether the constructed solution is better than the

best available solution, which coincides with a greedy one at the

first iteration; see lines 8 and 9. Then we repeat the overall proce-

dure in an iterative manner by blocking another subset of q arcs of

P 

SP 
τ . 

As briefly outlined in the discussion above the developed

heuristic has two tunable parameters: α and q . The first one, α ∈ (0,

1], is used to compute δτ , which can be viewed as some measure

of difference between the instantaneous losses of the greedy eva-

sion paths in epochs τ and τ + 1 and a potential evasion path for

the strategic evader in epoch τ . Note that if α = 0 . 5 , then δτ is

simply the average instantaneous loss of the greedy evader over

two decision epochs. 

In particular, for smaller values of parameter α the algorithm

takes into consideration for the strategic evader only very promis-

ing evasion paths in epoch τ , see the first condition in line 14. On

the other hand, for larger values of α the algorithm considers a

larger subset of candidate evasion paths that are also required to

intersect with the shortest path in the interdicted network, see the

second condition in line 14 and recall (4) . Thus, by increasing the

value of α we increase the running time of the heuristic, but po-

tentially improve the quality of the obtained myopic solution for

the two-steps look-ahead approach. Also, note that improvements

over two decision epochs do not necessarily imply improvements

over longer decision-making horizons. 

Furthermore, we use parameter q to characterize the number

of arcs of P 

SP 
τ that are blocked in addition to I τ in order to en-

sure that the first of the newly constructed alternative paths does

not coincide with P 

SP 
τ . The choice of q is related with the fol-

lowing trade-off. Consider the case of T = 2 and A 0 = ∅ . Note that

Theorem 2 , see (4) , implies that the alternative evasion paths have

some arcs in common with the shortest path (i.e., the initial eva-

sion path of the greedy evader when A 0 = ∅ ). Intuitively, by in-

creasing the value of q we attempt to minimize the cardinality

of these subsets of arcs in common (and thus, generate a path

that is sufficiently different from the greedy evasion path in epoch

τ ), see line 13. On the other hand, the loss of the first alterna-

tive path is required to be less than threshold δτ (see line 14 of

Algorithm 1 ), which, in turn, requires a sufficiently small value

of q . 

In summary, we observe that our heuristic approach finds opti-

mal solutions for all the considered examples, namely, Examples 1,

2 and 4 , under a suitable choice of the heuristic parameters, see

additional discussion on the parameter settings in Section 6.1 . Fur-

thermore, if q is bounded by a constant, then Algorithm 1 requires

a polynomial in | A | number of calls to the interdiction oracle. 
. Computational study 

In this section we compare the heuristic for the strategic evader

 Algorithm 1 ) against the greedy policy. We show that the heuris-

ic approach performs sufficiently well even for rather large val-

es of T (recall that Algorithm 1 is myopic as it generates eva-

ion decision only for at most two time epochs) and consistently

utperforms the greedy policy on several classes of synthetic net-

ork instances. In addition to the perfect feedback scenario, we

lso consider a noisy feedback scenario where for each arc initially

nknown to the interdictor but traversed by the evader at deci-

ion epoch t , i.e., a ∈ P t \ A t−1 , the interdictor does not obtain the

erfect information about the actual arc cost but rather observes

 noisy realization of its nominal cost. In other words, we relax

ssumption A5 to reflect more realistic interdiction scenarios. 

The remainder of this section is organized as follows. First, in

ection 6.1 we describe our test instances and the implementation

ssues. Then in Section 6.2 we discuss the obtained computational

esults. 

.1. Preliminaries 

Graph structure and costs. The test instances used in

ur experiments are represented by three classes of ran-

om graphs, specifically, layered, uniform [15] and Barabasi-

lbert (BA) [5] graphs. The test instances are constructed as fol-

ows: 

• Layered graphs. Each of our random layered graphs consists

of h layers with r i nodes in the i -th layer, where r i for i ∈
{ 2 , . . . , h − 1 } is generated according to the discrete uniform

distribution in the interval [ r min , r max ] . The first and last lay-

ers consist of a single node, i.e., r 1 = r h = 1 , that are the source

and destination nodes, respectively. An arc between a pair of

nodes from the i -th and j -th layers is generated with proba-

bility p 
j−i 

. Furthermore, the source node is connected by a di-

rected arc to all nodes in layer 2, while all nodes in layer h − 1

are connected to the destination node. All arc costs are gener-

ated according to the discrete uniform distribution in the inter-

val [0 , 100 | j − i | ] . In our experiments we set h = 10 , r min = 4 ,

r max = 6 and p = 0 . 5 . 
• Uniform graphs. For each two nodes i and j in the graph, di-

rected arc ( i , j ) exists with probability p ; see further details

on undirected random graphs of this type in [15] . All arc costs

are generated according to the discrete uniform distribution in

the interval [0,100]. The source and destination nodes are se-

lected as follows. First, given graph G we compute its diame-

ter, diam ( G ), and construct a list of all node pairs such that the

distance between the nodes is approximately diam ( G )/2. Then

a pair of nodes is chosen from this list uniformly at random to

be the source and destination nodes. In our experiments we set

| N| = 50 and p = 0 . 5 . 
• BA graphs. These graphs are constructed based on the following

preferential attachment mechanism. Suppose m 0 is a number

of nodes in the initial complete graph. Then in each iteration

we add a node and connect it with m ≤ m 0 existing nodes ran-

domly with probabilities proportional to their degrees; see fur-

ther details in [5] . We set | N| = 50 , m = m 0 = 5 . The arc costs

as well as the source and destination nodes are generated in

the same manner as for the uniform random graphs described

above. 

Initial information for the interdictor. In all our experiments

e construct A 0 as follows. For each arc a ∈ A we modify its cost

o c a + M with probability 0.5, where M = 10 4 is sufficiently large.

hus, the arcs with modified costs do not belong to the shortest

ath from s to f in the modified graph as long as there exists at
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east one path that consists of only non-modified arcs. Then we

dd all arcs in the resulting shortest path to A 0 . This procedure is

epeated 5 times and hence, A 0 consists of arcs that belong to at

ost 5 distinct paths from s to f . 

Feedback types. As outlined above we consider two types of

nformation feedback from the evader’s action to the interdictor,

amely, perfect and noisy feedback. The perfect feedback satisfies

ssumption A5 . The noisy information feedback is generated as fol-

ows. Recall that for each arc a ∈ A 0 the interdictor is assumed to

now its nominal cost. Then whenever arc a ∈ A �A 0 is traversed

y the evader for the first time instead of c a the interdictor ob-

erves a cost generated according to a uniform distribution from

 c a − 0 . 2 c a , c a + 0 . 2 c a ] . 

Computational settings. All experiments were performed on

 PC with CPU i5-7200U and RAM 6 GB. We use the solution

pproach from [20] to solve the k -most vital arcs problem. The

euristic for the strategic evader Algorithm 1 is implemented in

ava with CPLEX 12.7.1. Furthermore, we set α = 0 . 5 and q = 2 as

he heuristic parameters. The intuition behind these settings can

e justified as follows. 

Having α = 0 . 5 implies that the value of δτ in decision epoch

, see line 10 of Algorithm 1, is equal to the average loss of the

reedy evader over two consecutive decision epochs, namely, τ
nd τ + 1 . Thus, for the strategic evader, whose goal is to outper-

orm the greedy evader over these two decision epochs, we con-

ider as candidate paths in epoch τ , see line 14, only paths of suf-

ciently small cost (less than threshold δτ ). Following our discus-

ion in Section 5 , if α < 0.5, then the algorithm may fail to take

nto consideration some alternative reasonably good evasion solu-

ions. On the other hand, if α > 0.5, then in epoch τ the heuristic

s forced to consider evasion paths with sufficiently large costs. It

s reasonable to expect that in most cases these candidate evasion

aths in epoch τ lead to inferior evasion solutions over epochs τ
nd τ + 1 . 

Finally, as discussed in Section 5 the value of q allows the

euristic to control indirectly that the evasion decisions by the

trategic evader are sufficiently different from those generated by

he greedy evader. From our preliminary experiments not reported

ere, where we explored sensitivity of Algorithm 1 with respect to

he parameter settings, we conclude that Algorithm 1 with α = 0 . 5

nd q = 2 performs reasonably well for our test instances and pro-

ides consistent computational results. 

.2. Results and discussion 

Measures of performance. Henceforth, we fix a particular class

f random graphs as well as k ∈ { 1 , . . . , 10 } and T ∈ {2, 5, 10}. Then

n each experiment Q = 50 test instances, i.e., random graphs of the

pecified type, are generated. We denote by χ= (T , k ) the percent-

ge of test instances in a particular experiment, where the perfor-

ance of the greedy policy and the proposed heuristic approach

oincide, i.e., the evader’s losses obtained by these methods are the

ame. Also, denote by χ < ( T , k ) the percentage of test instances,

here the heuristic outperforms the greedy policy. Note that the

ercentage of test instances, where the heuristic approach is out-

erformed by the greedy policy is given by: 

χ> (T , k ) = 100 − χ< (T , k ) − χ= (T , k ) . 

e use χ= , χ < and χ > as the performance measures of the pro-

osed heuristic in Tables 1–6 . 

Specifically, for each class of random graphs described in

ection 6.1 , k ∈ { 1 , . . . , 10 } and T ∈ {2, 5, 10}, the experiment is re-

eated 10 times. Then in Tables 1, 3 and 5 we report average val-

es and standard deviations with respect to χ < ( T , k ), χ= (T , k )

nd χ > ( T , k ). In Tables 2 , 4 and 6 the same computational results

re provided assuming that the feedback is noisy. Furthermore, in
able 7 we report the average running times of the heuristic algo-

ithm for each k ∈ { 1 , . . . , 10 } and T = 10 . 

Finally, in the remainder of the section, whenever we refer to

he strategic evader or the heuristic we imply that the evader uses

lgorithm 1 in the iterative manner over the specified time hori-

on T (recall that Algorithm 1 computes an evasion decision only

or at most two decision epochs). 

Heuristic performance vs. Greedy policy. First, consider the

ase of T = 2 that corresponds to the first column in each of the

ables. We observe that χ> (2 , k ) = 0 for all k ∈ { 1 , . . . , 10 } in all ta-

les. In other words, the strategic evader is always at least as good

s the greedy evader for T = 2 . This heuristic performance is ex-

ected given that, first, Algorithm 1 compares possible alternative

olutions with a solution of the greedy policy for two steps ahead;

urthermore, whenever the heuristic cannot find a good quality al-

ernative solution, then the heuristic resorts to the greedy policy

olution. 

Next, it is worth highlighting that the values of both χ > ( T , 1)

nd χ < ( T , 1) are rather small for all test instances, i.e., the strate-

ic evader almost always selects a greedy evasion solution when

he interdictor blocks exactly one arc. This observation can be ex-

lained by Proposition 1 , where we show that for T = 2 , A 0 = ∅
nd k = 1 the greedy policy is optimal (recall that in our test in-

tances A 0 � = ∅ ). Thus, we can expect that greedy evasion solutions

re often close to optimal for k = 1 whenever | A 0 | is sufficiently

mall. Also, the aforementioned trend is less pronounced for in-

tances with noisy feedback (if one compares the results for χ > ( T ,

) in Tables 1, 3 and 5 against those in Tables 2, 4 and 6 , respec-

ively), which is also reasonable to expect. 

For a fixed value of k , the value of χ < ( T , k ) tends to grow with

he increase in T . In other words, the number of instances, where

he heuristic outperforms the greedy policy increases. This obser-

ation is intuitive given that as the number of decision epochs in-

reases there are more opportunities for the strategic evader to im-

rove her performance. 

On the other hand, we observe that the value of χ > ( T , k )

lso increases with T . For example, for k = 4 in Table 1 , χ > ( T ,

) monotonously increases from 0 to 15.4. It implies that as

 increases there exist instances, where the greedy policy out-

erforms the proposed heuristic. This fact is also not surprising

f one recalls that the heuristic is myopic as it computes eva-

ion decisions only for at most two decision epochs by applying

lgorithm 1 in the iterative manner. Nevertheless, in all cases we

ave that χ < ( T , k ) > χ > ( T , k ) on average, which implies that the

vader should prefer using the heuristic than the greedy policy.

ote that χ= (T , k ) (i.e., the number of instances where the perfor-

ances of the approaches coincide) decreases as T increases, which

s natural given the above discussion. 

Furthermore, observe that for fixed T with the increase of k , the

alue of χ < ( T , k ) tends to grow, while χ= (T , k ) tends to decrease.

he latter observation can be explained as follows. As we point out

n Section 4 , if parameter k is sufficiently large, then the optimal

vasion solution is likely to be arc-disjoint (recall Remark 1 ). How-

ver, an optimal pair of arc-disjoint paths usually does not coincide

ith the greedy evasion solution; recall Examples 1 and 2 . 

Finally, when comparing the results Tables 1, 3 and 5 against

hose in Tables 2, 4 and 6 , respectively, we conclude that the above

bservations hold for both perfect and noisy feedback settings (re-

all that the latter relaxes Assumption A5 used in our derivations

f the theoretical results in Section 3 and 4 ). In other words, in

cenarios where the interdictor does not have the perfect informa-

ion about the evader’s actions the heuristic performs sufficiently

ell. 

Running time. Note that the running time of the heuristic al-

orithm initially increases and then tends to decrease with the in-

rease of parameter k , see Table 7 . Clearly, if k is sufficiently small,



12 S.S. Ketkov and O.A. Prokopyev / Omega 92 (2020) 102161 

Table 1 

Comparison of the greedy policy against the heuristic for the strategic evader in the layered random graphs. The interdictor’s 

feedback is transparent. For each pair of values of k and T , we report the averages and standard deviations of χ < ( T , k ), χ= (T, k ) 

and χ > ( T , k ) over 10 experiments. 

T = 2 T = 5 T = 10 

k χ < χ= χ > χ < χ= χ > χ < χ= χ > 

1 4.0 (3.3) 96.0 (3.3) 0.0 (0.0) 5.2 (3.8) 94.4 (4.0) 0.4 (0.8) 5.2 (3.8) 94.4 (4.0) 0.4 (0.8) 

2 7.0 (5.0) 93.0 (5.0) 0.0 (0.0) 9.2 (3.6) 87.6 (6.1) 3.2 (2.9) 9.8 (4.1) 86.0 (6.4) 4.2 (3.2) 

3 9.2 (4.1) 90.8 (4.1) 0.0 (0.0) 18.2 (4.1) 76.4 (3.8) 5.4 (3.2) 24.2 (8.8) 69.6 (7.7) 6.2 (3.4) 

4 10.6 (6.2) 89.4 (6.2) 0.0 (0.0) 23.0 (5.2) 68.8 (7.0) 8.2 (5.0) 31.4 (6.3) 53.2 (6.8) 15.4 (6.8) 

5 14.2 (5.2) 85.8 (5.2) 0.0 (0.0) 32.2 (8.8) 57.8 (9.8) 10.0 (2.0) 44.2 (4.3) 34.0 (5.7) 21.8 (2.6) 

6 15.0 (3.6) 85.0 (3.6) 0.0 (0.0) 37.6 (7.1) 50.8 (8.1) 11.6 (3.9) 45.0 (6.7) 28.0 (5.8) 27.0 (7.1) 

7 15.0 (5.8) 85.0 (5.8) 0.0 (0.0) 35.4 (6.3) 53.7 (5.5) 10.9 (6.0) 50.7 (5.2) 26.5 (7.8) 22.8 (6.1) 

8 14.2 (3.9) 85.8 (3.9) 0.0 (0.0) 36.6 (8.0) 50.4 (7.5) 13.0 (6.3) 48.6 (4.4) 24.8 (6.2) 26.6 (6.2) 

9 16.0 (4.0) 84.0 (4.0) 0.0 (0.0) 42.4 (6.2) 47.4 (5.7) 10.2 (4.9) 57.1 (5.0) 17.3 (3.7) 25.5 (6.2) 

10 20.0 (3.1) 80.0 (3.1) 0.0 (0.0) 46.4 (6.2) 42.8 (4.7) 10.8 (3.6) 61.8 (5.4) 14.3 (4.7) 23.9 (5.6) 

Table 2 

Comparison of the greedy policy against the heuristic for the strategic evader in the layered random graphs. The interdictor’s 

feedback is noisy. For each pair of values of k and T , we report the averages and standard deviations of χ < ( T , k ), χ= (T, k ) and 

χ > ( T , k ) over 10 experiments.. 

T = 2 T = 5 T = 10 

k χ < χ= χ > χ < χ= χ > χ < χ= χ > 

1 4.0 (2.2) 96.0 (2.2) 0.0 (0.0) 10.0 (3.2) 88.6 (3.0) 1.4 (0.9) 9.0 (3.6) 88.6 (3.0) 2.4 (1.5) 

2 10.2 (3.3) 89.8 (3.3) 0.0 (0.0) 21.4 (5.7) 72.2 (7.2) 6.4 (4.1) 26.2 (5.4) 67.4 (6.1) 6.4 (3.4) 

3 10.4 (2.8) 89.6 (2.8) 0.0 (0.0) 27.2 (5.5) 66.8 (6.1) 6.0 (3.0) 37.6 (5.5) 51.4 (5.1) 11.0 (3.9) 

4 10.2 (4.7) 89.8 (4.7) 0.0 (0.0) 30.6 (5.4) 60.8 (6.9) 8.6 (4.2) 49.6 (5.1) 36.2 (7.0) 14.2 (4.4) 

5 13.2 (4.5) 86.8 (4.5) 0.0 (0.0) 32.5 (7.7) 58.1 (7.7) 9.4 (3.0) 48.1 (7.9) 28.8 (4.8) 23.1 (6.0) 

6 17.0 (5.0) 83.0 (5.0) 0.0 (0.0) 37.2 (5.0) 52.2 (5.5) 10.6 (6.0) 53.9 (4.6) 21.2 (6.5) 24.9 (4.4) 

7 16.8 (5.2) 83.2 (5.2) 0.0 (0.0) 42.8 (5.7) 47.0 (7.4) 10.2 (3.0) 58.4 (4.8) 19.5 (5.8) 22.0 (3.4) 

8 18.2 (6.8) 81.8 (6.8) 0.0 (0.0) 42.4 (6.5) 48.8 (8.8) 8.8 (3.0) 57.9 (7.4) 19.2 (6.7) 22.9 (4.8) 

9 15.2 (3.7) 84.8 (3.7) 0.0 (0.0) 42.2 (5.6) 45.8 (6.3) 12.0 (4.7) 61.4 (5.0) 16.6 (6.1) 22.0 (6.0) 

10 17.0 (4.6) 83.0 (4.6) 0.0 (0.0) 44.8 (5.9) 43.2 (5.5) 12.0 (4.9) 59.5 (4.2) 16.3 (5.1) 24.3 (6.1) 

Table 3 

Comparison of the greedy policy against the heuristic for the strategic evader in the uniform random graphs. The interdictor’s 

feedback is transparent. For each pair of values of k and T , we report the averages and standard deviations of χ < ( T , k ), χ= (T, k ) 

and χ > ( T , k ) over 10 experiments. 

T = 2 T = 5 T = 10 

k χ < χ= χ > χ < χ= χ > χ < χ= χ > 

1 0.8 (1.3) 99.2 (1.3) 0.0 (0.0) 1.2 (1.3) 98.8 (1.3) 0.0 (0.0) 1.2 (1.3) 98.8 (1.3) 0.0 (0.0) 

2 4.8 (2.2) 95.2 (2.2) 0.0 (0.0) 6.6 (3.5) 92.0 (2.4) 1.4 (2.4) 6.8 (3.7) 91.8 (2.6) 1.4 (2.4) 

3 4.2 (2.6) 95.8 (2.6) 0.0 (0.0) 10.0 (4.5) 88.0 (5.1) 2.0 (1.8) 12.6 (6.0) 84.6 (6.1) 2.8 (2.2) 

4 6.2 (1.9) 93.8 (1.9) 0.0 (0.0) 16.6 (6.1) 78.0 (7.4) 5.4 (2.5) 20.2 (4.9) 71.2 (6.3) 8.6 (3.7) 

5 6.6 (3.8) 93.4 (3.8) 0.0 (0.0) 16.8 (6.7) 76.2 (5.5) 7.0 (3.3) 24.8 (5.6) 61.4 (5.3) 13.8 (2.3) 

6 7.2 (4.2) 92.8 (4.2) 0.0 (0.0) 21.2 (6.7) 72.4 (7.8) 6.4 (4.6) 32.6 (4.9) 50.2 (5.1) 17.2 (6.8) 

7 7.0 (2.7) 93.0 (2.7) 0.0 (0.0) 23.2 (6.5) 70.0 (7.0) 6.8 (3.2) 33.8 (6.7) 46.2 (8.5) 20.0 (4.3) 

8 7.0 (4.4) 93.0 (4.4) 0.0 (0.0) 25.6 (5.6) 67.2 (4.9) 7.2 (3.6) 37.0 (6.1) 42.0 (6.4) 21.0 (3.0) 

9 8.2 (4.3) 91.8 (4.3) 0.0 (0.0) 27.6 (7.0) 62.8 (5.3) 9.6 (4.5) 41.2 (3.6) 40.0 (5.7) 18.8 (5.7) 

10 10.8 (3.9) 89.2 (3.9) 0.0 (0.0) 25.8 (8.4) 67.4 (5.9) 6.8 (5.0) 41.6 (6.4) 40.2 (5.7) 18.2 (3.6) 

Table 4 

Comparison of the greedy policy against the heuristic for the strategic evader in the uniform random graphs. The interdictor’s 

feedback is noisy. For each pair of values of k and T , we report the averages and standard deviations of χ < ( T , k ), χ= (T, k ) and 

χ > ( T , k ) over 10 experiments. 

T = 2 T = 5 T = 10 

k χ < χ= χ > χ < χ= χ > χ < χ= χ > 

1 3.0 (2.0) 97.0 (2.0) 0.0 (0.0) 4.2 (2.6) 95.8 (2.6) 0.0 (0.0) 4.2 (2.6) 95.8 (2.6) 0.0 (0.0) 

2 3.8 (2.3) 96.2 (2.3) 0.0 (0.0) 8.2 (1.4) 89.8 (1.9) 2.0 (1.8) 9.2 (1.3) 89.0 (2.0) 1.8 (1.7) 

3 7.0 (3.5) 93.0 (3.5) 0.0 (0.0) 18.2 (4.2) 78.0 (3.3) 3.8 (2.9) 20.2 (4.2) 72.8 (3.9) 7.0 (3.3) 

4 7.0 (3.3) 93.0 (3.3) 0.0 (0.0) 19.4 (5.4) 75.8 (6.0) 4.8 (2.7) 28.8 (3.0) 59.2 (5.3) 12.0 (4.5) 

5 8.2 (3.7) 91.8 (3.7) 0.0 (0.0) 22.4 (4.3) 72.6 (5.6) 5.0 (3.9) 33.6 (5.4) 51.8 (5.0) 14.6 (4.6) 

6 9.0 (2.9) 91.0 (2.9) 0.0 (0.0) 22.8 (2.6) 69.2 (4.4) 8.0 (4.0) 36.4 (6.8) 45.6 (7.5) 18.0 (5.0) 

7 7.4 (4.6) 92.6 (4.6) 0.0 (0.0) 21.8 (4.2) 71.0 (5.0) 7.2 (2.4) 33.4 (3.5) 46.4 (6.2) 20.2 (6.1) 

8 11.2 (4.7) 88.8 (4.7) 0.0 (0.0) 27.0 (5.6) 65.4 (5.9) 7.6 (2.2) 42.2 (5.2) 38.2 (4.2) 19.6 (5.9) 

9 10.6 (4.4) 89.4 (4.4) 0.0 (0.0) 28.0 (6.2) 64.6 (4.4) 7.4 (3.9) 45.6 (5.4) 35.8 (7.0) 18.6 (3.0) 

10 11.4 (2.7) 88.6 (2.7) 0.0 (0.0) 27.8 (4.4) 63.2 (4.7) 9.0 (2.2) 41.8 (10.5) 38.2 (10.0) 20.0 (5.9) 
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Table 5 

Comparison of the greedy policy against the heuristic for the strategic evader in the BA random graphs. The interdictor’s feedback is 

transparent. For each pair of values of k and T , we report the averages and standard deviations of χ < ( T , k ), χ= (T, k ) and χ > ( T , k ) 

over 10 experiments. 

T = 2 T = 5 T = 10 

k χ < χ= χ > χ < χ= χ > χ < χ= χ > 

1 2.4 (2.2) 97.6 (2.2) 0.0 (0.0) 3.2 (2.4) 96.2 (2.7) 0.6 (1.8) 3.2 (2.4) 96.2 (2.7) 0.6 (1.8) 

2 6.2 (3.8) 93.8 (3.8) 0.0 (0.0) 13.0 (6.9) 85.0 (7.1) 2.0 (2.5) 13.0 (6.8) 84.8 (6.8) 2.2 (2.6) 

3 9.4 (4.0) 90.6 (4.0) 0.0 (0.0) 21.2 (6.1) 73.8 (5.3) 5.0 (3.1) 26.2 (6.5) 67.8 (7.3) 6.0 (2.5) 

4 15.0 (4.2) 85.0 (4.2) 0.0 (0.0) 29.2 (6.7) 59.6 (6.4) 11.2 (4.2) 38.4 (5.6) 43.0 (6.6) 18.6 (5.3) 

5 17.2 (3.2) 82.8 (3.2) 0.0 (0.0) 34.6 (7.6) 53.9 (7.7) 11.6 (4.1) 40.0 (12.0) 37.6 (13.6) 22.4 (10.6) 

6 16.2 (5.2) 83.8 (5.2) 0.0 (0.0) 44.1 (6.0) 47.0 (6.0) 8.9 (3.0) 43.1 (7.7) 29.7 (9.5) 27.2 (10.4) 

7 14.8 (4.2) 85.2 (4.2) 0.0 (0.0) 37.5 (8.1) 48.5 (7.4) 14.1 (5.0) 52.3 (10.6) 24.6 (7.7) 23.1 (10.8) 

8 17.2 (3.5) 82.8 (3.5) 0.0 (0.0) 47.5 (6.6) 40.3 (5.8) 12.2 (4.9) 56.0 (9.1) 23.4 (8.1) 20.7 (9.8) 

9 19.2 (4.9) 80.8 (4.9) 0.0 (0.0) 44.4 (6.2) 41.1 (4.2) 14.6 (3.9) 52.1 (14.4) 22.8 (7.2) 25.1 (12.5) 

10 15.8 (4.3) 84.2 (4.3) 0.0 (0.0) 39.7 (7.1) 47.3 (6.7) 13.0 (2.4) 57.8 (19.4) 19.7 (14.0) 22.4 (8.9) 

Table 6 

Comparison of the greedy policy against the heuristic for the strategic evader in the BA random graphs. The interdictor’s feedback is 

noisy. For each pair of values of k and T , we report the averages and standard deviations of χ < ( T , k ), χ= (T, k ) and χ > ( T , k ) over 10 

experiments.. 

T = 2 T = 5 T = 10 

k χ < χ= χ > χ < χ= χ > χ < χ= χ > 

1 3.2 (2.2) 96.8 (2.2) 0.0 (0.0) 5.4 (2.7) 94.0 (2.7) 0.6 (0.9) 5.4 (2.7) 94.0 (2.7) 0.6 (0.9) 

2 7.0 (4.2) 93.0 (4.2) 0.0 (0.0) 17.8 (6.3) 79.2 (6.1) 3.0 (1.8) 17.6 (4.9) 77.8 (6.1) 4.6 (2.7) 

3 9.2 (4.2) 90.8 (4.2) 0.0 (0.0) 28.0 (4.1) 66.8 (6.8) 5.2 (4.8) 35.8 (5.2) 55.0 (7.4) 9.2 (3.9) 

4 12.6 (3.4) 87.4 (3.4) 0.0 (0.0) 31.0 (10.2) 59.8 (11.6) 9.2 (5.1) 46.8 (8.4) 37.4 (10.3) 15.8 (3.9) 

5 16.2 (4.9) 83.8 (4.9) 0.0 (0.0) 40.3 (4.8) 50.5 (5.5) 9.2 (2.7) 48.2 (6.7) 30.3 (5.9) 21.5 (8.7) 

6 16.6 (5.0) 83.4 (5.0) 0.0 (0.0) 38.7 (8.9) 49.2 (8.0) 12.1 (4.4) 50.6 (6.9) 24.3 (8.2) 25.1 (7.4) 

7 16.2 (5.1) 83.8 (5.1) 0.0 (0.0) 43.8 (3.2) 45.2 (7.2) 11.0 (4.5) 56.0 (12.8) 17.9 (7.0) 26.1 (9.2) 

8 18.2 (5.0) 81.8 (5.0) 0.0 (0.0) 44.4 (7.0) 43.9 (6.1) 11.7 (5.0) 52.1 (7.8) 17.6 (7.9) 30.3 (8.3) 

9 20.8 (6.7) 79.2 (6.7) 0.0 (0.0) 46.9 (5.7) 39.8 (6.0) 13.3 (2.3) 52.3 (15.2) 17.0 (8.3) 30.7 (10.8) 

10 17.6 (6.4) 82.4 (6.4) 0.0 (0.0) 43.4 (6.6) 44.3 (7.6) 12.3 (4.4) 54.4 (16.9) 17.6 (13.0) 28.0 (13.7) 

Table 7 

The average running times (in seconds) of the heuristic al- 

gorithm for the strategic evader ( Algorithm 1 ) applied for 

T = 10 and k ∈ { 1 , . . . , 10 } . 
k Layered graphs Uniform graphs BA graphs 

1 0.06 0.08 0.06 

2 0.2 0.21 0.2 

3 0.5 0.39 0.42 

4 0.97 0.61 0.72 

5 1.49 0.84 0.9 

6 1.72 0.81 0.87 

7 1.93 0.74 0.88 

8 2.07 0.72 0.82 

9 2.02 0.7 0.62 

10 1.52 0.67 0.53 
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hen the k -most vital arcs problem can be solved fast and thus,

he total running time of Algorithm 1 decreases. Alternatively, the

arger the value of parameter k is, the more information the evader

s forced to reveal to the interdictor in each decision epoch. Once

he interdictor finds an optimal solution of the k -most vital arcs

roblem in the full information network, then the interdictor keeps

mplementing the same solution in each decision epoch, see [6] for

ore details. Thus, as the heuristic is myopic, then it also does not

hange the evasion solutions in the corresponding decision epochs.

ence, for sufficiently large values of parameter k most of the com-

utational efforts of the heuristic algorithm are restricted to the

rst few decision epochs. 

Summary. To conclude, the proposed heuristic approach for the

trategic evader outperforms in general the greedy evasion policy.

oreover, despite its myopic two-step look ahead structure our ap-

roach can be successfully applied even for rather large values of
arameter T and any set of initial information available to the in-

erdictor. Finally, we note that the obtained results are pretty con-

istent with respect to all considered classes of random graphs and

ypes of the information feedback obtained by the interdictor from

he evader’s actions. 

. Conclusions 

In this study, we consider a class of sequential interdiction

ettings where the interdictor has incomplete initial information

bout the network while the evader has complete knowledge of

he network including its structure and arc costs. However, by ob-

erving the evader’s actions, the interdictor learns about the net-

ork structure and costs and thus, can adjust his actions in subse-

uent decision epochs. 

Our focus is on the evader’s perspective. In particular, we as-

ume that the interdictor acts in a greedy manner, by blocking

 arcs known to him in each round. Such interdiction policies

re known from the literature, see [6,7] , to perform well against

reedy evaders who traverse along the shortest path in the non-

nterdicted network in each round. In this paper, our goal is to ex-

lore whether the evader can improve her performance by acting

n a strategic manner. 

Specifically, we first show that the evader’s problem is compu-

ationally hard even for two decision epochs. Then we derive ba-

ic constructive properties of optimal evasion policies for two deci-

ion epochs when the interdictor has no initial information about

he network structure. Furthermore, based on these observations,

e design a heuristic algorithm for a strategic evader in a gen-

ral setting with an arbitrary time horizon and any initial infor-

ation available to the interdictor. Our computational experiments
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demonstrate that the proposed heuristic consistently outperforms

the greedy evasion policy on several classes of synthetic network

instances with respect to various sets of initial information and

types of the feedback available to the interdictor. 

The insights (both from theoretical and practical perspectives)

from our results can be summarized as follows. First, our heuris-

tic algorithm is based on a two-step look-ahead idea. Thus, when-

ever the interdictor is myopic the evaders can significantly improve

their performance over multiple decision epochs in a rather simple

manner, i.e., by considering only two consecutive decision epochs

instead of one in the greedy (i.e., myopic) evasion approach. Fur-

thermore, for the aforementioned two consecutive epochs it may

be sufficient for the evader to consider two simple decision strate-

gies. Either the evader should follow a myopic shortest-path based

policy, or seek only two alternative paths that have some arcs in

common with greedy evasion paths in the network. Also, for the

latter case the evasion paths in consequent decision epochs often

need to be arc-disjoint, which is also rather intuitive from the real-

life perspective (e.g., in “infiltration” or “smuggling” scenarios). 

Another interesting observation (with possible practical impli-

cations) from our computational study is that strategic evasion

decisions are more beneficial when the interdictor has more re-

sources. In other words, the more arcs can be blocked by the in-

terdictor in each decision epoch the faster he forces the greedy

evader to reveal new network information, which subsequently can

be exploited to improve the interdiction decisions. Thus, in such

scenarios the evaders need to follow more sophisticated policies

in order to improve their performance. Moreover, this observation

also suggests that the availability of more interdiction resources

do not necessarily imply that the interdictor may simply rely on

myopic policies. From the practical perspective, the increase in the

interdiction resources may force the evader to switch to strategic

evasions, which in turn decreases the efficiency of myopic inter-

diction policies and consequently may require from the interdictor

implementation of non-myopic decisions. On the other hand, for

instances where the interdictor’s resources are limited greedy eva-

sions can be close to optimal, which implies that the evaders may

simplify their decisions over multiple epochs. Then the interdictor

may also consider relying on myopic policies as they perform well

against greedy evaders. 

With respect to future research directions, it would be inter-

esting to study a setting, where the decision-makers operate in

a stochastic environment, see, e.g., related works in [4,10] for the

analysis of different types of feedback in a classical multi-armed

bandit setting. Moreover, in our study we assume that the evader

observes the blocking decision before choosing a path and knows

the interdictor’s budget. Therefore, one may explore the evader’s

problem with this assumption relaxed. For example, the study in

[33] considers a class of interdiction problems where at every node

in the evader’s path the interdictor must decide whether or not to

expand the interdiction set. 

Finally, in this paper our major goal is to gain insights about the

evasion policies that could be effective against interdictors who as-

sume simplistic greedy evasion policies. In view of the discussion

above, we envision that the results and observations of this study

can be further exploited for the development of advanced interdic-

tion models, where the evader may follow more sophisticated eva-

sion policies than those that are typically assumed in the related

literature. 
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