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Introduction

This paper is based on the 40-min talk given by the author at the Inter-
national Conference on Clifford Algebras and Their Applications in Mathe-
matical Physics (ICCA 11) in the mini-symposium “Clifford Algebra and the
Fundamental Forces of Nature” (Ghent, August 2017).

We present a new class of covariantly constant solutions of the Yang-
Mills equations. These solutions correspond to the solution of the field equa-
tion for the spin connection of the general form [9].

In the present paper, we generalize results of the papers [7] and [9].
Namely, Theorems 2.1 and 2.2 generalize the main results of the paper [9] on
the spin connection of the general form. Theorems 4.1, 5.1, and 5.2 generalize
the main results of the paper [7] on a new class of solutions of the Yang—Mills
equations.

1. Tensor Fields with Values in Clifford Algebra and Field
Equation for Spin Connection

Let us consider pseudo-Euclidean space R¥! of the dimension dimRF! =
k41 = m with Cartesian coordinates z*, p = 1, ..., m. The metric tensor of
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R¥! is given by a diagonal matrix

p = ||pM*|| = diag(1,...,1,—1,...,—1). (1.1)
—— ———
k l
By 0, := % denote the partial derivatives.

Let us consider the real Clifford algebra Cl, 4, p+ g = n [3,6], with the

generators e*, a = 1,...,n, which satisfy the following conditions
el 4 ebe® = 2n%e, n=|n®|| = diag(1,...,1,-1,...,=1), (1.2)
—— ————
p q

and the basis
{eA} = {67 6a7 6ab? ) elv..n}’

where A is an arbitrary ordered multi-index of a length | A| between 0 and n.
We use notation C¥, ,T7 for the set of tensor fields with values in the
Clifford algebra U'(fll'i = Ujll_'_'_'i: (z): REL— O,
Uy (w) = UZ 00 () = w0 (@)e + ufy G (@)e” +ugl g (@)e +
s uill":"izlmn(w)el”'n = ugiA(x)eA € Clp,oT%, ud 4 RFU R

We denote multi-index ¢ ... ¢, by ®, multi-index v ...19s by ¥ | and their
lengths by || =r, |¥| = s.

We can raise and lower Greek indices using matrix p = ||p*|| and raise
and lower Latin indices using matrix = ||°||. We have e, = nape® = (e*) ™!
and eq = ()7L

As a particular case, we consider the algebra C?), , T of smooth functions
with values in the Clifford algebra U = U(x) : R — ¥,

U(z) = u(z)e + uq(x)e® + - + ul_”n(m)el"'" = uA(x)eA, ug: RFD SR,
Let us consider a set of smooth functions with values in Clifford algebra
he R — Y, ,
he(z) =y (@)e + yi (@)e” + - + i, (@)e! " = yh(x)e?,  (1.3)
which satisfy conditions
he(x)h? (z) + B (z)h® (z) = 2n*e, a,b=1,...,n, VreRF. (14)

In the case of odd n = p+¢q, we also require the following additional condition
to obtain independent elements h** (see [15]):

Tr(h'---h™) =0 (in the case of odd n) (1.5)

where Tr : C¥), , — C’Eg’q is the projection operator onto subspace Cfg)q =
{ue} of grade 0.
The set

{hA(x)} = {e,h%(z),...,h'"(2)}

is a basis of the algebra Cf,, ;T of smooth functions with values in the Clifford
algebra.
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The Clifford algebra C¥, , is a Lie algebra with respect to the commu-
tator [U, V] =UV — VU. Let us consider the following subset

CrS, = Cly 4\Cen(Cly )
which is a Lie subalgebra of Cf,, ,. Note that the center [6] of C¥,, , is

CYo if n is even;
_ e '
Cen(Clp,4) = { ngq © Cly ,, if nis odd, (1.6)
where
0= S wett. ot
A:|Al=j

is the subspace of C¥,, , of grade j.

Theorem 1.1. For elements h* € Cl, ,T (1.3), which satisfy conditions (1.4)
and (1.5), we have

a ® _
h* el T, a=1,...,n.

Let us consider the following system of equations for unknown elements
Cu el Ty

a,uhai[cﬂaha]zoa ;U':]-v"-,mv a:]'?"'7n' (17)

It is convenient to consider C), € C@qu 1 because of the commutator in
(1.7). So, let all expressions in equation (1.7) belong to the Lie algebra C/S .
We denote the group of all invertible Clifford algebra elements by CL .

Theorem 1.2. Let S : R¥! — Cly . be a function with values in CU; , such
that

579,85 € O, Ty,
Then the following expressions
he=S"hrsecr®, T, C,=S"'C.5~57"9,8€ T,
also satisfy the equation
6Mfz“—[(§u,fz“] =0, VYu=1,....,m, a=1,...,n.

Theorem 1.3. The system (1.7) has unique solution C,, € CIS T, :

Z,uiﬂ{h}i((auha)ha), pw=1,...,m, ifn is even;
i=1

> i {hYin-i((0uhha), p=1,...,m, ifn is odd,
i=1

where
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and

m{h}i: Clpg — C{RY, =4 > wah® 3, w{h}yin_i=m{h}i+m{h}n
A:|Al=t

are projection operators.
We also have

W{h}L(U) = Zbiij(U), W{h}i,n—i(U) = Zgiij(U), where
j=0 j=0
Buy1 = |Ibijll = Ay, aig = (Nj—1)" Gu1 = D%, dij = (N-1)',

Fi(U) = F(F(---F(U))---), F{U)= zn:hUh

Theorem 1.4. The following condition of zero-curvature follows from (1.7):
0,C, —0,C, —[C,C] =0, wv=1...,m. (1.9)

Proof. (of Theorems 1.1-1.4). Analogous theorems are proved in [9] for the
vector fields h* € CV, ,T" in pseudo-Euclidean space R (w.r.t. the orthog-
onal transformations of coordinates), which we also discuss in Sect. 5 of the
current paper. But all these statements can be also proved for the scalar
functions h* € Cl, T in pseudo-Euclidean space RFU k # p, 1 # q (it is
sufficient to change all h* to h® in the proof of the corresponding theorems
in [9]). O

2. Spin Connection of the General Form

We use the method of averaging in Clifford algebra [16] to obtain another
form of unique solution of the system (1.7).

Theorem 2.1. From the system (1.7) it follows that
duh — O, h*] =0, p=1,...,m (2.1)
for all ordered multi-indices A of a length between 0 and n.

Proof. Let us multiply both sides of (1.7) on the left and on the right by the
required number of elements h% :

aﬂ(h‘ll)h@ o h% — C’uhalha2 .o h% 4 halc’uhaz <+ h% =0,
hot aﬂ (haz)has o hYM — C«Mhaz hes ... poi 4 ho1 paz Cuhag, co hY = 07

hat .. .hajflau(haj) — hor .. .haj—lcuh%' + R .. .hajflh%'cu =0.
Summing these equations, we get

8M(ha1 . haj) _ [C’“’hal . haj] -0
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for arbitrary indices a1, ..., a;. We obtain (2.1) for all ordered multi-indices
of a length between 0 and n. In the case of empty multi-index, we have

9u(e) ~ [Cpuvc] = 0

because e does not depend on x and lies in the center Cen(C¥, ,) of the
Clifford algebra. O

Theorem 2.2. The system (1.7) has unique solution C,, € CI$, Ty
1 A
CH:QT(a“h Yha, pw=1...,m. (2.2)

In the case of odd n, the expression (2.2) can be represented as

n—1

1 2
Comphe X O e i= L 23)
|Al=1

Proof. Let us multiply both sides of (2.1) by h4 on the right:
(0,h™Yha — Cuh®ha +hAC,ha = 0. (2.4)
Since hhy = 2"e and hAC,ha = 2" 1cen(C,) (see [16]), we get
2"(Cp — mcen(Cp)) = (auhA)hA-

Here we denote the projection operator onto the center of Clifford algebra
(1.6) by

Ten : Clp.q — Cen(Cly 4).
Using C,, € C@qul, we obtain (2.2). By Theorem 1.3 the solution C,, €
Cl®, Ty of the system (1.7) is unique.

In the case of odd n, the element A'™ does not depend on x and equals
el (see [15]). Using bl = Lel" € Cen(C¥, ), we get

> (@uhMha =0t YT (O hahy = Y (9uh)ha.
A:|Al=j A:|Al=j A:|Al=n—j
Finally, we have

n—1
n

Ouh™ha =" (0.hMha =2 > (OuhMha,  p=1,...,m
|A|=0 |Al=1

and (2.3). The theorem is proved. O
Example. Let us consider the case n = 2. Using (1.8), we get (see [9])

Cu

ST ha) + S h}a((0,h) o)

1 1
5 (Ouh®)ha = Ehb(auh“)hahb — %hchb(auh“)hahbhc. (2.5)
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Let us show that this expression coincides with (2.2). We have
K (9,h* Y hahy = —(0uh' )by + R (0,h*)hohy + W2 (Db Yhiho — (0,h°)ha,
heh?(0uh® Y hahphe = (O k" Yl + (9uh*)ha + (0,h° ) hy — B (Duh*)hihy
—h'(0,h*)hahy — h*(9,h')hihg — h*(9,h*)hohy + (O,h" ).
Finally, we obtain from (2.5)

3 1
C, = g(auh“)ha + g(hl(auhz)hghl + h?(9,h*)hihs)
1

1
1(8uh“)ha + g(au(hth)hzhl + 8M(h2h1)h1h2)
1 1 1
= Z(@,Jl“)ha + Z(a,Lh”)h12 = Z(auhA)hA.

Also we can verify that

1 1 1 1

C, = Z(8,/#‘)@ = Z(auhl)h1 + Z(8Hh2)h2 + Z(a,ﬁ”)h12

is a solution of (1.7). We have

1 1 1

[C,., '] = Z(eml)ml + Z(auhQ)hghl - 1(<9,JL1)fL2fL2fL11~L1

1 1 1 1
+ih1(6uh2)h2h1h1 - Zhl(auhl)hl — Zhl(a,m?)h2 — Zhl(aﬂhl)thghl
1 1 1 1 1
—ihlhl(auhQ)hzhl = Za,ihl + 1(8ﬂh2)h2h1 + Za,ihl + Zhl(auh?)h2
1 1 1 1
+iaﬂh1 - Zhl(aﬂhQ)hg + ia,ml - Z(auhz)hghl =9,h".
We can similarly verify [C),, h?] = 0,,h%.

Example. Let us consider the case n = 3. Since (1.8), we have

1 a 3 a 1 a
Cpu = m{h}12((0uh)ha) = 15 (0uh*Vha — T h* (@uh haly. (2.6)

Using (2.2), we get

1 1 1
Cpo = 50" )ha = S0 ha + 5Ok has,

because h'?? does not depend on z and equals +e'?? (see [15]). Since h1? =
+e!? € Cen(CV, ,), we obtain
(0,h*)ha = B2 (9, h*)hahi2s = (9,h) hap.
Finally, we have in the case n = 3
1 a

Cp = 7(0uh)ha € (Cly g ® ClG )T (2.7)

Let us show that (2.7) coincides with (2.6). We have
1 1 1
X 1= 0,(h*)hay = §8M(h“hb)hbha = 5(8Mh“)hbhbha + ih“(auhb)hbha

1 1
= g(auha)ha + iha(auhb)hbha = gX + iha(auhb)hbha.
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Then
R (uh ) hohe = —X = —0,(h**)hap = —(0,h")hy.
Using this identity we get (2.7) from (2.6).

Example. Let us consider the case h® € Cfll,qu. We have (instead of a general
case (1.3))

he(x) = yi(z)e’ € c T (2.8)
Using (1.4), we get the following conditions for the elements y;:
yeyan" =n", (2.9)
which are orthogonality conditions for the matrix Y = ||y||:

Y € O(p,q) = {Y € Mat(n,R), Y Y = n}.

In this particular case, we have 9,h* € C’E}MITL It can be proved that
(see [7])

(0uh")ha = (8uha)h® = —ha(9,h") = —h®(0,ha) € CO; Ty
and the solution of (1.7) will be
1
C, = 1(8uh“)ha € Cr Ty, (2.10)

in the case of arbitrary n. This expression is known as spin connection. Since
(2.8), we have

1 a C
Ou = Znaca,u(yb)ydebed' (211)
Using (2.9), we get
0y Jyan™® + 5 0, (yn** = 0
and can rewrite (2.11) in the following way

1
Cp = wubae™ € Clp T1, wypa = 5 > NacOu(y8) Y-
b<d

The expression (2.10) coincides with (1.8) and (2.2) in the case h® €
Cty, ,T. Note that the expressions (1.8) and (2.2) do not belong to C£2 /Ty in
the general case and we call them spin connection of the general form.

3. Covariant Derivatives and Covariantly Constant Tensor
Fields with Values in Clifford Algebra

Let us consider a tensor field with values in the Clifford algebra U$ =
UL @) RN = Cly g, |8 =1, 9] =
U\(Ilf(x) = u?f,A(x)eA ect, T, uiA(x) ‘RFE LR,

We can take h’(z) = 34 (z)e? (see (1.3), (1.4), and (1.5)) and obtain another
basis hZ(z) = y§ (x)e? of C¥, ,T for some y& = y&(z) : R¥! — R. We have

Uy (2) = w{h}yp(@)h®(2),  u{h}yp(z) R - R,



53 Page 8 of 16 D. Shirokov Adv. Appl. Clifford Algebras

where

uga(z) = ufh}yp()y% ().
Let us consider the following operation of covariant differentiation that de-
pends on the basis {h4} of C/,, , T

DMU\%) = BIJ«U\%) - [CmU\%)]v Uy € ClygT5, (3.1)
where C), = Cy(x) € (IS, Ty is a unique solution of (1.7).
Theorem 3.1. For arbitrary tensor field with values in Cl, 4
Uy (z) = u{h}§p()h" (z) € Clyp, T,
we have
Dy (Uy (x)) = 9u(uf{h}yp(2))h" (). (32)
Proof. Using Theorem 2.1 and (3.1), we get
Dyu(Uy) = Dy(u{h}yph”) = 9u(u{h}yph") = [Cpyu{h}y5h"]
= 0u(u{h}yp)h " + ulh}§p0,(h7) — u{h}yp[Cp, h7]
= 0u(u{h}yp)h® + u{h}y5(0,(hP) = [Cp, hP))
= O (ulh}s )",
The theorem is proved. O

Let us consider a set of covariantly constant tensor fields with values in
Clifford algebra Ug € Cly, /T

McCt, ,T% .= {Ug € Ct, , T, D, Ug =0}
Elements of this set have the form

¢1...Or __ P1...0r ¢1...Pr a ¢1...¢r Vv ¢1...br 1..n
Uy T = Uy € F Uyl Py BT A g T R

where all u§ , do not depend on .

Theorem 3.2. The operation (3.1) has the following properties:
DH(U\CII: + V\ICID) = DH(U\%) + DH(V\I(/I))v Du(/\UfII;) = )‘D/L(U\%)a AER,

D, (UgWs) = Uy D, (Ws) + Du(UG)Ws,  Du(D,(Uy)) = Dy (Du(Ug))
for arbitrary tensor fields with values in the Clifford algebra U$, Vg € Cl,
Tig| and W& € Cl, / T\

Proof. We can easily obtain these properties of the operation D, in two
different ways: using (3.1) or using (3.2). If we use definition (3.1), then we
need also (1.9) to prove the last property. O

Theorem 3.3. We have
OM\C,,Co]l 4+ 0,[Cy, Cr] + 0,[Cy, C,] =0,
D,\[C,,C,]+ D,[C,,C\]+ D,[Cy,CL] =0,
D,(C,) =0,C,.
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Proof. The first two properties follow from (1.9) and
Dyu(Dy(Ug)) = Dy(Du(Uy))-
Using (1.9), we get
Dyu(Cp) = 0,C, = [Cp, Cpl = 0,C.
The theorem is proved. O

Note that covariant and partial derivatives do not commute:

9,D, Uy = D,0,Uy + [Ug,0,C., Uy € Cb, ,TT.

4. Class of Covariantly Constant Solutions of the Yang—Mills
Equations

Let G be a semisimple Lie group and g be the real Lie algebra of the Lie group
G. Multiplication of elements of g is given by the Lie bracket [U, V] = —[V, U].
By gT% we denote a set of tensor fields of the pseudo-Euclidean space R*!,
k+1=m, of type (r,s) and of rank r 4+ s with values in the Lie algebra g.
Consider the following equations in the pseudo-Euclidean space RF:

0uB, — 0,B,, — [B,, B,| = Fu, wv=1,....m,

O F" — B, F"] = J", v=1,...,m, (4.1)
where B, € gT, J” € gT!, F,, = —F,, € gTs. These equations are called
the Yang-Mills equations (system of Yang-Mills equations). One suggests
that By, F,, are unknown and J" is known vector with values in the Lie
algebra g. One says that Eqs. (4.1) define the Yang-Mills field (B, Fu.),
where B, is the potential and F),, is the strength of the Yang-Mills field. A
vector J” is called a non-Abelian current (in the case of Abelian group G
vector J¥ is called a current).

Consider By, F},,,, JV that satisfy (4.1). Let us take a scalar field S =
S(x) with values in the Lie group G and consider transformed tensor fields

B,=S"'B,S 59,8,
F,, =S8"'F,S,
Jv=871Jvs. (4.2)
These tensor fields satisfy the same Yang—Mills equations
(%Bl,—al,éﬂ—[éwéy] :F,u,, wry=1,...,m,
O F" — B, F"] = J", v=1,...,m,
i.e., Eq. (4.1) are invariant w.r.t. the transformations (4.2). The transforma-
tion (4.2) is called a gauge transformation (or a gauge symmetry), and the
Lie group G is called the gauge group of the Yang-Mills equations (4.1).

Let B, € gT be an arbitrary covector with values in g, which smoothly
depends on = € RP4. By F),, denote the expression

Ew = a}LBl/ - ayBu - [Bua Bl/] (43)
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and by J" denote the expression
JY = 0,F" — B, F"].

Now we can consider the expression 9,J” — [B,,J"] and, with the aid of
simple calculations, we may verify that

8,J" — [B,,J"] = 0. (4.4)

This identity is called a non-Abelian conservation law (in the case of an
Abelian Lie group G we have 9,J” = 0, i.e., the divergence of the vector
JV equals zero). Therefore the non-Abelian conservation law (4.4) is a con-
sequence of the Yang—Mills equations (4.1).

In particular, there is a trivial solution of the Yang—Mills equations
B, =0, F, =0for JY =0.If U = U(x) is a scalar field with values in
G, then we can get another (vacuum) solution of the Yang-Mills equations
using gauge transformation (4.2):

B,=-U"1'9,U, F, =0, J =0.

During the last 60 years several classes of solutions of the Yang-Mills
equations were discovered. Namely, monopoles (Wu, Yang, 1968 [20]), instan-
tons (Belavin, Polyakov, Schwartz, Tyupkin, 1975 [2]), merons (de Alfaro,
Fubini, Furlan, 1976 [4]) and so on (see review of Actor, 1979 [1] and re-
view of Zhdanov and Lagno, 2001 [21]). Constant solutions of the Yang-Mills
equations with zero current are discussed in [14] and [15].

Let us consider the system of the Yang—Mills Eq. (4.1) in the Lie algebra
g=C0, ie. B, € OIS Ty, F,, € OIS, Ty, J” € CIS, T

P,q’

Theorem 4.1. If the covariantly constant tensor field with values in the Clif-
ford algebra K, € MCl, /T is a solution of the following system of algebraic
equations

(K, [K", K" =J", v=1,...,m, (4.5)
for some J* € MCV, ,T!, then the tensor field
Bu(x) = Culz) + Ku(x),  p=1,...,m, (4.6)

s a solution of the Yang—Mills equations

ouB, —0,B, — [B,,B,)| = F,,, pv=1,...,m,

O A (4

in the Lie algebra Cﬁg?q, where C), € C@qul is a unique solution of

Ouh® —[C,, 0] =0, p=1,...,m, a=1,...,n.
Proof. Let us substitute (4.6) into the first Eq. (4.7). We have

W(Cy+ Ky) = 0,(Cu+ Ky) = [Cpu+ Ky, O + K] = Fl,
(0uCy — 0,Cp = [Cpu, Cu]) + (0u K — [C, Ko ])
—(&,KH - [CV7KH]) - [KuaKV] = Fl.
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All summands, except the last one [K,, K,], equal zero. Using (1.9) and
K, € MCt, (T, we get
K Ko = Fpu.

Let us substitute this expression and (4.6) into the second equation (4.7). We
have

—Ou[K", K]+ [C + K, [KF K] = JY,

(K, [KH K] = (Ou[K*, K] = [C, [K¥, KY])) = J.
The expression in round brackets equals zero because [K*, K¥] € MCV,, ,T*
and we conclude that K, must satisfy the following equation

(K, [KM, KX = J7.
The theorem is proved. g

We call the solutions of the Yang-Mills equations from Theorem 4.1 co-
variantly constant solutions because expressions K, = K, (x) are covariantly
constant tensor fields with values in Clifford algebra.

In Sect. 5, we discuss another statements (including the main result of
the paper [7]) which are particular cases of Theorem 4.1.

5. Statements in the Algebra of h-forms

In the previous sections of this paper, we consider Clifford algebra C¥,,,
p + q = n with matrix 7 (1.2) and pseudo-Euclidean space R*!, k +1 = m
with matrix p (1.1).
Now let us consider the particular case k = p, [ = q. We have m =n =
P+ q and
n=p=diag(l,...,1,—1,...,-1).
——

—_———
p q

We consider a vector field with values in the Clifford algebra h* = h*(z) :
RP4 — ), , (we write h* € Cl, ,T")

W (@) = Y (@)e + yh@)e® + gl (@)t -+ g (@)el = yhed, (5.1)

which satisfies

W (z)h" (x) + Y ()W (x) = 2nM"e, Vo € RP9, (5.2)
In the case of odd n, we also require additional condition

Te(h'(z)...h"(z)) =0 (in the case of odd n)
to obtain independent elements h#1#*. The expression h* is called Clifford
field vector (see [7,9]). The following expression

U = ue + Uy, h*" 4 U, w0, B2 + -+ ug, b ™ = ugh®,

where ug = uy,..., are skewsymmetric tensor fields of rank 7, is called
h-form. The set of such h-forms is an algebra of h-forms Cl[h], 4. It is a
generalization of Atiyh-K&hler algebra [5,8,12], where we have differentials
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dxt instead of h*. The set h*, u = 1,...,n = p + g generate a basis of
Clh]p g
{h2,19] =0,1,...,n} = {e, k", A2 Bl (5.3)
Consider an arbitrary tensor field with values in the algebra of h-forms Ug =
USigr (@) s P — Cllhly g
Ug = Ugimir =ufi e ufifr B uft | B
U = uha(@)h0 (@) € CUR, T
Note that using (5.1), we get h(x) = y$(z)e? for some y$} = y%(z) and
Uy = upah® = ugoyie” = ugse® € G Th,  ug(2) = ugq(@)yd (@).
Note that the Clifford field vector h* € C¥, ,T' can be regarded as a vector
field with values in the algebra of h-forms because h* = 6¢*h” € Cl[h], ,T".
We have analogues of Theorems 1.1-1.4 (see [9]), 2.1-2.2, 3.1-3.3 not
for elements h%, but for elements h*. Namely, from (5.2) it follows that h* €
Ct®,T*. Instead of Eq. (1.7) we have the following equation in the Lie algebra
ClR]®,, = Cllh]p.q\Cen(Cl[h]p q):
Ouh? —[Cu, W1 =0, pp=1,...,n, (5.4)

where h? € Cl, ,T' is an arbitrary Clifford field vector and C,, = C,(x)
(x € R™7) is a covector field with values in C, ;. The components of the
covector field C), satisfy

9,C, — 9,C\ — [C,1,C)] =0,  pv=1,...n (5.5)

Equation (5.4) is gauge invariant. Let h” € C’él@,qu be a Clifford field vector
and C), € CIQ Ty satisfy (5.4). Let S : RP4 — I, be a function with values
in C¢; , such that

579,85 € P, Ty,

Then the following expressions
h* =S 'S ea® 1Ty, C,=S8"'C,.8~5"19,5€c®T,
also satisfy the equation
3pﬁp—[é#,ﬁp]:0, wp=1...,n.
We have a unique solution C), € C¢S, Ty of the equation (5.4):
2[3]
Ouh? —[Cu W] =0 & Cu=Y pmlhl;((8uh")hy),  (5.6)

j=1
where p1; = (n — (—1)7(n — 2j))~" and
m[hl; : Cllhlp,q — CURY, , = {uah®, Q| = j}

are projection operators. The solution (5.6) can be also represented in the
following form (the proof is similar to the proof of Theorem 2.2)

1
C, = 27((’),m”)hg, p=1,...,n. (5.7)
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From Eq. (5.4) it follows that (the proof is similar to the proof of Theo-
rem 2.1)

Du(h¥ -+ hV%) = [Cluy hY - h¥*] = 0. (5.8)

We can consider the operation of covariant differentiation of an arbitrary
tensor field U;fllﬁ € Cl[h]p,qT% with values in the algebra of h-forms

Du(USL ) = 0u(US ) = [Cu USL0).
We conclude that covariant derivative acts as partial derivative acts only

on the coeflicients before h**~“s (the proof is similar to the proof of Theo-
rem 3.1):

Dy(U ) = 0wy 50 )e + 0u(ully " A 4+ G (ull Gy )R

Let us consider covariantly constant tensor fields with values in the algebra
of h-forms:
MCe[h],  T] = (U 00 € Clhly o TY: Du(US3) =0k (5.9)

Elements of this set have the form Ug (z) = u$oh®(z), where all ud, € R
do not depend on x € RP*9,

Theorem 5.1. If the covariantly constant tensor field with values in the algebra
of h-forms K,, € MCl[h],, 4 T1 is a solution of the following system of algebraic
equations

Ky, (KM K" =J", pw=1...,n, (5.10)
for some J* € MCY[h], ,T!, then the tensor field
B,(z) = Cu(z) + K, (x), p=1...,n (5.11)
s a solution of the Yang—Mills equations
0uB, —0,B,, — [B,,B,| = F, wv=1...,n,
0, F" —[B,,F"] = J", v=1,....n (5.12)

in the Lie algebra CU[h]S,, where C,, € CU[h]D, is a unique solution of

ouh” —[C,, k"] =0, wrv=1...,n (5.13)

Proof. The proof is similar to the proof of Theorem 4.1. The unique solution
of the system (5.13) is given by (5.6) or (5.7). O

Theorem 5.1 can be regarded as a particular case of Theorem 4.1 because
we have k = p and [ = ¢ for R®! and Cly 4 in Theorem 5.1.

In the particular case, elements h® from Sects. 1-4 of this paper (see
(1.3), (1.4), (1.5)) are connected with the generators e® as h® = yfe® using
orthogonal matrix Y = [|yf|| € O(p, ¢) (see (2.8) and (2.9)) and elements h*
are connected with e® as h* = y#e® using frame field y*, yLy¥n® = nH¥ (see
[7]). In this case, elements h* and h* are connected as h* = zFh® using frame
field 2/ = yp'qh, 2hzn™ = ", where Q = [|¢}|| = Y.

As a particular case of Theorem 5.1 we obtain the following theorem.
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Theorem 5.2. Let h* € CL[h]S T* be a Clifford field vector and C,, € CU[h]S,
T satisfies (5.4). Then the following covector

By=o0h,+C,eCS Ty, p=1,....n (5.14)
is a solution of the following system of Yang—Mills equations:
OB, — 0,B, — By, B,| = F., wrv=1,...,n, (5.15)
O F* —[B,, F*"'] = eh”, v=1,...,n, (5.16)
where constants o, € R are related by the formula
e =4(n—1)o".

Proof. We use Theorem 5.1 for the current J# = eh” and use the formulas
from [10]

huh”h* = (2 —n)h”, huht =n.

We have
(s [P*, RY]] = hyh" B — h,hYBY — hy,h"h* + hYhYhy,
=nh" — (2—=n)h" — (2 —n)h” + nh” = 4(n — 1)h".
The theorem is proved. O

As a particular case of Theorem 5.2 we obtain the main result of the
paper [7]. In the case h* € Cl} ' T', we have h#(x) = yk (x)e® for some frame
field y# = y#(z) and the spin connection equals C,, = §(9,h")h, € C¢2 T'.

Theorem 5.3. [7] Let h** € C} ,/T' be a Clifford field vector. Then the follow-

ing covector
1 v
By = ohy+ 5 (0uh")hy € (Clp g ® Cl ) T1, p=1,..0.m (5.17)

s a solution of the Yang—Mills equations

anBy - ((LB“ - [B/u B,] = Fu, pr=1...n, (5.18)
0, F" —[B,,,F"] = eh”, v=1,...,n, (5.19)
where constants o,e € R are related by the formula
e =4(n— 1)

Note that the statements of Theorems 5.2 and 5.3 can be used in the
study of Yang-Mills—Proca equations [11].

Note that all considerations of this paper can be reformulated for the
case of the complexified Clifford algebra C ® C¥,, ; and the corresponding Lie
algebra. We can also consider the Lie algebra C ® Cﬁg?q. The constants € and
o in Theorems 5.2 and 5.3 will be complex in this case.

We have the following well-known isomorphisms [6]

Mat(2%,C), if n is even,

Mat(27,C) @ Mat(2"7 ", C), if n is odd.

In the case of even n, we have the Lie group isomorphism

(C® Ol )" =2 GL(27,C). (5.20)

C®Cly, = {
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Taking into account U(22) C GL(2%,C) and using operation of Hermitian
conjugation in Clifford algebra [10], we can reformulate theorems of the cur-
rent paper with the use of unitary Lie groups (and unitary Lie algebras) of
corresponding dimensions. We can also use another classical Lie groups and
corresponding Lie algebras in the complexified Clifford algebra C® C¥,, , (see
papers [17-19]).

We discuss mathematical structures and constructions in this paper.
Relating the proposed mathematical constructions to real word objects goes
beyond the scope of this investigation. The application of the methods of this
article to other nonlinear equations of mathematical physics is the subject
for further research.
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