Method of Averaging in Clifford Algebras

D. S. Shirokov*

Abstract

In this paper we consider different operators acting on Clifford algebras. We consider Reynolds operator of Salingaros' vee group. This operator "average" an action of Salingaros' vee group on Clifford algebra. We consider conjugate action on Clifford algebra. We present a relation between these operators and projection operators onto fixed subspaces of Clifford algebras. Using method of averaging we present solutions of system of commutator equations.

Mathematics Subject Classification. 15A66.
Keywords. Clifford algebra, Averaging, Projection, Adjoint sets of multiindices, Reynolds operator, Salingaros' vee group, Commutator equation.

1. Introduction

In this paper we consider the following operators acting on real Clifford algebras

$$
\begin{equation*}
F_{S}(U)=\frac{1}{|S|} \sum_{A \in S}\left(e^{A}\right)^{-1} U e^{A} \tag{1.1}
\end{equation*}
$$

where

$$
e^{A}=e^{a_{1} a_{2} \ldots a_{k}}=e^{a_{1}} e^{a_{2}} \cdots e^{a_{k}}, \quad A=a_{1} a_{2} \ldots a_{k}, \quad a_{1}<a_{2}<\cdots<a_{k},
$$

are basis elements generated by an orthonormal basis in vector space V over a field \mathbb{R}. Here $S \subseteq \mathrm{I}$ is a subset of the set of all ordered multi-indices A of the length from 0 to n. We denote the number of elements in S by $|S|$. Note that not for every subset $S \subseteq I$ in (1.1), the set $\left\{e^{A} \mid A \in S\right\}$ is a group.

We can consider Reynolds operator (see, for example, [6]) acting on a Clifford algebra element $U \in C \ell(p, q)$

$$
\begin{equation*}
R_{G}(U)=\frac{1}{|G|} \sum_{g \in G} g^{-1} U g \tag{1.2}
\end{equation*}
$$

[^0]where $|G|$ is the number of elements in a finite subgroup $G \subset C \ell(p, q)^{\times}$. We denote the group of all invertible Clifford algebra elements by $C \ell(p, q)^{\times}$. These operators "average" an action of group G on Clifford algebra $C \ell(p, q)$.

We can take Salingaros' vee group $G=\left\{ \pm e^{A}, A \in \mathrm{I}\right\}$ (see [1-3]), where e^{A} are basis elements of Clifford algebra $C \ell(p, q)$. Note that Salingaros' vee group is a finite subroup of spin groups (groups $\operatorname{Pin}(p, q)$ and $\operatorname{Spin}(p, q)$, see [2, 8, 19, 22]).

We can write in this case

$$
\begin{aligned}
\frac{1}{|G|} \sum_{g \in G} g^{-1} U g & =\frac{1}{2^{n+1}} \sum_{A \in \mathrm{I}}\left(\left(e^{A}\right)^{-1} U e^{A}+\left(-e^{A}\right)^{-1} U\left(-e^{A}\right)\right) \\
& =\frac{1}{2^{n}} \sum_{A \in \mathrm{I}}\left(e^{A}\right)^{-1} U e^{A}
\end{aligned}
$$

We consider such operators further in this paper.
Note that operators (1.2) are often used in representation theory of finite groups (see $[4,7,16]$). We use these operators in Clifford algebras to obtain some new properties.

We present a relation between these operators and projection operators onto fixed subspaces of Clifford algebras.

Using method of averaging we present solutions X of the system of commutator equations

$$
e^{A} X+\epsilon X e^{A}=Q^{A}, \quad A \in S \subseteq \mathrm{I}, \quad \epsilon \in \mathbb{R}^{\times}
$$

for some given elements ${ }^{1} Q^{A} \in C \ell(p, q)$. We use notation $\mathbb{R}^{\times}=\mathbb{R} \backslash 0$.

2. Clifford algebras, ranks, projection operators

Consider real Clifford algebra $C \ell(p, q)$ with $p+q=n, n \geq 1$. The construction of Clifford algebra is discussed in details in [9-11] or [12].

Let e be the identity element and let $e^{a}, a=1, \ldots, n$ be generators ${ }^{2}$ of the Clifford algebra $C \ell(p, q)$,

$$
e^{a} e^{b}+e^{b} e^{a}=2 \eta^{a b} e,
$$

where $\eta=\left\|\eta^{a b}\right\|=\left\|\eta_{a b}\right\|$ is the diagonal matrix with p pieces of +1 and q pieces of -1 on the diagonal. Elements

$$
e^{a_{1} \ldots a_{k}}=e^{a_{1}} \cdots e^{a_{k}}, \quad a_{1}<\cdots<a_{k}, k=1, \ldots, n
$$

together with the identity element e form the basis of the Clifford algebra. The number of basis elements is equal to 2^{n}.

Let us denote the set of ordered multi-indices of the length from 0 to n by

$$
\begin{equation*}
\mathrm{I}=\{-, 1, \ldots, n, 12,13, \ldots, 1 \ldots n\} \tag{2.1}
\end{equation*}
$$

[^1]where "-" is an empty multi-index. So, we have the basis of Clifford algebra $\mathfrak{B}=\left\{e^{A}, A \in \mathrm{I}\right\}$, where A is an arbitrary ordered multi-index ${ }^{3}$. Let us denote the length of multi-index A by $|A|$. So, we use notation
$$
e^{A}=e^{a_{1} a_{2} \ldots a_{k}}=e^{a_{1}} e^{a_{2}} \cdots e^{a_{k}}, \quad A=a_{1} a_{2} \ldots a_{k}, \quad a_{1}<a_{2}<\cdots<a_{k}
$$

Below we also consider different subsets $S \subseteq \mathrm{I}$:

$$
\mathrm{I}_{\mathrm{Even}}=\{A \in \mathrm{I},|A|-\text { even }\}, \quad \mathrm{I}_{\mathrm{Odd}}=\{A \in \mathrm{I},|A|-\text { odd }\} .
$$

We have $e_{a}=\eta_{a b} e^{b}, e^{a}=\eta^{a b} e_{b}$, where we use Einstein summation convection (there is a sum over index b). We denote ${ }^{4}$ expressions

$$
\eta_{a_{1} b_{1}} \cdots \eta_{a_{k} b_{k}} e^{b_{k}} \cdots e^{b_{1}}=e_{a_{k}} \cdots e_{a_{1}}=\left(e^{a_{1} \ldots a_{k}}\right)^{-1}, \quad a_{1}<\cdots<a_{k}
$$

by $e_{a_{1} \ldots a_{k}}\left(\operatorname{not} e_{a_{k} \ldots a_{1}}\right)$. So, $e_{A}=\left(e^{A}\right)^{-1} \forall A \in \mathrm{I}$ in our notation.
Any Clifford algebra element ${ }^{5} U \in C \ell(p, q)$ can be written in the form

$$
\begin{equation*}
U=u e+u_{a} e^{a}+\sum_{a_{1}<a_{2}} u_{a_{1} a_{2}} e^{a_{1} a_{2}}+\cdots+u_{1 \ldots n} e^{1 \ldots n}=u_{A} e^{A} \tag{2.2}
\end{equation*}
$$

where we have a sum ${ }^{6}$ over ordered multi-index A and

$$
\left\{u_{A}\right\}=\left\{u, u_{a}, u_{a_{1} a_{2}}, \ldots, u_{1 \ldots n}\right\}
$$

are real numbers.
We denote by $C \ell_{k}(p, q), k=0,1, \ldots, n$ the vector spaces that span over the basis elements $e^{a_{1} \ldots a_{k}}$. Elements of $C \ell_{k}(p, q)$ are said to be elements of $\operatorname{rank}^{7} k$. We have

$$
\begin{equation*}
C \ell(p, q)=\bigoplus_{k=0}^{n} C \ell_{k}(p, q) . \tag{2.3}
\end{equation*}
$$

We consider (linear) projection operators on the vector subspaces $C \ell_{k}(p, q)$

$$
\begin{equation*}
\pi_{k}: C \ell(p, q) \rightarrow C \ell_{k}(p, q), \quad \pi_{k}(U)=\sum_{a_{1}<\cdots<a_{k}} u_{a_{1} \ldots a_{k}} e^{a_{1} \ldots a_{k}} \tag{2.4}
\end{equation*}
$$

Clifford algebra $C \ell(p, q)$ is a superalgebra. It is represented as the direct sum of even and odd subspaces (of even and odd elements respectively)

$$
\begin{gathered}
C \ell(p, q)=C \ell_{\mathrm{Even}}(p, q) \oplus C \ell_{\mathrm{Odd}}(p, q), \\
C \ell_{\text {Even }}(p, q)=\bigoplus_{k-\text { even }} C \ell_{k}(p, q), \quad C \ell_{\mathrm{Odd}}(p, q)=\bigoplus_{k-\text { odd }} C \ell_{k}(p, q) .
\end{gathered}
$$

[^2]
3. Reynolds operator of the Salingaros' vee group

We have the following well-known statement about center

$$
\operatorname{Cen}(C \ell(p, q))=\{U \in C \ell(p, q) \mid U V=V U \quad \forall V \in C \ell(p, q)\}
$$

of Clifford algebra $C \ell(p, q)$.
Theorem 3.1. We have

$$
\operatorname{Cen}(C \ell(p, q))= \begin{cases}C \ell_{0}(p, q), & n \text { is even } ; \tag{3.1}\\ C \ell_{0}(p, q) \oplus C \ell_{n}(p, q), & n \text { is odd } .\end{cases}
$$

Let us consider the following operator (Reynolds operator of the Salingaros' vee group $\left\{e^{A}, A \in \mathrm{I}\right\}$, see above)

$$
F(U)=\frac{1}{2^{n}} e_{A} U e^{A}
$$

where we have a sum over multi-index $A \in \mathrm{I}$.
Theorem 3.2. We have

$$
F(U)=\frac{1}{2^{n}} e_{A} U e^{A}= \begin{cases}\pi_{0}(U), & \text { if } n \text { is even } \tag{3.2}\\ \pi_{0}(U)+\pi_{n}(U), & \text { if } n \text { is odd }\end{cases}
$$

where π_{0} and π_{n} are projection operators (see (2.4)) onto the subspaces of fixed ranks. Operator F is a projector $F^{2}=F$ (on the center of Clifford algebra).

Proof. We have

$$
\left(e^{a}\right)^{-1} F(U) e^{a}=\sum_{A}\left(e^{A} e^{a}\right)^{-1} F(U)\left(e^{A} e^{a}\right)=\sum_{B}\left(e^{B}\right)^{-1} F(U) e^{B}=F(U)
$$

So, $F(U)$ is in the center of Clifford algebra (see Theorem 3.1). For elements U of ranks $k=1, \ldots, n-1$ (and $k=n$ in the case of even n) we have $F(U)=0$. In other particular cases we have $e_{A} e^{A}=2^{n} e$ and (in the case of odd n) $e_{A} e^{1 \ldots n} e^{A}=2^{n} e^{1 \ldots n}$. It is also easy to verify that $F^{2}=F$.

Note that Cen $(C \ell(p, q))$ is the "ring of invariants" (in the language of [6]) of Salingaros' vee group.

Theorem 3.3. Let an element $X \in C \ell(p, q)$ satisfy the system of 2^{n} equations with some given elements ${ }^{8} Q^{A} \in C \ell(p, q)$

$$
\begin{equation*}
e^{A} X+\epsilon X e^{A}=Q^{A} \quad \forall A \in \mathrm{I}, \quad \epsilon \in \mathbb{R}^{\times} . \tag{3.3}
\end{equation*}
$$

If $\epsilon=-1$ (commutator case), then this system of equations either has no solution or it has a unique solution up to element of center:

$$
\begin{equation*}
X=-\frac{1}{2^{n}} Q^{A} e_{A}+Z, \quad Z \in \operatorname{Cen}(C \ell(p, q)) \tag{3.4}
\end{equation*}
$$

[^3]If $\epsilon \neq-1$, then this system of equations either has no solution or it has a unique solution

$$
X= \begin{cases}\frac{1}{2^{n} \epsilon}\left(Q^{A} e_{A}-\frac{1}{(\epsilon+1)} \pi_{0}\left(Q^{A} e_{A}\right)\right), & \text { if } n \text { is even }, \tag{3.5}\\ \frac{1}{2^{n} \epsilon}\left(Q^{A} e_{A}-\frac{1}{(\epsilon+1)}\left(\pi_{0}\left(Q^{A} e_{A}\right)+\pi_{n}\left(Q^{A} e_{A}\right)\right)\right), & \text { if } n \text { is odd }\end{cases}
$$

Proof. Let us multiply each equation by e_{A} on the right and add them (see Theorem 3.2):

$$
e^{A} X e_{A}+\epsilon X e^{A} e_{A}=Q^{A} e_{A} \quad \Rightarrow \quad 2^{n} \pi_{\text {center }}(X)+\epsilon X 2^{n}=Q^{A} e_{A},
$$

where $\pi_{\text {center }}$ is the projection on the center of Clifford algebra. Using $X=$ $\sum_{k=0}^{n} \pi_{k}(X)$ and Theorem 3.1, we obtain statement of the theorem.

Note that we have a solution or have no solution of the system of commutator equations. It depends on elements Q^{A} (it suffices to substitute solution in equation and check the equality).

As suggested by one of the referees, in the case $\epsilon \neq-1$ we can take solution of the "first" equation (3.3) $X=\frac{1}{1+\epsilon} Q$ (here Q has empty multiindex) and substitute it in the other equations. We obtain the condition

$$
\begin{equation*}
Q^{A}=\frac{1}{1+\epsilon}\left(e^{A} Q+\epsilon Q e^{A}\right) \tag{3.6}
\end{equation*}
$$

that we can also rewrite in the form ${ }^{9}\left(e^{A}\right)^{-1} Q^{A}=\pi_{[A]}(Q)+\frac{1-\epsilon}{1+\epsilon} \pi_{\{A\}}(Q)$.
So, we can say, that system of Eq. (3.3) has solution in the case $\epsilon \neq-1$ if and only if given elements Q^{A} have the following connection (3.6) with the first of them (Q).
In the case $\epsilon=-1$ it is not difficult to understand that $\pi_{\text {center }}\left(Q^{A}\left(e^{A}\right)^{-1}\right)=0$ is the necessary condition for the system (3.3) to have a solution. Sufficient condition is

$$
-e^{A}\left(\frac{1}{2^{n}} Q^{B} e_{B}\right)+\left(\frac{1}{2^{n}} Q^{B} e_{B}\right) e^{A}=Q^{A}, \quad \forall A \in \mathrm{I}
$$

with summation over multi-index B. It can be rewritten in the form

$$
\left(e^{A}\right)^{-1} Q^{A}=\frac{1}{2^{n}} \pi_{\{A\}}\left(e_{B} Q^{B}\right), \quad \forall A \in \mathrm{I} .
$$

4. Adjoint sets of multi-indices

We call ordered multi-indices $a_{1} \ldots a_{k}$ and $b_{1} \ldots b_{l}$ adjoint multi-indices if they have no common indices and they form multi-index $1 \ldots n$ of the length n. We write $b_{1} \ldots b_{l}=\widetilde{a_{1} \ldots a_{k}}$ and $a_{1} \ldots a_{k}=\widetilde{b_{1} \ldots b_{l}}$. We call corresponding basis elements $e^{a_{1} \ldots a_{m}}, e^{b_{1} \ldots b_{l}}$ adjoint and write $e^{b_{1} \ldots b_{l}}=e^{\widetilde{a_{1} \ldots a_{m}}}, e^{a_{1} \ldots a_{m}}=$ $e^{\widetilde{b_{1} \ldots b_{l}}}$. We can also write that $e^{a_{1} \ldots a_{m}} e^{b_{1} \ldots b_{l}}= \pm e^{1 \ldots n}$ and $\star e^{a_{1} \ldots a_{m}}= \pm e^{b_{1} \ldots b_{l}}$,

[^4]where \star is Hodge operator ${ }^{10}$. We denote the sets of corresponding 2^{n-1} multiindices by $I_{\text {Adj }}$ and $\widetilde{\mathrm{I}_{\text {Adj }}}=I \backslash \mathrm{I}_{\text {Adj }}$. So, for each multi-index in $\mathrm{I}_{\text {Adj }}$ there exists adjoint multi-index in $\widetilde{I_{\text {Adj }}}$. We have
\[

$$
\begin{equation*}
\mathfrak{B}=\left\{e^{A} \mid A \in \mathrm{I}\right\}=\left\{e^{A} \mid A \in \mathrm{I}_{\mathrm{Adj}}\right\} \cup\left\{e^{A} \mid A \in \widetilde{\mathrm{I}_{\mathrm{Adj}}}\right\} \tag{4.1}
\end{equation*}
$$

\]

For Clifford algebra $C \ell(p, q)$ of dimension $n=p+q$ we have $2^{2^{n-1}-1}$ different partitions ${ }^{11}$ of the form (4.1). For example,

$$
\mathrm{I}_{\text {Adj }}=\mathrm{I}_{\text {First }}, \quad \widetilde{\mathrm{I}_{\text {Adj }}}=\mathrm{I} \backslash \mathrm{I}_{\text {First }}=\mathrm{I}_{\text {Last }},
$$

where $\mathrm{I}_{\text {First }}$ consists of the first (in the order) 2^{n-1} multi-indices of the set I (2.1). In the case of odd n we can write

$$
\mathrm{I}_{\text {First }}=\left\{A \in \mathrm{I}, \quad|A| \leq \frac{n-1}{2}\right\}, \quad \mathrm{I}_{\text {Last }}=\left\{A \in \mathrm{I}, \quad|A| \geq \frac{n+1}{2}\right\}
$$

In the case of odd n we can consider the following adjoint sets

$$
\mathrm{I}_{\text {Adj }}=\mathrm{I}_{\text {Even }}, \quad \widetilde{\mathrm{I}_{\text {Adj }}}=\mathrm{I}_{\text {Odd }} .
$$

5. Commutative properties of basis elements

Theorem 5.1. Consider real Clifford algebra $C \ell(p, q), p+q=n$ and the set of basis elements $\mathfrak{B}=\left\{e^{A}, A \in \mathrm{I}\right\}$.

Then each element of this set (if it is neither e nor $e^{1 \ldots n}$) commutes with 2^{n-2} even elements of the set \mathfrak{B}, commutes with 2^{n-2} odd elements of the set \mathfrak{B}, anticommutes with 2^{n-2} even elements of the set \mathfrak{B} and anticommutes with 2^{n-2} elements of the set \mathfrak{B}. Element e commutes with all elements of the set \mathfrak{B}.

1. if n-even, then $e^{1 \ldots n}$ commutes with all 2^{n-1} even elements of the set \mathfrak{B} and anticommutes with all 2^{n-1} odd elements of the set \mathfrak{B};
2. if n-odd, then $e^{1 \ldots n}$ commutes with all 2^{n} elements of the set \mathfrak{B}.

Proof. The cases $k=0$ and $k=n$ are trivial (see Theorem 3.1).
Let us fix one multi-index A of the length k. Then there are $C_{k}^{i} C_{n-k}^{m-i}$ different multi-indices of the fix length m that have fixed number i coincident indices with multi-index A. Here $C_{n}^{k}=\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is binomial coefficient (we have $C_{n}^{k}=0$ for $k>n$). Note, that $\sum_{i=0}^{n} C_{k}^{i} C_{n-k}^{m-i}=C_{n}^{m}$ (Vandermonde's convolution) - the full number of ordered multi-indices of the length m. When we swap basis element with multi-index A of the length k with another basis element with multi-index of the length m, then we obtain coefficient $(-1)^{k m-i}$, where i is the number of coincident indices in these 2 multi-indices, i.e. $e^{a_{1} \ldots a_{k}} e^{b_{1} \ldots b_{m}}=(-1)^{k m-i} e^{b_{1} \ldots b_{m}} e^{a_{1} \ldots a_{k}}$.

[^5]If k is even and does not equal to 0 and n, then the number of even and odd elements $e^{b_{1} \ldots b_{m}}$ that commute (in this case coefficient $k m-i$ must be even, and so i is even) with fixed $e^{a_{1} \ldots a_{k}}$ respectively equals

$$
\sum_{m-\text { even }} \sum_{i-\text { even }} C_{k}^{i} C_{n-k}^{m-i}=2^{n-2}, \quad \sum_{m-\text { odd } i-\text { even }} \sum_{k} C_{n-k}^{i} C^{m-i}=2^{n-2}
$$

If k is odd and does not equal to n, then the number of even and odd elements $e^{b_{1} \ldots b_{m}}$ that anticommute (in this case $k m-i$ is odd, and so $m-i$ is even) with $e^{a_{1} \ldots a_{k}}$ respectively equals

$$
\sum_{m-\text { even }} \sum_{i-\text { even }} C_{k}^{i} C_{n-k}^{m-i}=2^{n-2}, \quad \sum_{m-\text { odd } i-\text { odd }} \sum_{k} C_{n-k}^{i} C_{n}^{m-i}=2^{n-2}
$$

We can prove the last 4 identities if we regroup summands. For example, we have

$$
\sum_{m-\text { even }} \sum_{i-\text { even }} C_{k}^{i} C_{n-k}^{m-i}=\left(\sum_{j=\text { even }} C_{k}^{j}\right)\left(\sum_{l-\text { even }} C_{n-k}^{l}\right)=2^{k-1} 2^{n-k-1}=2^{n-2}
$$

Also we have the following theorem about adjoint sets of multi-indices.
Theorem 5.2. Consider real Clifford algebra $C \ell(p, q), p+q=n$ and the set of basis elements $\mathfrak{B}=\left\{e^{A}, A \in \mathrm{I}\right\}$. Suppose we have a partition $\mathrm{I}=\mathrm{I}_{\mathrm{Adj}} \cup \widetilde{\mathrm{I}_{\text {Adj }}}$.

If n is even then any even (not odd!) basis element (if it is not e) commutes with 2^{n-2} basis elements from $\left\{e^{A} \mid A \in \mathrm{I}_{\mathrm{Adj}}\right\}$, anticommutes with 2^{n-2} basis elements from $\left\{e^{A} \mid A \in \mathrm{I}_{\mathrm{Adj}}\right\}$, commutes with 2^{n-2} basis elements from $\left\{e^{A} \mid A \in \widetilde{\mathrm{I}_{\text {Adj }}}\right\}$ and anticommutes with 2^{n-2} basis elements from $\left\{e^{A} \mid A \in \widetilde{\mathrm{I}_{\mathrm{Adj}}}\right\}$.

If n is odd then any basis element (if it is neither e nor $e^{1 \ldots n}$) commutes with 2^{n-2} basis elements from $\left\{e^{A} \mid A \in \mathrm{I}_{\mathrm{Adj}}\right\}$, anticommutes with 2^{n-2} basis elements from $\left\{e^{A} \mid A \in \mathrm{I}_{\text {Adj }}\right\}$, commutes with 2^{n-2} basis elements from $\left\{e^{A} \mid A \in \widetilde{\mathrm{I}_{\text {Adj }}}\right\}$ and anticommutes with 2^{n-2} basis elements from $\left\{e^{A} \mid A \in \widetilde{\mathrm{I}_{\mathrm{Adj}}}\right\}$.

Note that in the case of odd n we can take $I_{\text {Adj }}=I_{\text {Even }}, \widetilde{I_{\text {Adj }}}=I_{\text {Odd }}$ and obtain the statement from the Theorem 5.1.

Proof. If n is odd then $e^{1 \ldots n}$ is in the center of Clifford algebra. So if basis element commutes with some basis element, then it commutes with adjoint basis element. But we know from Theorem 5.1 that basis elements (except e and $e^{1 \ldots n}$) commutes with 2^{n-1} basis elements and anticommutes with 2^{n-1} basis elements. So we obtain the statement of theorem for the case of odd n.

If n is even then even (not odd) basis element commutes with $e^{1 \ldots n}$. So if even basis element commutes with some basis element, then it commutes with adjoint basis element.

Let us represent the commutative property of basis elements in the following tables. At the intersection of two basis elements is a sign "+" if they commute and the sign "-" if they anticommute. For small dimensions we have the following tables:

$n=1$	e	e^{1}
e	+	+
e^{1}	+	+

$n=2$	e	e^{1}	e^{2}	e^{12}
e	+	+	+	+
e^{1}	+	+	-	-
e^{2}	+	-	+	-
e^{12}	+	-	-	+

$n=3$	e	e^{1}	e^{2}	e^{3}	e^{12}	e^{13}	e^{23}	e^{123}
e	+	+	+	+	+	+	+	+
e^{1}	+	+	-	-	-	-	+	+
e^{2}	+	-	+	-	-	+	-	+
e^{3}	+	-	-	+	+	-	-	+
e^{12}	+	-	-	+	+	-	-	+
e^{13}	+	-	+	-	-	+	-	+
e^{23}	+	+	-	-	-	-	+	+
e^{123}	+	+	+	+	+	+	+	+

Consider the following operator

$$
F_{\mathrm{Adj}}(U)=\frac{1}{2^{n-1}} \sum_{A \in \mathrm{I}_{\mathrm{Adj}}} e_{A} U e^{A}
$$

Theorem 5.3. Consider an arbitrary Clifford algebra element U. Suppose we have a partition $\mathrm{I}=\mathrm{I}_{\mathrm{Adj}} \cup \widetilde{\mathrm{I}_{\text {Adj }}}$. In the case of arbitrary n we have

$$
F_{\mathrm{Adj}}(U)=F(U) .
$$

Proof. If n is odd, then $e^{1 \ldots n}$ is in the center of Clifford algebra,

$$
\begin{aligned}
\left(e^{a_{1} \ldots a_{m}}\right)^{-1} U e^{a_{1} \ldots a_{m}} & =e^{1 \ldots n}\left(e^{1 \ldots n}\right)^{-1}\left(e^{a_{1} \ldots a_{m}}\right)^{-1} U e^{a_{1} \ldots a_{m}} \\
& =\left(e^{\widehat{a_{1} \ldots a_{m}}}\right)^{-1} U e^{\widehat{a_{1} \ldots a_{m}}}
\end{aligned}
$$

and

$$
\begin{equation*}
e_{A} U e^{A}=2 \sum_{A \in \mathrm{I}_{\mathrm{Adj}}} e_{A} U e^{A} \tag{5.1}
\end{equation*}
$$

If n is even, then $e^{1 \ldots n}$ anticommutes with all odd basis elements and commutes with all even basis elements (see Theorem 5.1). So if $U=U_{0}+U_{1}$, $U_{0} \in C \ell_{\text {Even }}(p, q), U_{1} \in C \ell_{\text {Odd }}(p, q)$, then for $k=0,1$ we have

$$
\begin{align*}
\left(e^{a_{1} \ldots a_{m}}\right)^{-1} U_{k} e^{a_{1} \ldots a_{m}} & =e^{1 \ldots n}\left(e^{1 \ldots n}\right)^{-1}\left(e^{a_{1} \ldots a_{m}}\right)^{-1} U_{k} e^{a_{1} \ldots a_{m}} \\
& =(-1)^{2 m+k}\left(e^{a_{1} \ldots a_{m}}\right)^{-1}\left(e^{1 \ldots n}\right)^{-1} U_{k} e^{1 \ldots n} e^{a_{1} \ldots a_{m}} \\
& =(-1)^{k}\left(e^{\widetilde{a_{1} \ldots a_{m}}}\right)^{-1} U_{k} e^{a_{1}^{\ldots a_{m}}} \tag{5.2}
\end{align*}
$$

and we obtain (5.1) again.
So we can use operator $F_{\text {Adj }}$ (with 2^{n-1} summands) instead of operator $F(U)$ (with 2^{n} summands) in all calculations.

6. Conjugate action on Clifford algebras

We denote the corresponding square symmetric matrices of size 2^{n} from the previous section (with elements 1 and -1 , see tables) by $M_{n}=\left\|m_{A B}\right\|$. For arbitrary element of these matrices we have ${ }^{12} m_{A B}=e^{A} e^{B}\left(e^{A}\right)^{-1}\left(e^{B}\right)^{-1}$, $A, B \in \mathrm{I}, e \equiv 1$. We have ${ }^{13}$

In the case of odd n we also consider symmetric matrix L of size 2^{n-1} $L_{n}=\left\|l_{A B}\right\|, l_{A B}=m_{A B}, A, B \in \mathrm{I}_{\text {First }}=\left\{A \in \mathrm{I}, \quad|A| \leq \frac{n-1}{2}\right\}$.

Theorem 6.1. Matrix M_{n} is invertible in the case of even n and $M_{n}^{-1}=$ $\frac{1}{2^{n}} M_{n}$. Matrix M_{n} is not invertible in the case of odd n.

Matrix L_{n} is invertible in the case of odd n and $L_{n}^{-1}=\frac{1}{2^{n-1}} L_{n}$.
Proof. Matrices are symmetric $M_{n}^{T}=M_{n}, L_{n}^{T}=L_{n}$ by definition. Let us multiply matrix M_{n} by itself. For two arbitrary rows we have

$$
\begin{aligned}
\sum_{B} m_{A B} m_{B C} & =\sum_{B} e^{A} e^{B}\left(e^{A}\right)^{-1}\left(e^{B}\right)^{-1} e^{B} e^{C}\left(e^{B}\right)^{-1}\left(e^{C}\right)^{-1} \\
& =e^{A}\left(\sum_{B} e^{B}\left(e^{A}\right)^{-1} e^{C}\left(e^{B}\right)^{-1}\right)\left(e^{C}\right)^{-1}
\end{aligned}
$$

In the last expression sum is equal to zero if $A \neq C$ and (in the case of odd n) A, C are not adjoint multi-indices, because $e_{B} U e^{B}$ is projection onto the center of Clifford algebra (see Theorem 3.2). In other cases the last expression equals to 2^{n}. In the case of odd n we must use matrix L_{n} because we do not have adjoint multi-indices in this matrix.

Let us consider the following operators (for different $A \in \mathrm{I}$)

$$
F_{e^{A}}: C \ell(p, q) \rightarrow C \ell(p, q), \quad U \rightarrow\left(e^{A}\right)^{-1} U e^{A}, \quad U \in C \ell(p, q) .
$$

Note that $F_{e^{A}}(U)=\left(e^{A}\right)^{-1} U e^{A}$ is a conjugation of Clifford algebra element $U \in C l(p, q)$ by element e^{A} of Salingaros' vee group.

Theorem 6.2. For operator $F_{e^{A}}(U)=\left(e^{A}\right)^{-1} U e^{A}$ we have

$$
\begin{equation*}
F_{e^{A}}(U)=\sum_{B} m_{A B} \pi_{e^{B}}(U), \tag{6.2}
\end{equation*}
$$

where $\pi_{e^{B}}$ is a projection ${ }^{14}$ onto subspace spanned over element e^{B}. We have $F_{e^{A}}\left(F_{e^{A}}(U)\right)=U$.

Proof. The statement follows from the definition of matrix $M_{n}=\left\|m_{A B}\right\|$ and definition of conjugation.

[^6]Fixed multi-index A divides the set I into 2 sets $\mathrm{I}=\mathrm{I}_{[A]} \cup \mathrm{I}_{\{A\}}$, where $e^{B}, B \in \mathrm{I}_{[A]}$ commute with e^{A}, and $e^{B}, B \in \mathrm{I}_{\{A\}}$ anticommute with e^{A}. Denote the corresponding subspaces of Clifford algebra by $C \ell_{[A]}(p, q)$ and $C \ell_{\{A\}}(p, q)$ and corresponding projection operators by $\pi_{[A]}$ and $\pi_{\{A\}}$. We have $C \ell(p, q)=C \ell_{[A]}(p, q) \oplus C \ell_{\{A\}}(p, q)$ and

$$
F_{e^{A}}(U)=\left(e^{A}\right)^{-1} U e^{A}=\pi_{[A]}(U)-\pi_{\{A\}}(U), \quad \forall A
$$

Theorem 6.3. For arbitrary Clifford algebra element U we have

$$
\pi_{[A]}(U)=\frac{1}{2}\left(U+\left(e^{A}\right)^{-1} U e^{A}\right), \quad \pi_{\{A\}}(U)=\frac{1}{2}\left(U-\left(e^{A}\right)^{-1} U e^{A}\right)
$$

Proof. Using

$$
\left(e^{A}\right)^{-1} U e^{A}=\pi_{[A]}(U)-\pi_{\{A\}}(U), \quad U=\pi_{[A]}(U)+\pi_{\{A\}}(U)
$$

we obtain the statement of theorem.
For empty multi-index $A=-$ we have $m_{-, B}=1$ for all $B, \mathrm{I}=\mathrm{I}_{[A]}$, $\mathrm{I}_{\{A\}}=\varnothing$. For multi-index $A=1 \ldots n$ we have $m_{1 \ldots n, B}=1$ for all B in the case of odd n and

$$
m_{1 \ldots n, B}= \begin{cases}1, & \text { if } B \text { is even } \tag{6.3}\\ -1, & \text { if } B \text { is odd }\end{cases}
$$

and $e_{1 \ldots n} U e^{1 \ldots n}=\pi_{\text {Even }}(U)-\pi_{\text {Odd }}(U)$ in the case of even n, where $\pi_{\text {Even }}$ and $\pi_{\text {Odd }}$ are projection operations onto the even and odd subspaces of Clifford algebra. In other cases (when A is not empty and in not $1 \ldots n$) we have 2^{n-1} elements in each of the sets $\mathrm{I}_{[A]}, \mathrm{I}_{\{A\}}$ (see Theorem 5.1) i.e. we have $\operatorname{dim} C \ell_{[A]}(p, q)=\operatorname{dim} C \ell_{\{A\}}(p, q)=2^{n-1}$ in these cases.

In particular case we obtain the following identities (for $A=1 \ldots n$): in the case of even n we have

$$
\pi_{\text {Even }}(U)=\frac{1}{2}\left(U+e_{1 \ldots n} U e^{1 \ldots n}\right), \quad \pi_{\text {Odd }}(U)=\frac{1}{2}\left(U-e_{1 \ldots n} U e^{1 \ldots n}\right)
$$

We have the following theorem.
Theorem 6.4. Let an element $X \in C \ell(p, q)$ satisfy the following equation with some given element ${ }^{15} Q^{A} \in C \ell(p, q)$

$$
\begin{equation*}
e^{A} X+\epsilon X e^{A}=Q^{A}, \quad \epsilon \in \mathbb{R}^{\times} . \tag{6.4}
\end{equation*}
$$

If $\epsilon \neq \pm 1$, then we have a unique solution

$$
X=\sum_{B} \frac{1}{1+\epsilon m_{A B}} \pi_{e^{B}}\left(\left(e^{A}\right)^{-1} Q^{A}\right) .
$$

If $\epsilon=-1$ (commutator case), then:

- if $\pi_{[A]}\left(\left(e^{A}\right)^{-1} Q^{A}\right) \neq 0$ (i.e. $\left\{e^{A}, Q^{A}\right\} \neq 0$), then there is no solution;

[^7]- if $\pi_{[A]}\left(\left(e^{A}\right)^{-1} Q^{A}\right)=0$ (i.e. $\left\{e^{A}, Q^{A}\right\}=0$), then the solution is

$$
\frac{1}{2} \pi_{\{A\}}\left(\left(e^{A}\right)^{-1} Q^{A}\right)+\pi_{[A]}(U),
$$

where U is an arbitrary Clifford algebra element.
If $\epsilon=1$ (anticommutator case), then:

- if $\pi_{\{A\}}\left(\left(e^{A}\right)^{-1} Q^{A}\right) \neq 0$ (i.e. $\left.\left[e^{A}, Q^{A}\right] \neq 0\right)$, then there is no solution;
- if $\pi_{\{A\}}\left(\left(e^{A}\right)^{-1} Q^{A}\right)=0$ (i.e. $\left.\left[e^{A}, Q^{A}\right]=0\right)$, then the solution is

$$
\frac{1}{2} \pi_{[A]}\left(\left(e^{A}\right)^{-1} Q^{A}\right)+\pi_{\{A\}}(U)
$$

where U is an arbitrary Clifford algebra element.
Proof. Multiply equation on the left by $\left(e^{A}\right)^{-1}=e_{A}$ and use Theorem 6.2:
$X+\epsilon\left(e^{A}\right)^{-1} X e^{A}=\left(e^{A}\right)^{-1} Q^{A} \quad \Rightarrow \quad X+\epsilon \sum_{B} m_{A B} \pi_{e^{B}}(X)=\left(e^{A}\right)^{-1} Q^{A}$.
Using $X=\sum_{B} \pi_{e^{B}}(X)$ we obtain

$$
\sum_{B}\left(1+\epsilon m_{A B}\right) \pi_{e^{B}}(X)=\sum_{B} \pi_{e^{B}}\left(\left(e^{A}\right)^{-1} Q^{A}\right) .
$$

In the case $\epsilon \neq \pm 1$ we obtain the statement of the theorem.
Let $\epsilon=-1$. Then

$$
\begin{aligned}
X-\left(e^{A}\right)^{-1} X e^{A} & =\left(e^{A}\right)^{-1} Q^{A} \\
\Rightarrow 2 \pi_{\{A\}}(X) & =\pi_{\{A\}}\left(\left(e^{A}\right)^{-1} Q^{A}\right)+\pi_{[A]}\left(\left(e^{A}\right)^{-1} Q^{A}\right)
\end{aligned}
$$

and we obtain the statement of the theorem for this case. Note that

$$
\begin{aligned}
\pi_{[A]}\left(\left(e^{A}\right)^{-1} Q^{A}\right) & =\frac{1}{2}\left(\left(e^{A}\right)^{-1} Q^{A}+\left(e^{A}\right)^{-1}\left(e^{A}\right)^{-1} Q^{A} e^{A}\right) \\
& =\frac{1}{2}\left(\left(e^{A}\right)^{-1} Q^{A}+e^{A}\left(e^{A}\right)^{-1} Q^{A}\left(e^{A}\right)^{-1}\right) \\
& =\frac{1}{2}\left\{\left(e^{A}\right)^{-1}, Q^{A}\right\}= \pm \frac{1}{2}\left\{e^{A}, Q^{A}\right\},
\end{aligned}
$$

because $\left(e^{A}\right)^{-1}= \pm e^{A}$.
In the case $\epsilon=1$ proof is similar. Analogously we have

$$
\pi_{\{A\}}\left(\left(e^{A}\right)^{-1} Q^{A}\right)= \pm \frac{1}{2}\left[e^{A}, Q^{A}\right] .
$$

Theorem 6.5. In the case of even n we have

$$
\begin{equation*}
\pi_{e^{A}}(U)=\frac{1}{2^{n}} \sum_{B} m_{A B}\left(e^{B}\right)^{-1} U e^{B} . \tag{6.5}
\end{equation*}
$$

In the case of odd n we have

$$
\begin{equation*}
\pi_{e^{A}, \widetilde{e^{A}}}(U)=\pi_{e^{A}}(U)+\pi_{\widetilde{e^{A}}}(U)=\frac{1}{2^{n-1}} \sum_{B \in \mathrm{I}_{\mathrm{First}}} l_{A B}\left(e^{B}\right)^{-1} U e^{B} . \tag{6.6}
\end{equation*}
$$

Note that we can use instead of $\mathrm{I}_{\text {First }}$ any adjoint set $\mathrm{I}_{\mathrm{Adj}}$.

Proof. From (6.2) we obtain

$$
\left(\begin{array}{l}
F_{e}(U) \\
F_{e^{a}}(U) \\
\ldots \\
F_{e^{1 \ldots n}}(U)
\end{array}\right)=M_{n}\left(\begin{array}{l}
\pi_{e}(U) \\
\pi_{e^{1}}(U) \\
\ldots \\
\pi_{e^{1 \ldots n}}(U)
\end{array}\right)
$$

Using Theorem 6.1 in the case of even n we obtain

$$
\left(\begin{array}{l}
\pi_{e}(U) \\
\pi_{e^{1}}(U) \\
\ldots \\
\pi_{e^{1 \ldots n}}(U)
\end{array}\right)=\frac{1}{2^{n}} M_{n}\left(\begin{array}{l}
F_{e}(U) \\
F_{e^{1}}(U) \\
\ldots \\
F_{e^{1 \ldots n}}(U)
\end{array}\right)
$$

In the case of odd n we have

$$
\begin{equation*}
F_{e^{A}}(U)=\left(e^{A}\right)^{-1} U e^{A}=\sum_{B} m_{A B} \pi_{e^{B}}(U)=\sum_{B \in \mathrm{I}_{\mathrm{First}}} l_{A B} \pi_{e^{B}, e^{B}}(U) \tag{6.7}
\end{equation*}
$$

and use Theorem 6.1.

Let us give some examples.
In the case $n=1$ we have

$$
M_{1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), \quad L_{1}=(1), \quad F_{e}(U)=F_{e^{1}}(U)=U, \quad \pi_{e, e^{1}}(U)=U
$$

In the case $n=2$ we have $M_{2}=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)$,

$$
\begin{aligned}
F_{e}(U) & =U \\
F_{e^{1}}(U) & =\pi_{e}(U)+\pi_{e^{1}}(U)-\pi_{e^{2}}(U)-\pi_{e^{12}}(U), \\
F_{e^{2}}(U) & =\pi_{e}(U)-\pi_{e^{1}}(U)+\pi_{e^{2}}(U)-\pi_{e^{12}}(U), \\
F_{e^{12}}(U) & =\pi_{e}(U)-\pi_{e^{1}}(U)-\pi_{e^{2}}(U)+\pi_{e^{12}}(U) . \\
\pi_{e}(U) & =\frac{1}{4}\left(e_{A} U e^{A}\right), \\
\pi_{e^{1}}(U) & =\frac{1}{4}\left(e U e+\left(e^{1}\right)^{-1} U e^{1}-\left(e^{2}\right)^{-1} U e^{2}-\left(e^{12}\right)^{-1} U e^{12}\right), \\
\pi_{e^{2}}(U) & =\frac{1}{4}\left(e U e-\left(e^{1}\right)^{-1} U e^{1}+\left(e^{2}\right)^{-1} U e^{2}-\left(e^{12}\right)^{-1} U e^{12}\right), \\
\pi_{e^{12}}(U) & =\frac{1}{4}\left(e U e-\left(e^{1}\right)^{-1} U e^{1}-\left(e^{2}\right)^{-1} U e^{2}+\left(e^{12}\right)^{-1} U e^{12}\right) .
\end{aligned}
$$

In the case $n=3$ we have $L_{2}=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)$,

$$
\begin{aligned}
& \pi_{e, e^{123}}(U)=\frac{1}{4}\left(e U e+\left(e^{1}\right)^{-1} U e^{1}+\left(e^{2}\right)^{-1} U e^{2}+\left(e^{3}\right)^{-1} U e^{12}\right), \\
& \pi_{e^{1}, e^{23}}(U)=\frac{1}{4}\left(e U e+\left(e^{1}\right)^{-1} U e^{1}-\left(e^{2}\right)^{-1} U e^{2}-\left(e^{3}\right)^{-1} U e^{3}\right), \\
& \pi_{e^{2}, e^{13}}(U)=\frac{1}{4}\left(e U e-\left(e^{1}\right)^{-1} U e^{1}+\left(e^{2}\right)^{-1} U e^{2}-\left(e^{3}\right)^{-1} U e^{3}\right), \\
& \pi_{e^{3}, e^{12}}(U)=\frac{1}{4}\left(e U e-\left(e^{1}\right)^{-1} U e^{1}-\left(e^{2}\right)^{-1} U e^{2}+\left(e^{3}\right)^{-1} U e^{3}\right) .
\end{aligned}
$$

7. Conclusion

In the present paper we consider different operators

$$
F_{S}(U)=\frac{1}{|S|} \sum_{A \in S}\left(e^{A}\right)^{-1} U e^{A}
$$

acting on real Clifford algebra $C \ell(p, q)$. Note that all theorems of this paper can be reformulated without changes for complex Clifford algebra.

We can also consider operators with other subsets $S \subseteq I$. Note that not for every subset $S \subseteq \mathrm{I}$, the set $\left\{e^{A} \mid A \in S\right\}$ is a group.

In [12] we consider the following operator in Clifford algebra $C \ell(p, q)$

$$
F_{1}(U)=e_{a} U e^{a}
$$

and prove that $e_{a} U e^{a}=\sum_{k=0}^{n}(-1)^{k}(n-2 k) \pi_{k}(U)$.
In [14] we present the relation between this operator and projections onto subspaces of fixed ranks. We use this relation to present new class of gauge invariant solutions of Yang-Mills equations.

We can consider operators (1.1) with the following subsets $S \subseteq \mathrm{I}$:

$$
\begin{array}{r}
\mathrm{I}_{\text {Even }}=\{A \in \mathrm{I},|A|-\text { even }\}, \quad \mathrm{I}_{\mathrm{Odd}}=\{A \in \mathrm{I},|A|-\text { odd }\}, \\
\mathrm{I}_{k}=\{A \in \mathrm{I}, \quad|A|=k\}, \quad k=0,1, \ldots, n, \\
\mathrm{I}_{\bar{k}}=\{A \in \mathrm{I}, \quad|A|=m \quad \bmod 4\}, \quad m=0,1,2,3
\end{array}
$$

In the last case we use the concept of so-called quaternion type m [18] of Clifford algebra element, $m=0,1,2,3$. There is a relation between these operators and projective operators onto fixed subspaces of Clifford algebras. This is a subject for further research.

In [21] we consider operators $\sum_{A} \gamma^{A} U \beta_{A}$ with 2 different sets γ^{a}, β^{a}, $a=1, \ldots, n$ of Clifford algebra elements that satisfy

$$
\gamma^{a} \gamma^{b}+\gamma^{b} \gamma^{a}=2 \eta^{a b} e, \quad \beta^{a} \beta^{b}+\beta^{b} \beta^{a}=2 \eta^{a b} e
$$

We use these operators to prove generalized Pauli's theorem and some other problems about spin groups (see [15, 17, 19, 20, 22]).

The results of this article (especially about the relation between projection operators and averaging operators; solving commutator equations) may be used in computer calculations.

Acknowledgments

The author is grateful to the three referees for their insightful and constructive comments. Also the author is grateful to N.G.Marchuk for fruitful discussions.

References

[1] Ablamowicz, R., Fauser, B.: On the transposition anti-involution in real Clifford algebras I: The Transposition Map. Linear Multilinear Algebra 59(12), 1331-1358 (2011)
[2] Ablamowicz, R., Fauser, B.: On the transposition anti-involution in real Clifford algebras II: Stabilizer groups of primitive idempotents. Linear Multilinear Algebra 59(12), 1359-1381 (2011)
[3] Ablamowicz, R., Fauser, B.: On the transposition anti-involution in real Clifford algebras III: The automorphism group of the transposition scalar product on spinor spaces. Linear Multilinear Algebra 60(6), 621-644 (2012)
[4] Babai L., Friedl K.: Approximate representation theory of finite groups. Found. Comp. Sci. (1991)
[5] Benn I.M., Tucker R.W.: An introduction to Spinors and Geometry with Applications in Physics, Bristol (1987)
[6] Cox, D., Little, J., O'Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 2nd ed. Springer, New York (1992)
[7] Dixon J.D.: Computing irreducible representations of groups. Math. comp. (1970)
[8] Helmstetter, J.: Algebre de Clifford et algebresde de Weyl. Cahiers Math., vol. 25, Montpellier (1982)
[9] Helmstetter, J.: Quadratic Mappings and Clifford Algebras. Birkhauser, Basel (2008)
[10] Lam, T.Y.: The Algebraic Theory of Quadratic Forms. The Benjamin/Cummings Publishing Company, Reading (1973)
[11] Lounesto P.: Clifford Algebras and Spinors. L.M.S. Lecture Notes, vol. 239. Cambridge Univ. Press, Cambridge (1997)
[12] Marchuk, N.G., Shirokov, D.S.: Unitary spaces on Clifford algebras. Adv. Appl. Clifford Algebra 18(2), 237-254 (2008)
[13] Marchuk, N.: Field theory equations, Amazon, CreateSpace (2012)
[14] Marchuk N.G., Shirokov D.S.: New class of gauge invariant solutions of YangMills equations. arXiv:1406.6665 [math-ph]
[15] Marchuk N.G., Shirokov D.S.: Local Generalized Pauli's Theorem (2012). arXiv:1201.4985 [math-ph]
[16] Serre, J.-P.: Linear Representations of Finite Groups. Springer, Berlin (1977)
[17] Shirokov, D.S.: Extension of Pauli's theorem to Clifford algebras. Dokl. Math. 84(2), 699-701 (2011)
[18] Shirokov, D.S.: Quaternion typification of Clifford algebra elements. Adv Appl Clifford Algebras 22(1), 243-256 (2012)
[19] Shirokov, D.S.: The use of the generalized Pauli's theorem for odd elements of Clifford algebra to analyze relations between spin and orthogonal groups of arbitrary dimensions. Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki 1(30), 279-287 (2013)
[20] Shirokov, D.S.: Pauli theorem in the description of n-dimensional spinors in the Clifford algebra formalism. Theor. Math. Phys. 175(1), 454-474 (2013)
[21] Shirokov, D.S.: Method of generalized contractions and Pauli's theorem in Clifford algebras. (2014). arXiv:1409.8163.
[22] Shirokov, D.S.: Calculations of elements of spin groups using generalized Pauli's theorem. Adv. Appl. Cliff. Algebras 25(1), 227-244 (2015)
D. S. Shirokov
A. A. Kharkevich Institute for Information Transmission Problems

Russian Academy of Sciences
Bolshoy Karetny per. 19
127994, Moscow
Russia
N. E. Bauman Moscow State Technical University
ul. Baumanskay 2-ya, 5
105005, Moscow
Russia
e-mail: dm.shirokov@gmail.com
Received: November 30, 2014.
Accepted: December 1, 2015.

[^0]: This work was supported by Russian Science Foundation (project RSF 14-11-00687, Steklov Mathematical Institute).
 *Corresponding author

[^1]: ${ }^{1}$ Note that A in Q^{A} is a label (multi-index) that serves to pair off an arbitrary Clifford element Q^{A} with basis element e^{A}.
 ${ }^{2}$ We use notation from [5] (see, also [13]). Note that there exists another notation instead of e^{a}-with lower indices. But we use upper indices because we take into account relation with differential forms. Note that e^{a} is not exponent.

[^2]: ${ }^{3}$ We use notation e^{A} from [5]. Note that e^{A} is not exponent, A is a multi-index.
 ${ }^{4}$ We want to deal only with ordered multi-indices. So, multi-index $a_{1} \ldots a_{k}$ is indivisible object in our consideration. It is not a set of indices $a_{1}, a_{2}, \ldots a_{k}$. That's why $e_{a_{1} \ldots a_{k}} \neq$ $e_{a_{1}} \cdots e_{a_{k}}$ in our notation.
 5 We denote Clifford algebra elements by capital letters (not small letters that is more traditional) to avoid confusion with numbers because sometimes Clifford algebra elements have indices or multi-indices in this paper too (see [13]).
 ${ }^{6}$ We use Einstein summation convection for multi-indices too.
 7 There is a difference in notation in literature. We use term "rank" and notation $C \ell_{k}(p, q)$ because we take into account relation with differential forms, see [13].

[^3]: 8 Note that A in Q^{A} is a label (multi-index) that serves to pair off an arbitrary Clifford element Q^{A} with basis element e^{A}.

[^4]: ${ }^{9}$ We use operators $\pi_{[A]}$ and $\pi_{\{A\}}$ here. See about them below.

[^5]: ${ }^{10}$ It is the analogue of Hodge operator in Clifford algebra $\star U=\tilde{U} e^{1 \ldots n}$, where ${ }^{\sim}$ is the reversion anti-automorphism in the Clifford algebra $C \ell(p, q)$ [11].
 ${ }^{11}$ For example, in the case $n=2$ we have 2 partitions $\left\{e, e^{1}, e^{2}, e^{12}\right\}=\left\{e, e^{1}\right\} \cup\left\{e^{12}, e^{2}\right\}=$ $\left\{e, e^{2}\right\} \cup\left\{e^{12}, e^{2}\right\}$.

[^6]: 12 Note that $e^{A} e^{B}\left(e^{A}\right)^{-1}\left(e^{B}\right)^{-1}$ is the group commutator of e^{A} and e^{B} in Salingaros' vee group.
 ${ }^{13}$ We can say that commutator subgroup of Salingaros' vee group is $\{1,-1\}$.
 ${ }^{14}$ We do not use notation π_{B} instead of $\pi_{e^{B}}$ because it will conflict with notation π_{k} for projection onto subspace $C \ell_{k}(p, q)$.

[^7]: ${ }^{15}$ Note that A in Q^{A} is a label (multi-index) that serves to pair off an arbitrary Clifford element Q^{A} with basis element e^{A}.

