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1. Introduction

In this paper we consider the following operators acting on real Clifford al-
gebras

FS(U) =
1

|S|
∑

A∈S

(eA)−1UeA, (1.1)

where

eA = ea1a2...ak = ea1ea2 · · · eak , A = a1a2 . . . ak, a1 < a2 < · · · < ak,

are basis elements generated by an orthonormal basis in vector space V over
a field R. Here S ⊆ I is a subset of the set of all ordered multi-indices A of
the length from 0 to n. We denote the number of elements in S by |S|. Note
that not for every subset S ⊆ I in (1.1), the set {eA|A ∈ S} is a group.

We can consider Reynolds operator (see, for example, [6]) acting on a
Clifford algebra element U ∈ C�(p, q)

RG(U) =
1

|G|
∑

g∈G

g−1Ug, (1.2)
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where |G| is the number of elements in a finite subgroup G ⊂ C�(p, q)×.
We denote the group of all invertible Clifford algebra elements by C�(p, q)×.
These operators “average” an action of group G on Clifford algebra C�(p, q).

We can take Salingaros’ vee group G = {±eA, A ∈ I} (see [1–3]), where
eA are basis elements of Clifford algebra C�(p, q). Note that Salingaros’ vee
group is a finite subroup of spin groups (groups Pin(p, q) and Spin(p, q), see
[2,8,19,22]).

We can write in this case
1

|G|
∑

g∈G

g−1Ug =
1

2n+1

∑

A∈I

((eA)−1UeA + (−eA)−1U(−eA))

=
1
2n

∑

A∈I

(eA)−1UeA.

We consider such operators further in this paper.
Note that operators (1.2) are often used in representation theory of finite

groups (see [4,7,16]). We use these operators in Clifford algebras to obtain
some new properties.

We present a relation between these operators and projection operators
onto fixed subspaces of Clifford algebras.

Using method of averaging we present solutions X of the system of
commutator equations

eAX + εXeA = QA, A ∈ S ⊆ I, ε ∈ R
×

for some given elements1 QA ∈ C�(p, q). We use notation R
× = R \ 0.

2. Clifford algebras, ranks, projection operators

Consider real Clifford algebra C�(p, q) with p+q = n, n ≥ 1. The construction
of Clifford algebra is discussed in details in [9–11] or [12].

Let e be the identity element and let ea, a = 1, . . . , n be generators2 of
the Clifford algebra C�(p, q),

eaeb + ebea = 2ηabe,

where η = ||ηab|| = ||ηab|| is the diagonal matrix with p pieces of +1 and q
pieces of −1 on the diagonal. Elements

ea1...ak = ea1 · · · eak , a1 < · · · < ak, k = 1, . . . , n,

together with the identity element e form the basis of the Clifford algebra.
The number of basis elements is equal to 2n.

Let us denote the set of ordered multi-indices of the length from 0 to n
by

I = {−, 1, . . . , n, 12, 13, . . . , 1 . . . n}, (2.1)

1 Note that A in QA is a label (multi-index) that serves to pair off an arbitrary Clifford
element QA with basis element eA.
2 We use notation from [5] (see, also [13]). Note that there exists another notation instead

of ea—with lower indices. But we use upper indices because we take into account relation
with differential forms. Note that ea is not exponent.
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where “–” is an empty multi-index. So, we have the basis of Clifford algebra
B = {eA, A ∈ I}, where A is an arbitrary ordered multi-index3. Let us denote
the length of multi-index A by |A|. So, we use notation

eA = ea1a2...ak = ea1ea2 · · · eak , A = a1a2 . . . ak, a1 < a2 < · · · < ak.

Below we also consider different subsets S ⊆ I:

IEven = {A ∈ I, |A| − even}, IOdd = {A ∈ I, |A| − odd}.

We have ea = ηabe
b, ea = ηabeb, where we use Einstein summation

convection (there is a sum over index b). We denote4 expressions

ηa1b1 · · · ηakbkebk · · · eb1 = eak
· · · ea1 = (ea1...ak)−1, a1 < · · · < ak.

by ea1...ak
(not eak...a1). So, eA = (eA)−1 ∀A ∈ I in our notation.

Any Clifford algebra element5 U ∈ C�(p, q) can be written in the form

U = ue + uaea +
∑

a1<a2

ua1a2e
a1a2 + · · · + u1...ne1...n = uAeA, (2.2)

where we have a sum6 over ordered multi-index A and

{uA} = {u, ua, ua1a2 , . . . , u1...n}
are real numbers.

We denote by C�k(p, q), k = 0, 1, . . . , n the vector spaces that span over
the basis elements ea1...ak . Elements of C�k(p, q) are said to be elements of
rank7 k. We have

C�(p, q) =
n⊕

k=0

C�k(p, q). (2.3)

We consider (linear) projection operators on the vector subspaces C�k(p, q)

πk : C�(p, q) → C�k(p, q), πk(U) =
∑

a1<···<ak

ua1...ak
ea1...ak . (2.4)

Clifford algebra C�(p, q) is a superalgebra. It is represented as the direct sum
of even and odd subspaces (of even and odd elements respectively)

C�(p, q) = C�Even(p, q) ⊕ C�Odd(p, q),

C�Even(p, q) =
⊕

k−even

C�k(p, q), C�Odd(p, q) =
⊕

k−odd

C�k(p, q).

3 We use notation eA from [5]. Note that eA is not exponent, A is a multi-index.
4 We want to deal only with ordered multi-indices. So, multi-index a1 . . . ak is indivisible
object in our consideration. It is not a set of indices a1, a2, . . . ak. That’s why ea1...ak �=
ea1 · · · eak in our notation.
5 We denote Clifford algebra elements by capital letters (not small letters that is more
traditional) to avoid confusion with numbers because sometimes Clifford algebra elements
have indices or multi-indices in this paper too (see [13]).
6 We use Einstein summation convection for multi-indices too.
7 There is a difference in notation in literature. We use term “rank” and notation C�k(p, q)
because we take into account relation with differential forms, see [13].
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3. Reynolds operator of the Salingaros’ vee group

We have the following well-known statement about center

Cen(C�(p, q)) = {U ∈ C�(p, q) |UV = V U ∀V ∈ C�(p, q)}
of Clifford algebra C�(p, q).

Theorem 3.1. We have

Cen(C�(p, q)) =
{

C�0(p, q), n is even;
C�0(p, q) ⊕ C�n(p, q), n is odd. (3.1)

Let us consider the following operator (Reynolds operator of the Salin-
garos’ vee group {eA, A ∈ I}, see above)

F (U) =
1
2n

eAUeA,

where we have a sum over multi-index A ∈ I.

Theorem 3.2. We have

F (U) =
1
2n

eAUeA =
{

π0(U), if n is even;
π0(U) + πn(U), if n is odd, (3.2)

where π0 and πn are projection operators (see (2.4)) onto the subspaces of
fixed ranks. Operator F is a projector F 2 = F (on the center of Clifford
algebra).

Proof. We have

(ea)−1F (U)ea =
∑

A

(eAea)−1F (U)(eAea) =
∑

B

(eB)−1F (U)eB = F (U).

So, F (U) is in the center of Clifford algebra (see Theorem 3.1). For elements
U of ranks k = 1, . . . , n − 1 (and k = n in the case of even n) we have
F (U) = 0. In other particular cases we have eAeA = 2ne and (in the case of
odd n) eAe1...neA = 2ne1...n. It is also easy to verify that F 2 = F . �

Note that Cen(C�(p, q)) is the “ring of invariants” (in the language of
[6]) of Salingaros’ vee group.

Theorem 3.3. Let an element X ∈ C�(p, q) satisfy the system of 2n equations
with some given elements8 QA ∈ C�(p, q)

eAX + εXeA = QA ∀A ∈ I, ε ∈ R
×. (3.3)

If ε = −1 (commutator case), then this system of equations either has no
solution or it has a unique solution up to element of center:

X = − 1
2n

QAeA + Z, Z ∈ Cen(C�(p, q)). (3.4)

8 Note that A in QA is a label (multi-index) that serves to pair off an arbitrary Clifford
element QA with basis element eA.
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If ε 	= −1, then this system of equations either has no solution or it has
a unique solution

X =

⎧
⎪⎪⎨

⎪⎪⎩

1
2nε

(
QAeA − 1

(ε+1)π0(QAeA)
)

, if n is even,

1
2nε

(
QAeA − 1

(ε+1) (π0(QAeA) + πn(QAeA))
)

, if n is odd.

(3.5)

Proof. Let us multiply each equation by eA on the right and add them (see
Theorem 3.2):

eAXeA + εXeAeA = QAeA ⇒ 2nπcenter(X) + εX2n = QAeA,

where πcenter is the projection on the center of Clifford algebra. Using X =∑n
k=0 πk(X) and Theorem 3.1, we obtain statement of the theorem. �

Note that we have a solution or have no solution of the system of commu-
tator equations. It depends on elements QA (it suffices to substitute solution
in equation and check the equality).

As suggested by one of the referees, in the case ε 	= −1 we can take
solution of the “first” equation (3.3) X = 1

1+εQ (here Q has empty multi-
index) and substitute it in the other equations. We obtain the condition

QA =
1

1 + ε
(eAQ + εQeA), (3.6)

that we can also rewrite in the form9 (eA)−1QA = π[A](Q) + 1−ε
1+επ{A}(Q).

So, we can say, that system of Eq. (3.3) has solution in the case ε 	= −1
if and only if given elements QA have the following connection (3.6) with the
first of them (Q).
In the case ε = −1 it is not difficult to understand that πcenter(QA(eA)−1) = 0
is the necessary condition for the system (3.3) to have a solution. Sufficient
condition is

−eA

(
1
2n

QBeB

)
+

(
1
2n

QBeB

)
eA = QA, ∀A ∈ I

with summation over multi-index B. It can be rewritten in the form

(eA)−1QA =
1
2n

π{A}(eBQB), ∀A ∈ I.

4. Adjoint sets of multi-indices

We call ordered multi-indices a1 . . . ak and b1 . . . bl adjoint multi-indices if
they have no common indices and they form multi-index 1 . . . n of the length
n. We write b1 . . . bl = ˜a1 . . . ak and a1 . . . ak = ˜b1 . . . bl. We call corresponding
basis elements ea1...am , eb1...bl adjoint and write eb1...bl = e ˜a1...am , ea1...am =
e

˜b1...bl . We can also write that ea1...ameb1...bl = ±e1...n and �ea1...am =±eb1...bl ,

9 We use operators π[A] and π{A} here. See about them below.
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where � is Hodge operator10. We denote the sets of corresponding 2n−1 multi-
indices by IAdj and ĨAdj = I\IAdj. So, for each multi-index in IAdj there exists
adjoint multi-index in ĨAdj. We have

B = {eA |A ∈ I} = {eA |A ∈ IAdj} ∪ {eA |A ∈ ĨAdj}. (4.1)

For Clifford algebra C�(p, q) of dimension n = p + q we have 22
n−1−1

different partitions11 of the form (4.1). For example,

IAdj = IFirst, ĨAdj = I \ IFirst = ILast,

where IFirst consists of the first (in the order) 2n−1 multi-indices of the set I
(2.1). In the case of odd n we can write

IFirst =
{

A ∈ I, |A| ≤ n − 1
2

}
, ILast =

{
A ∈ I, |A| ≥ n + 1

2

}
.

In the case of odd n we can consider the following adjoint sets

IAdj = IEven, ĨAdj = IOdd.

5. Commutative properties of basis elements

Theorem 5.1. Consider real Clifford algebra C�(p, q), p + q = n and the set
of basis elements B = {eA, A ∈ I}.

Then each element of this set (if it is neither e nor e1...n) commutes with
2n−2 even elements of the set B, commutes with 2n−2 odd elements of the set
B, anticommutes with 2n−2 even elements of the set B and anticommutes
with 2n−2 elements of the set B. Element e commutes with all elements of
the set B.
1. if n—even, then e1...n commutes with all 2n−1 even elements of the set

B and anticommutes with all 2n−1 odd elements of the set B;
2. if n—odd, then e1...n commutes with all 2n elements of the set B.

Proof. The cases k = 0 and k = n are trivial (see Theorem 3.1).
Let us fix one multi-index A of the length k. Then there are Ci

kCm−i
n−k

different multi-indices of the fix length m that have fixed number i coinci-

dent indices with multi-index A. Here Ck
n =

(
n
k

)
= n!

k!(n−k)! is binomial

coefficient (we have Ck
n = 0 for k > n). Note, that

∑n
i=0 Ci

kCm−i
n−k = Cm

n

(Vandermonde’s convolution)—the full number of ordered multi-indices of
the length m. When we swap basis element with multi-index A of the length
k with another basis element with multi-index of the length m, then we ob-
tain coefficient (−1)km−i, where i is the number of coincident indices in these
2 multi-indices, i.e. ea1...akeb1...bm = (−1)km−ieb1...bmea1...ak .

10 It is the analogue of Hodge operator in Clifford algebra �U = Ũe1...n, where ˜ is the
reversion anti-automorphism in the Clifford algebra C�(p, q) [11].
11 For example, in the case n = 2 we have 2 partitions {e, e1, e2, e12} = {e, e1}∪{e12, e2} =
{e, e2} ∪ {e12, e2}.
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If k is even and does not equal to 0 and n, then the number of even and
odd elements eb1...bm that commute (in this case coefficient km − i must be
even, and so i is even) with fixed ea1...ak respectively equals

∑

m−even

∑

i−even

Ci
kCm−i

n−k = 2n−2,
∑

m−odd

∑

i−even

Ci
kCm−i

n−k = 2n−2.

If k is odd and does not equal to n, then the number of even and odd elements
eb1...bm that anticommute (in this case km − i is odd, and so m − i is even)
with ea1...ak respectively equals

∑

m−even

∑

i−even

Ci
kCm−i

n−k = 2n−2,
∑

m−odd

∑

i−odd

Ci
kCm−i

n−k = 2n−2.

We can prove the last 4 identities if we regroup summands. For example,
we have∑

m−even

∑

i−even

Ci
kCm−i

n−k = (
∑

j=even

Cj
k)(

∑

l−even

Cl
n−k) = 2k−12n−k−1 = 2n−2.

�
Also we have the following theorem about adjoint sets of multi-indices.

Theorem 5.2. Consider real Clifford algebra C�(p, q), p+ q = n and the set of
basis elements B = {eA, A ∈ I}. Suppose we have a partition I = IAdj ∪ ĨAdj.

If n is even then any even (not odd!) basis element (if it is not e) com-
mutes with 2n−2 basis elements from {eA |A ∈ IAdj}, anticommutes with
2n−2 basis elements from {eA |A ∈ IAdj}, commutes with 2n−2 basis ele-
ments from {eA |A ∈ ĨAdj} and anticommutes with 2n−2 basis elements from
{eA |A ∈ ĨAdj}.

If n is odd then any basis element (if it is neither e nor e1...n) com-
mutes with 2n−2 basis elements from {eA |A ∈ IAdj}, anticommutes with
2n−2 basis elements from {eA |A ∈ IAdj}, commutes with 2n−2 basis ele-
ments from {eA |A ∈ ĨAdj} and anticommutes with 2n−2 basis elements from
{eA |A ∈ ĨAdj}.

Note that in the case of odd n we can take IAdj = IEven, ĨAdj = IOdd

and obtain the statement from the Theorem 5.1.

Proof. If n is odd then e1...n is in the center of Clifford algebra. So if basis
element commutes with some basis element, then it commutes with adjoint
basis element. But we know from Theorem 5.1 that basis elements (except e
and e1...n) commutes with 2n−1 basis elements and anticommutes with 2n−1

basis elements. So we obtain the statement of theorem for the case of odd n.
If n is even then even (not odd) basis element commutes with e1...n. So

if even basis element commutes with some basis element, then it commutes
with adjoint basis element. �

Let us represent the commutative property of basis elements in the
following tables. At the intersection of two basis elements is a sign “+” if
they commute and the sign “–” if they anticommute. For small dimensions
we have the following tables:
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n = 1 e e1

e + +
e1 + +

n = 2 e e1 e2 e12

e + + + +
e1 + + – –
e2 + – + –
e12 + – – +

n = 3 e e1 e2 e3 e12 e13 e23 e123

e + + + + + + + +
e1 + + – – – – + +
e2 + – + – – + – +
e3 + – – + + – – +
e12 + – – + + – – +
e13 + – + – – + – +
e23 + + – – – – + +
e123 + + + + + + + +

Consider the following operator

FAdj(U) =
1

2n−1

∑

A∈IAdj

eAUeA.

Theorem 5.3. Consider an arbitrary Clifford algebra element U . Suppose we
have a partition I = IAdj ∪ ĨAdj. In the case of arbitrary n we have

FAdj(U) = F (U).

Proof. If n is odd, then e1...n is in the center of Clifford algebra,

(ea1...am)−1Uea1...am = e1...n(e1...n)−1(ea1...am)−1Uea1...am

= (e ˜a1...am)−1Ue ˜a1...am ,

and

eAUeA = 2
∑

A∈IAdj

eAUeA. (5.1)

If n is even, then e1...n anticommutes with all odd basis elements and
commutes with all even basis elements (see Theorem 5.1). So if U = U0 +U1,
U0 ∈ C�Even(p, q), U1 ∈ C�Odd(p, q), then for k = 0, 1 we have

(ea1...am)−1Ukea1...am = e1...n(e1...n)−1(ea1...am)−1Ukea1...am

= (−1)2m+k(ea1...am)−1(e1...n)−1Uke1...nea1...am

= (−1)k(e ˜a1...am)−1Uke ˜a1...am , (5.2)

and we obtain (5.1) again. �

So we can use operator FAdj (with 2n−1 summands) instead of operator
F (U) (with 2n summands) in all calculations.
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6. Conjugate action on Clifford algebras

We denote the corresponding square symmetric matrices of size 2n from the
previous section (with elements 1 and −1, see tables) by Mn = ||mAB ||. For
arbitrary element of these matrices we have12 mAB = eAeB(eA)−1(eB)−1,
A,B ∈ I, e ≡ 1. We have13

mAB = mBA =
{

1, if [eA, eB ] = 0;
−1, if {eA, eB} = 0.

(6.1)

In the case of odd n we also consider symmetric matrix L of size 2n−1

Ln = ||lAB ||, lAB = mAB , A,B ∈ IFirst = {A ∈ I, |A| ≤ n−1
2 }.

Theorem 6.1. Matrix Mn is invertible in the case of even n and M−1
n =

1
2n Mn. Matrix Mn is not invertible in the case of odd n.

Matrix Ln is invertible in the case of odd n and L−1
n = 1

2n−1 Ln.

Proof. Matrices are symmetric MT
n = Mn, LT

n = Ln by definition. Let us
multiply matrix Mn by itself. For two arbitrary rows we have

∑

B

mABmBC =
∑

B

eAeB(eA)−1(eB)−1eBeC(eB)−1(eC)−1

= eA

(
∑

B

eB(eA)−1eC(eB)−1

)
(eC)−1.

In the last expression sum is equal to zero if A 	= C and (in the case of odd
n) A,C are not adjoint multi-indices, because eBUeB is projection onto the
center of Clifford algebra (see Theorem 3.2). In other cases the last expression
equals to 2n. In the case of odd n we must use matrix Ln because we do not
have adjoint multi-indices in this matrix. �

Let us consider the following operators (for different A ∈ I)

FeA : C�(p, q) → C�(p, q), U → (eA)−1UeA, U ∈ C�(p, q).

Note that FeA(U) = (eA)−1UeA is a conjugation of Clifford algebra element
U ∈ C�(p, q) by element eA of Salingaros’ vee group.

Theorem 6.2. For operator FeA(U) = (eA)−1UeA we have

FeA(U) =
∑

B

mABπeB (U), (6.2)

where πeB is a projection14 onto subspace spanned over element eB. We have
FeA(FeA(U)) = U.

Proof. The statement follows from the definition of matrix Mn = ||mAB ||
and definition of conjugation. �

12 Note that eAeB(eA)−1(eB)−1 is the group commutator of eA and eB in Salingaros’ vee
group.
13 We can say that commutator subgroup of Salingaros’ vee group is {1, −1}.
14 We do not use notation πB instead of πeB because it will conflict with notation πk for

projection onto subspace C�k(p, q).
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Fixed multi-index A divides the set I into 2 sets I = I[A] ∪ I{A}, where
eB , B ∈ I[A] commute with eA, and eB , B ∈ I{A} anticommute with eA.
Denote the corresponding subspaces of Clifford algebra by C�[A](p, q) and
C�{A}(p, q) and corresponding projection operators by π[A] and π{A}. We
have C�(p, q) = C�[A](p, q) ⊕ C�{A}(p, q) and

FeA(U) = (eA)−1UeA = π[A](U) − π{A}(U), ∀A.

Theorem 6.3. For arbitrary Clifford algebra element U we have

π[A](U) =
1
2
(U + (eA)−1UeA), π{A}(U) =

1
2
(U − (eA)−1UeA).

Proof. Using

(eA)−1UeA = π[A](U) − π{A}(U), U = π[A](U) + π{A}(U)

we obtain the statement of theorem. �

For empty multi-index A = − we have m−,B = 1 for all B, I = I[A],
I{A} = ø. For multi-index A = 1 . . . n we have m1...n,B = 1 for all B in the
case of odd n and

m1...n,B =
{

1, if B is even;
−1, if B is odd,

(6.3)

and e1...nUe1...n = πEven(U)−πOdd(U) in the case of even n, where πEven and
πOdd are projection operations onto the even and odd subspaces of Clifford
algebra. In other cases (when A is not empty and in not 1 . . . n) we have
2n−1 elements in each of the sets I[A], I{A} (see Theorem 5.1) i.e. we have
dim C�[A](p, q) = dimC�{A}(p, q) = 2n−1 in these cases.

In particular case we obtain the following identities (for A = 1 . . . n): in
the case of even n we have

πEven(U) =
1
2
(U + e1...nUe1...n), πOdd(U) =

1
2
(U − e1...nUe1...n).

We have the following theorem.

Theorem 6.4. Let an element X ∈ C�(p, q) satisfy the following equation with
some given element15 QA ∈ C�(p, q)

eAX + εXeA = QA, ε ∈ R
×. (6.4)

If ε 	= ±1, then we have a unique solution

X =
∑

B

1
1 + εmAB

πeB ((eA)−1QA).

If ε = −1 (commutator case), then:

• if π[A]((eA)−1QA) 	= 0 (i.e. {eA, QA} 	= 0), then there is no solution;

15 Note that A in QA is a label (multi-index) that serves to pair off an arbitrary Clifford
element QA with basis element eA.
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• if π[A]((eA)−1QA) = 0 (i.e. {eA, QA} = 0), then the solution is

1
2
π{A}((eA)−1QA) + π[A](U),

where U is an arbitrary Clifford algebra element.

If ε = 1 (anticommutator case), then:
• if π{A}((eA)−1QA) 	= 0 (i.e. [eA, QA] 	= 0), then there is no solution;
• if π{A}((eA)−1QA) = 0 (i.e. [eA, QA] = 0), then the solution is

1
2
π[A]((eA)−1QA) + π{A}(U),

where U is an arbitrary Clifford algebra element.

Proof. Multiply equation on the left by (eA)−1 = eA and use Theorem 6.2:

X + ε(eA)−1XeA = (eA)−1QA ⇒ X + ε
∑

B

mABπeB (X) = (eA)−1QA.

Using X =
∑

B πeB (X) we obtain
∑

B

(1 + εmAB)πeB (X) =
∑

B

πeB ((eA)−1QA).

In the case ε 	= ±1 we obtain the statement of the theorem.
Let ε = −1. Then

X − (eA)−1XeA = (eA)−1QA

⇒ 2π{A}(X) = π{A}((eA)−1QA) + π[A]((eA)−1QA)

and we obtain the statement of the theorem for this case. Note that

π[A]((eA)−1QA) =
1
2
((eA)−1QA + (eA)−1(eA)−1QAeA)

=
1
2
((eA)−1QA + eA(eA)−1QA(eA)−1)

=
1
2
{(eA)−1, QA} = ±1

2
{eA, QA},

because (eA)−1 = ±eA.
In the case ε = 1 proof is similar. Analogously we have

π{A}((eA)−1QA) = ±1
2
[eA, QA].

�

Theorem 6.5. In the case of even n we have

πeA(U) =
1
2n

∑

B

mAB(eB)−1UeB . (6.5)

In the case of odd n we have

π
eA,ẽA(U) = πeA(U) + π

ẽA(U) =
1

2n−1

∑

B∈IFirst

lAB(eB)−1UeB . (6.6)

Note that we can use instead of IFirst any adjoint set IAdj.
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Proof. From (6.2) we obtain

⎛

⎜⎜⎝

Fe(U)
Fea(U)
. . .
Fe1...n(U)

⎞

⎟⎟⎠ = Mn

⎛

⎜⎜⎝

πe(U)
πe1(U)
. . .
πe1...n(U)

⎞

⎟⎟⎠ .

Using Theorem 6.1 in the case of even n we obtain

⎛

⎜⎜⎝

πe(U)
πe1(U)
. . .
πe1...n(U)

⎞

⎟⎟⎠ =
1
2n

Mn

⎛

⎜⎜⎝

Fe(U)
Fe1(U)
. . .
Fe1...n(U)

⎞

⎟⎟⎠ .

In the case of odd n we have

FeA(U) = (eA)−1UeA =
∑

B

mABπeB (U) =
∑

B∈IFirst

lABπ
eB ,ẽB (U). (6.7)

and use Theorem 6.1. �

Let us give some examples.
In the case n = 1 we have

M1 =
(

1 1
1 1

)
, L1 =

(
1
)
, Fe(U) = Fe1(U) = U, πe,e1(U) = U.

In the case n = 2 we have M2 =

⎛

⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞

⎟⎟⎠ ,

Fe(U) = U,

Fe1(U) = πe(U) + πe1(U) − πe2(U) − πe12(U),
Fe2(U) = πe(U) − πe1(U) + πe2(U) − πe12(U),

Fe12(U) = πe(U) − πe1(U) − πe2(U) + πe12(U).

πe(U) =
1
4
(eAUeA),

πe1(U) =
1
4
(eUe + (e1)−1Ue1 − (e2)−1Ue2 − (e12)−1Ue12),

πe2(U) =
1
4
(eUe − (e1)−1Ue1 + (e2)−1Ue2 − (e12)−1Ue12),

πe12(U) =
1
4
(eUe − (e1)−1Ue1 − (e2)−1Ue2 + (e12)−1Ue12).
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In the case n = 3 we have L2 =

⎛

⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞

⎟⎟⎠ ,

πe,e123(U) =
1
4
(eUe + (e1)−1Ue1 + (e2)−1Ue2 + (e3)−1Ue12),

πe1,e23(U) =
1
4
(eUe + (e1)−1Ue1 − (e2)−1Ue2 − (e3)−1Ue3),

πe2,e13(U) =
1
4
(eUe − (e1)−1Ue1 + (e2)−1Ue2 − (e3)−1Ue3),

πe3,e12(U) =
1
4
(eUe − (e1)−1Ue1 − (e2)−1Ue2 + (e3)−1Ue3).

7. Conclusion

In the present paper we consider different operators

FS(U) =
1

|S|
∑

A∈S

(eA)−1UeA,

acting on real Clifford algebra C�(p, q). Note that all theorems of this paper
can be reformulated without changes for complex Clifford algebra.

We can also consider operators with other subsets S ⊆ I. Note that not
for every subset S ⊆ I, the set {eA|A ∈ S} is a group.

In [12] we consider the following operator in Clifford algebra C�(p, q)

F1(U) = eaUea

and prove that eaUea =
∑n

k=0(−1)k(n − 2k)πk(U).
In [14] we present the relation between this operator and projections

onto subspaces of fixed ranks. We use this relation to present new class of
gauge invariant solutions of Yang–Mills equations.

We can consider operators (1.1) with the following subsets S ⊆ I:

IEven = {A ∈ I, |A| − even}, IOdd = {A ∈ I, |A| − odd},

Ik = {A ∈ I, |A| = k}, k = 0, 1, . . . , n,

Ik = {A ∈ I, |A| = m mod 4}, m = 0, 1, 2, 3.

In the last case we use the concept of so-called quaternion type m [18] of
Clifford algebra element, m = 0, 1, 2, 3. There is a relation between these
operators and projective operators onto fixed subspaces of Clifford algebras.
This is a subject for further research.

In [21] we consider operators
∑

A γAUβA with 2 different sets γa, βa,
a = 1, . . . , n of Clifford algebra elements that satisfy

γaγb + γbγa = 2ηabe, βaβb + βbβa = 2ηabe.

We use these operators to prove generalized Pauli’s theorem and some other
problems about spin groups (see [15,17,19,20,22]).
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The results of this article (especially about the relation between projec-
tion operators and averaging operators; solving commutator equations) may
be used in computer calculations.
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