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ABSTRACT

We give a full classification of Lie algebras of specific type in
complexified Clifford algebras. These 16 Lie algebras are direct sums
of subspaces of quaternion types. We obtain isomorphisms between
these Lie algebras and classical matrix Lie algebras in the cases of
arbitrary dimension and signature. We present 16 Lie groups: one Lie
group for each Lie algebra associated with this Lie group. We study
connection between these groups and spin groups.
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1. Introduction

In this paper, we give a full classification of Lie algebras of specific type in complexified
Clifford algebras. These 16 Lie algebras are direct sums of subspaces of quaternion types
suggested by the author in the previous papers [1–3]. We obtain isomorphisms between
these Lie algebras and classical matrix Lie algebras in the cases of arbitrary dimension and
signature.

We present 16 Lie groups: one Lie group for each Lie algebra associated with this Lie
group. In the papers [4,5], we considered 5 of these 16 Lie groups and corresponding Lie
algebras and obtained isomorphisms with classical matrix Lie groups and Lie algebras. In
the current paper, we obtain results for 11 remaining Lie algebras.

In [5], we studied connection between these groups and spin groups Spin+(p, q). In the
current paper, we study relation between some of these groups and complex spin groups
Spin(n,C).

Note that some groups which are considered in the present paper are related to auto-
morphism groups of the scalar products on the spinor spaces (see [6–9]), but we do not use
this fact in the present paper. In [7], one found isomorphisms between groups G12

p,q, G23
p,q,

G12i12
p,q , G23i23

p,q , G23i01
p,q (also in [10]), G12i03

p,q and classical matrix Lie groups. In the present
paper, we obtain these isomorphisms and also isomorphisms for the other groups using
different techniques based on relations between operations of conjugations in Clifford
algebras and corresponding matrix operations. Our main goal is to obtain isomorphisms
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for corresponding Lie algebras. We use the notion of additional signature of complexified
Clifford algebras suggested by the author in the previous paper [11].

Let us consider the real Clifford algebra C�p,q and the complexified Clifford algebra
C ⊗ C�p,q, p + q = n, n ≥ 1. The constructions of C�p,q and C ⊗ C�p,q are discussed in
details in [6,7].

Let e be an identity element and let ea, a = 1, . . . , n be the generators of C�p,q, eaeb +
ebea = 2ηabe, where η = ||ηab|| is the diagonal matrix with +1 appearing p times on
the diagonal and −1 appearing q times on the diagonal. The elements ea1...ak = ea1 · · · eak ,
a1 < · · · < ak, k = 1, . . . , n, together with the identity element e form a basis of the Clifford
algebra C�p,q.

Let us denote a vector subspace spanned by the elements ea1...ak by C�kp,q. We have
C�p,q = ⊕n

k=0 C�
k
p,q. Clifford algebra is a Z2-graded algebra and it is represented as the

direct sum of even and odd subspaces:

C�p,q = C�(0)
p,q ⊕ C�(1)

p,q, C�(i)
p,qC�

(j)
p,q ⊆ C�(i+j)mod2

p,q , C�(i)
p,q =

⊕
k≡imod2

C�kp,q, i, j = 0, 1. (1)

2. Lie algebras of specific type in Clifford algebras and Lie groups

Let us consider C�p,q as a vector space and represent it in the form of the direct sum of four
subspaces of quaternion types 0, 1, 2 and 3 (see [1–3]):

C�p,q = 0 ⊕ 1 ⊕ 2 ⊕ 3, where s =
⊕

k≡smod4

C�kp,q, s = 0, 1, 2, 3.

We represent C ⊗ C�p,q in the form of the direct sum of eight subspaces: C ⊗ C�p,q =
0 ⊕ 1 ⊕ 2 ⊕ 3 ⊕ i0 ⊕ i1 ⊕ i2 ⊕ i3.
Theorem 2.1: The subspaces 0, 1, 2, and 3 have the following dimensions:

dim 0 = 2n−2 + 2
n−2
2 cos

πn
4
, dim 1 = 2n−2 + 2

n−2
2 sin

πn
4
, (2)

dim 2 = 2n−2 − 2
n−2
2 cos

πn
4
, dim 3 = 2n−2 − 2

n−2
2 sin

πn
4

.

Proof: Using Binomial Theorem

(1 + i)n =
n∑

k=0

Ck
ni

n =
( ∑

k≡0mod 4

Ck
n −

∑
k≡2mod 4

Ck
n

)
+ i

( ∑
k≡1mod 4

Ck
n −

∑
k≡3mod 4

Ck
n

)
,

where Ck
n = n!

k!(n−k)! are binomial coefficients, and

(1 + i)n =
(√

2
(
cos

π

4
+ i sin

π

4

))n

= (2)
n
2

(
cos

πn
4

+ i sin
πn
4

)
,

we get
∑

k≡0mod 4

Ck
n −

∑
k≡2mod 4

Ck
n = 2

n
2 cos

πn
4
,

∑
k≡0mod 1

Ck
n −

∑
k≡3mod 4

Ck
n = 2

n
2 sin

πn
4

.
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Taking into account1

∑
k≡0mod 4

Ck
n +

∑
k≡2mod 4

Ck
n = 2n−1,

∑
k≡1mod 4

Ck
n +

∑
k≡3mod 4

Ck
n = 2n−1,

we obtain

dim 0 =
∑

k≡0mod 4

dimC�kp,q =
∑

k≡0mod 4

Ck
n = 2n−2 + 2

n−2
2 cos

πn
4

and similarly for the other subspaces.

Using the method of quaternion typification of Clifford algebra elements, we can find
the following Lie algebras. We only want to consider Lie subalgebras that are direct sums
of subspaces of quaternion types.
Theorem 2.2: The complexified Clifford algebra C ⊗ C�p,q has the following Lie subalge-
bras2

2, 02, 12, 23, 2 ⊕ i0, 2 ⊕ i1, 2 ⊕ i2, 2 ⊕ i3, 0123, (3)
02 ⊕ i02, 12 ⊕ i12, 23 ⊕ i23, 02 ⊕ i13, 12 ⊕ i03, 23 ⊕ i01.

Note that the first four subsets 2, 02, 12, 23 are Lie subalgebras of the real Clifford algebra
0123 = C�p,q.

Proof: Using the properties (see [1–3])

[k, k] ⊆ 2, k = 0, 1, 2, 3;
[k, 2] ⊆ k, k = 0, 1, 2, 3; (4)
[0, 1] ⊆ 3, [0, 3] ⊆ 1, [1, 3] ⊆ 0,

where [U ,V ] = UV −VU is the commutator of arbitrary Clifford algebra elementsU and
V , we obtain each set in (3) is closed with respect to the commutator.

We can represent these Lie subalgebras in the way as in Figure 1. Every arrow means
that one Lie algebra is a Lie subalgebra of the other.

Any element U ∈ C�p,q can be written in the form

U = ue +
∑
a

uaea +
∑
a1<a2

ua1a2ea1a2 + · · · + u1...ne1...n, (5)

where u, ua, ua1a2 , …, u1...n are real numbers. For arbitrary element U ∈ C ⊗ C�p,q we use
the same notation (5), where u, ua, ua1a2 , . . . , u1...n are complex numbers.

Consider the following well-known involutions in C�p,q and C ⊗ C�p,q:

Û = U |ea→−ea , Ũ = U |ea1...ar→ear ...ea1 ,

1872 D. S. SHIROKOV



Figure 1. Subspaces of quaternion types as Lie subalgebras ofC ⊗ C�p,q.

where U has the form (5). The operation U → Û is called grade involution and U → Ũ
is called reversion. Also we have an operation of complex conjugation

Ū = ūe +
∑
a

ūaea +
∑
a1<a2

ūa1a2ea1a2 +
∑

a1<a2<a3

ūa1a2a3ea1a2a3 + · · · + ū1...ne1...n,

where we take the complex conjugation of the complex numbers ua1...ak . Superposition
of reversion and complex conjugation is pseudo-Hermitian conjugation of Clifford algebra
elements3

U‡ = ˜̄U .

In the real Clifford algebra C�p,q, we have U‡ = Ũ , because Ū = U .
Note that grade involution and reversion uniquely determine subspaces of quaternion

types:

s =
⊕

k=smod4

C�kp,q = {U ∈ C�p,q | Û = ( − 1)sU , Ũ = ( − 1)
s(s−1)

2 U}, s = 0, 1, 2, 3.

Now, we can consider the following 16 Lie groups in C ⊗ C�p,q (see the second column
of Table 1):

(C ⊗ C�p,q)×, C�×
p,q, C�(0)×

p,q , (C ⊗ C�(0)
p,q)

×, (C�(0)
p,q ⊕ iC�(1)

p,q)
×, G23i01

p,q ,

G12i03
p,q , G2i0

p,q , G23i23
p,q , G12i12

p,q , G2i2
p,q , G2i1

p,q , G2i3
p,q , G12

p,q, G23
p,q, G2

p,q.

Theorem 2.3: The following subsets of C ⊗ C�p,q in the second column of Table 1 are Lie
groups. The following subsets of C ⊗ C�p,q in the third column of Table 1 are Lie algebras
of the corresponding Lie groups in the second column of Table 1. These Lie groups and Lie
algebras have the dimensions given in the forth column of Table 1.

Proof: The Lie groups in Table 1 are subsets of the group (C⊗C�p,q)× and they are closed
under products and inverses. Therefore, they are subgroups of the group (C ⊗ C�p,q)×.
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Table 1. Lie groups and corresponding Lie algebras of specific type in Clifford algebras.

Lie group Lie algebra dimension

1 (C ⊗ C�p,q)× = {U ∈ C ⊗ C�p,q | ∃U−1} 0123 ⊕ i0123 2n+1

2 C�×
p,q = {U ∈ C�p,q | ∃U−1} 0123 2n

3 C�(0)×
p,q = {U ∈ C�(0)

p,q | ∃U−1} 02 2n−1

4 (C ⊗ C�(0)
p,q)

× = {U ∈ C ⊗ C�p,q | ∃U−1} 02 ⊕ i02 2n

5 (C�(0)
p,q ⊕ iC�(1)

p,q)
× = {U ∈ C�(0)

p,q ⊕ iC�(1)
p,q | ∃U−1} 02 ⊕ i13 2n

6 G23i01
p,q = {U ∈ C ⊗ C�p,q |U‡U = e} 23 ⊕ i01 2n

7 G12i03
p,q = {U ∈ C ⊗ C�p,q | Û‡U = e} 12 ⊕ i03 2n

8 G2i0
p,q = {U ∈ C�(0)

p,q |U‡U = e} 2 ⊕ i0 2n−1

9 G23i23
p,q = {U ∈ C ⊗ C�p,q | ŨU = e} 23 ⊕ i23 2n − 2

n+1
2 sin π(n+1)

4

10 G12i12
p,q = {U ∈ C ⊗ C�p,q | ˆ̃UU = e} 12 ⊕ i12 2n − 2

n+1
2 cos π(n+1)

4
11 G2i2

p,q = {U ∈ C ⊗ C�(0)
p,q | ŨU = e} 2 ⊕ i2 2n−1 − 2

n
2 cos πn

4

12 G2i1
p,q = {U ∈ C�(0)

p,q ⊕ iC�(1)
p,q |U‡U = e} 2 ⊕ i1 2n−1 − 2

n−1
2 cos π(n+1)

4

13 G2i3
p,q = {U ∈ C�(0)

p,q ⊕ iC�(1)
p,q | Û‡U = e} 2 ⊕ i3 2n−1 − 2

n−1
2 sin π(n+1)

4

14 G23
p,q = {U ∈ C�p,q | ŨU = e} 23 2n−1 − 2

n−1
2 sin π(n+1)

4

15 G12
p,q = {U ∈ C�p,q | ˆ̃UU = e} 12 2n−1 − 2

n−1
2 cos π(n+1)

4

16 G2
p,q = {U ∈ C�(0)

p,q , | ŨU = e} 2 2n−2 − 2
n−2
2 cos πn

4

Let us prove, for example, that 23⊕ i23 is a Lie algebra of the corresponding Lie group
G23i23
p,q . Let U be an arbitrary element of G23i23

p,q . Then U = e + εu, where ε2 = 0 and u is
an arbitrary element of the corresponding Lie algebra. Then

e = ŨU = (e − εũ)(e + εu) = e + ε(u − ũ).

Therefore, u = ũ, i.e. u ∈ 23 ⊕ i23. We can similarly prove the statement for the other
Lie groups and the corresponding Lie algebras. Using Theorem 2.1, we get the dimension
result.

Note that some Lie groups in the second column of Table 1 are Lie subgroups of other
Lie groups. This property is the same as the corresponding Lie algebras (see Figure 1).

Note that all the Lie groups in Table 1 contain the spin group Spin+(p, q). Similarly, all
Lie algebras in Table 1 contain the Lie algebra C�2p,q of the spin group Spin+(p, q) because
C�2p,q ⊂ 2.We discuss relation between Spin+(p, q) and the groupG2

p,q in [5]. In the current
paper we discuss relation between the complex spin group Spin(n,C) and the group G2i2

p,q
(see below). Note that Salingaros group Gp,q = {±e,±ea1 ,±ea1a2 , . . . ,±e1...n} [9,13,14] is
a subgroup of Spin+(p, q) and all groups in the second column of Table 1.

Our goal is to obtain isomorphisms between the 16 Lie algebras in the third column of
Table 1 and classical matrix Lie algebras. To do this, we obtain isomorphisms between Lie
groups in the second column of Table 1 and the corresponding matrix Lie groups.

We have already obtained isomorphisms for the Lie algebras 2⊕ i1, 2⊕ i3, 12, 23, 2with
numbers 12-16 in Table 1 (they are blue in Figure 1). These Lie algebras are isomorphic to
the linear, orthogonal, symplectic and unitary classical Lie algebras in different cases (see
papers [4,5]). Now, we are interested in Lie algebras with numbers 1–11 in Table 1.

1874 D. S. SHIROKOV



3. Lie algebras 0123 ⊕ i0123, 0123, 02, 02 ⊕ i02, 02 ⊕ i13

Let us consider the Lie algebras 0123⊕ i0123, 0123, 02, 02⊕ i02, 02⊕ i13 with numbers
1-5 in Table 1 (they are red in Figure 1).
Theorem 3.1: We have the following Lie algebra isomorphisms

0123 ⊕ i0123 ∼=
{

gl(2
n
2 ,C), if n is even;

gl(2
n−1
2 ,C) ⊕ gl(2

n−1
2 ,C), if n is odd,

(6)

0123 ∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

gl(2
n
2 ,R), if p − q ≡ 0; 2 mod 8;

gl(2
n−1
2 ,R) ⊕ gl(2

n−1
2 ,R), if p − q ≡ 1 mod 8;

gl(2
n−1
2 ,C), if p − q ≡ 3; 7 mod 8;

gl(2
n−2
2 ,H), if p − q ≡ 4; 6 mod 8;

gl(2
n−3
2 ,H) ⊕ gl(2

n−3
2 ,H), if p − q ≡ 5 mod 8,

(7)

02 ∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

gl(2
n−1
2 ,R), if p − q ≡ 1; 7 mod 8;

gl(2
n−2
2 ,R) ⊕ gl(2

n−2
2 ,R), if p − q ≡ 0 mod 8;

gl(2
n−2
2 ,C), if p − q ≡ 2; 6 mod 8;

gl(2
n−3
2 ,H), if p − q ≡ 3; 5 mod 8;

gl(2
n−4
2 ,H) ⊕ gl(2

n−4
2 ,H), if p − q ≡ 4 mod 8,

(8)

02 ⊕ i02 ∼=
{

gl(2
n−1
2 ,C), if n is odd;

gl(2
n−2
2 ,C) ⊕ gl(2

n−2
2 ,C), if n is even,

(9)

02 ⊕ i13 ∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

gl(2
n
2 ,R), if p − q ≡ 0; 6 mod 8;

gl(2
n−1
2 ,R) ⊕ gl(2

n−1
2 ,R), if p − q ≡ 7 mod 8;

gl(2
n−1
2 ,C), if p − q ≡ 1; 5 mod 8;

gl(2
n−2
2 ,H), if p − q ≡ 2; 4 mod 8;

gl(2
n−3
2 ,H) ⊕ gl(2

n−3
2 ,H), if p − q ≡ 3 mod 8.

(10)

Proof: We use the following well-known isomorphisms of algebras [7, p.217]:

C�p,q ∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Mat(2
n
2 ,R), if p − q ≡ 0; 2 mod 8;

Mat(2
n−1
2 ,R) ⊕ Mat(2

n−1
2 ,R), if p − q ≡ 1 mod 8;

Mat(2
n−1
2 ,C), if p − q ≡ 3; 7 mod 8;

Mat(2
n−2
2 ,H), if p − q ≡ 4; 6 mod 8;

Mat(2
n−3
2 ,H) ⊕ Mat(2

n−3
2 ,H), if p − q ≡ 5 mod 8,

C ⊗ C�p,q ∼=
{
Mat(2

n
2 ,C), if n is even;

Mat(2
n−1
2 ,C) ⊕ Mat(2

n−1
2 ,C), if n is odd,

(11)

and the following isomorphisms

C�p,q−1 ∼= C�(0)
p,q, C�(0)

p,q ⊕ iC�(1)
p,q ∼= C�q,p. (12)
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To prove the first isomorphism from (12) we must change the basis of C�p,q−1:

ea → eaen, a = 1, 2, . . . , n − 1, (en)2 = −e.

The elements eaen, a = 1, 2, . . . , n − 1 generate C�(0)
p,q.

To prove the second isomorphism from (12), we must change the basis of C�q,p:

ea → iea, a = 1, 2, . . . , n.

Since (iea)2 = −(ea)2, it follows that the signature (q, p) changes to (p, q). Using (1), we
conclude that C�q,p changes to C�

(0)
p,q ⊕ iC�(1)

p,q which is closed under multiplication.
Therefore, we obtain the following Lie group isomorphisms

(C ⊗ C�p,q)× ∼=
{
GL(2

n
2 ,C), if n is even;

GL(2
n−1
2 ,C) ⊕ GL(2

n−1
2 ,C), if n is odd,

C�×
p,q

∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

GL(2
n
2 ,R), if p − q ≡ 0; 2 mod 8;

GL(2
n−1
2 ,R) ⊕ GL(2

n−1
2 ,R), if p − q ≡ 1 mod 8;

GL(2
n−1
2 ,C), if p − q ≡ 3; 7 mod 8;

GL(2
n−2
2 ,H), if p − q ≡ 4; 6 mod 8;

GL(2
n−3
2 ,H) ⊕ GL(2

n−3
2 ,H), if p − q ≡ 5 mod 8,

C�(0)×
p,q ∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

GL(2
n−1
2 ,R), if p − q ≡ 1; 7 mod 8;

GL(2
n−2
2 ,R) ⊕ GL(2

n−2
2 ,R), if p − q ≡ 0 mod 8;

GL(2
n−2
2 ,C), if p − q ≡ 2; 6 mod 8;

GL(2
n−3
2 ,H), if p − q ≡ 3; 5 mod 8;

GL(2
n−4
2 ,H) ⊕ GL(2

n−4
2 ,H), if p − q ≡ 4 mod 8,

(C ⊗ C�(0)
p,q)

× ∼=
{
GL(2

n−1
2 ,C), if n is odd;

GL(2
n−2
2 ,C) ⊕ GL(2

n−2
2 ,C), if n is even,

(C�(0)
p,q ⊕ iC�(1)

p,q)
× ∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

GL(2
n
2 ,R), if p − q ≡ 0; 6 mod 8;

GL(2
n−1
2 ,R) ⊕ GL(2

n−1
2 ,R), if p − q ≡ 7 mod 8;

GL(2
n−1
2 ,C), if p − q ≡ 1; 5 mod 8;

GL(2
n−2
2 ,H), if p − q ≡ 2; 4 mod 8;

GL(2
n−3
2 ,H) ⊕ GL(2

n−3
2 ,H), if p − q ≡ 3 mod 8.

Using these Lie group isomorphisms, we obtain the Lie algebra isomorphisms of the
theorem.

4. Theorem on faithful and irreducible representations of complexified
Clifford algebras with additional properties

We need the following theorem to obtain isomorphisms for the groups with numbers
6–11 in Table 1. Note that we use a similar method in [4,5]. In these papers, we use
faithful and irreducible matrix representations of the real Clifford algebras C�p,q to obtain
theorems for the groups with numbers 12-16 in Table 1. We use faithful and irreducible
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matrix representations of the complexifiedClifford algebrasC⊗C�p,q with some additional
properties.

Let us consider a diagonal matrix J = diag(1, . . . , 1,−1, . . . ,−1) of arbitrary even size
with the same number of 1’s and −1’s on the diagonal. We denote the block-diagonal
matrix with two identical blocks J by diag(J , J).
Theorem 4.1: There exists a faithful and irreducible representation of C ⊗C�p,q over C or
C ⊕ C

γ : C ⊗ C�p,q →
{
Mat(2

n
2 ,C), if n is even;

Mat(2
n−1
2 ,C) ⊕ Mat(2

n−1
2 ,C), if n is odd

such that

(γa)
† = ηaaγa, a = 1, . . . , n, (13)

where γa := γ (ea) and † is the Hermitian transpose of a matrix, and

• in the case of even n, p = 0

γ1...p = αpJ , αp =
{
1, if p ≡ 0, 1 mod 4;
i, if p ≡ 2, 3 mod 4, (14)

• in the case of even n, q = 0

γp+1...n = σqJ , σq =
{
1, if q ≡ 0, 3 mod 4;
i, if q ≡ 1, 2 mod 4, (15)

• in the case of odd n ≥ 3, p = 0 is even, and q is odd

γ1...p = αpdiag(J , J),

• in the case of odd n ≥ 3, q = 0 is even, and p is odd

γp+1...n = σqdiag(J , J).

Moreover, in the last two cases all block-diagonal matrices γa, a = 1, . . . , n consist of two
blocks of the same size that differ only in sign.

Proof: Let us construct the following representation β of C ⊗ C�p,q over C or C ⊕ C

β : C ⊗ C�p,q →
{
Mat(2

n
2 ,C), if n is even;

Mat(2
n−1
2 ,C) ⊕ Mat(2

n−1
2 ,C), if n is odd,

using the following algorithm.
For the identity element of C ⊗C�p,q, we always use the identity matrix β(e) = 1 of the

corresponding size. For basis element ea1...ak , we use the matrix that equals the product of
matrices corresponding to ea1 , …, ak .

We present the matrix representation β : ea → βa of C ⊗ C�n,0 below. To obtain the
matrix representation ofC⊗C�p,q, q = 0, we shouldmultiplymatrices βa, a = p+1, . . . , n
by i.
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In the cases of small dimensions, we construct β in the following way:

• In the case C ⊗ C�1,0: β(e1) = diag(1,−1).

• In the case C ⊗ C�2,0: β(e1) = diag(1,−1), β(e2) =
(
0 1
1 0

)
.

The representation β (overC orC⊗C) is faithful and irreducible in these particular cases.
Suppose that we have the faithful and irreducible matrix representation β of C ⊗ C�p,q for
even n = p+q = 2k: β(ea) = βa, a = 1, . . . , n. Then, for the complexified Clifford algebra
with p + q = n + 1 = 2k + 1 we use the following representation: ea → diag(βa,−βa),
a = 1, . . . , n, en+1 → diag(ikβ1 · · · βn,−ikβ1 · · · βn). For the complexifiedClifford algebra
with p + q = n + 2 = 2k + 2 we use the following representation: the same for ea,

a = 1, . . . , n + 1 as in the previous case, and en+2 →
(
0 1
1 0

)
.

Using this recursive method we obtain the faithful and irreducible representation β of
all C ⊗ C�p,q (see isomorphisms (11)).

Let us give some examples.

C ⊗ C�3,0: e1 → β1 = diag(1,−1,−1, 1), e2 → β2 =

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎟⎠ ,

e3 → β3 =

⎛
⎜⎜⎝
0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0

⎞
⎟⎟⎠ .

C ⊗ C�4,0: e1 → β1, e2 → β2, e3 → β3, e4 → β4 =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ .

C ⊗ C�1,3: e1 → β1, e2 → iβ2, e3 → iβ3, e4 → iβ4.

Note that

(βa)
† = ηaaβa, a = 1, . . . , n. (16)

Let us consider the case of even n and the matrix M = 1
αp

β1...p, where αp is defined in
(14). We have

M2 = 1
α2
p
( − 1)

p(p−1)
2 β1 . . . βpβp . . . β1 = 1.

Using (16), we get M† = M−1. Using M2 = 1 and trM = 0,4 we conclude that the
spectrumofM consists of the same numbers of 1’s and−1’s. Therefore, there exists unitary
matrix T† = T−1 such that T−1MT = J .Now, we consider transformation T−1βaT = γa
and obtain another matrix representation γ of C ⊗ C�p,q with γ1...p = T−1β1...pT = αpJ
and (13) because of (16) and T† = T−1:

(γa)
† = (T−1βaT)† = T†(βa)

†(T−1)† = T−1ηaaβaT = ηaaγa.
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We can prove the second statement of the theorem similarly. We takeM = 1
σq

βp+1...n
and obtain

M2 = 1
σ 2
q
( − 1)

q(q−1)
2 ( − 1)q1 = 1.

Let us consider the case of C ⊗ C�p,q with odd n = p + q. Let p be even. We use the
faithful and irreducible representation β of C ⊗ C�p,q. We have (16) and the matrices βa
consist of two blocks that differ only in sign. Since p is even, it follows that the matrix
β1...p = diag(D,D) consists of two identical blocks which we denote by D. Let us consider
the matrix M = 1

αp
β1...p. We have M2 = 1, M† = M, and trM = 0. Therefore, D2 = 1,

D† = D and trD = 0. There exists unitary matrix T†
1 = T−1

1 such that

T−1
1 DT1 = J ⇒ T−1MT = diag(J , J), T = diag(T1,T1).

We consider the transformation T−1βaT = γa and obtain another matrix representa-
tion γ . Since T† = T−1, it follows that γ †

a = ηaaγa and the matrices γa consist of two
blocks that differ only in sign.

We can prove the last statement of the theorem similarly.

Note that we can consider in C ⊗ C�p,q (and C�p,q) a linear operation (involution)
† : C ⊗ C�p,q → C ⊗ C�p,q such that (λea1...ak)

† = λ̄(ea1...ak)
−1, λ ∈ C. We call this

operationHermitian conjugation of Clifford algebra elements. This operation is well-known
and many authors use it, for example, in different questions of field theory in the case of
signature p = 1, q = 3. Formore details, see [12]. This operation is called the transposition
anti-involution in the case of real Clifford algebras in [16], [14], [9].

Note that we have the following relation between operation ofHermitian conjugation of
Clifford algebra elements † and other operations in complexified Clifford algebraC⊗C�p,q
(see [12])

U† = (e1...p)−1U‡e1...p, if p is odd;
U† = (e1...p)−1Û‡e1...p, if p is even; (17)
U† = (ep+1...n)

−1U‡ep+1...n, if q is even;
U† = (ep+1...n)

−1Û‡ep+1...n, if q is odd.

The Hermitian conjugation of Clifford algebra elements corresponds to the Hermitian
conjugation of matrix β(U†) = (β(U))† for the faithful and irreducible matrix represen-
tations over C and C ⊕ C of complexified Clifford algebra, based on the fixed idempotent
and the basis of the corresponding left ideal, see [12]. Similarly we have for the matrix
representation β from Theorem 4.1 because of properties (13).

5. Lie algebras 23 ⊕ i01, 12 ⊕ i03, 2 ⊕ i0

Let us consider the Lie algebras 23 ⊕ i01, 12 ⊕ i03, 2 ⊕ i0 with numbers 6–8 in Table 1
(they are yellow in Figure 1). One of them, G23i01

p,q , has been considered in [10] by Professor
J. Snygg. He calls it c-unitary group. We consider this group in different questions of field
theory [17] and call it pseudo-unitary group. In [10], you can find isomorphisms for the
groupG23i01

p,q . In the current paper, we present another proof using relations betweenmatrix
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operations and operations of conjugation in C ⊗ C�p,q. Also we obtain isomorphisms for
the groups G21i03

p,q and G2i0
p,q . Finally, we present isomorphisms for the corresponding Lie

algebras.
Theorem 5.1: We have the following Lie algebra isomorphisms

23 ⊕ i01 ∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u(2
n
2 ), if p is even and q = 0;

u(2
n−1
2 ) ⊕ u(2

n−1
2 ), if p is odd and q = 0;

u(2
n−2
2 , 2

n−2
2 ), if n is even and q = 0;

u(2
n−3
2 , 2

n−3
2 ) ⊕ u(2

n−3
2 , 2

n−3
2 ), if p is odd and q = 0 is even;

gl(2
n−1
2 ,C), if p is even and q is odd,

(18)

12 ⊕ i03 ∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u(2
n
2 ), if p = 0 and q is even;

u(2
n−1
2 ) ⊕ u(2

n−1
2 ), if p = 0 and q is odd;

u(2
n−2
2 , 2

n−2
2 ), if n is even and p = 0;

u(2
n−3
2 , 2

n−3
2 ) ⊕ u(2

n−3
2 , 2

n−3
2 ), if p = 0 is even and q is odd;

gl(2
n−1
2 ,C), if p is odd and q is even,

(19)

2 ⊕ i0 ∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u(2
n−1
2 ), if (n, 0) or (0, n), where n is odd;

u(2
n−2
2 ) ⊕ u(2

n−2
2 ), if (n, 0) or (0, n), when n is even;

u(2
n−3
2 , 2

n−3
2 ), if n is odd, p = 0, and q = 0;

u(2
n−4
2 , 2

n−4
2 ) ⊕ u(2

n−4
2 , 2

n−4
2 ), if p = 0 and q = 0 are even;

gl(2
n−2
2 ,C), if p and q are odd.

(20)

Proof: Let us prove the following Lie group isomorphisms

G23i01
p,q

∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U(2
n
2 ), if p is even and q = 0;

U(2
n−1
2 ) ⊕ U(2

n−1
2 ), if p is odd and q = 0;

U(2
n−2
2 , 2

n−2
2 ), if n is even and q = 0;

U(2
n−3
2 , 2

n−3
2 ) ⊕ U(2

n−3
2 , 2

n−3
2 ), if p is odd and q = 0 is even;

GL(2
n−1
2 ,C), if p is even and q is odd.

In the first two cases (q = 0) using definition of the group G23i01
p,q (see Table 1) and

formulas (17), from U‡U = e we obtain U†U = e and an isomorphism with unitary
group.

Now, we consider the cases q ≥ 1. Let n be even. If p and q are odd, then

U† = e1...pU‡(e1...p)−1 ⇒ U†e1...pU = e1...pU‡U = e1...p.

We use the first statement of Theorem 4.1. Since (γa)
† = ηaaγa, it follows that

γ (U†) = γ †(U). We obtain V†JV = J , where V ∈ Mat(2
n
2 ,C) and an isomorphism

with U(2
n−2
2 , 2

n−2
2 ).

In the case of even p and q we have

U† = ep+1...nU‡(ep+1...n)
−1 ⇒ U†ep+1...nU = ep+1...nU‡U = ep+1...n. (21)
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Then, we use the second statement of Theorem 4.1.
In the case of odd p and even q = 0 we have again (21). We use the forth statement of

Theorem 4.1. Every Clifford algebra element has a matrix representation diag(R, S) with
blocks R and S of the same size. We have

(diag(R, S))†diag(J , J)diag(R, S) = diag(J , J) ⇒ R†JR = J , S†JS = J

and obtain an isomorphism with direct sum of two pseudo-unitary groups.
Let us consider the case of even p and odd q. If p = 0, then

U† = e1...pÛ‡(e1...p)−1 ⇒ Û†e1...pU = e1...pU‡U = e1...p.

We use the matrix representation γ from the third statement of Theorem 4.1. Moreover,
we use the fact that γa are block-diagonal matrices with two blocks that differ in sign. Let
the even part of arbitrary element has matrix representation diag(A,A) and its odd part
has matrix representation diag(B,−B). We obtain

(diag(A − B,A + B))†diag(J , J)diag(A + B,A − B) = diag(J , J).

Equivalently, (A − B)†J(A + B) = J . Therefore, we have S†JR = J for R = A + B and
S = A−B. For every matrix S ∈ GL(2

n−1
2 ,C) there exists matrix R = J(S†)−1J . We obtain

an isomorphism with linear group.
In the cases of signatures (0, n), where n is odd, we use U† = Û‡ and obtain Û†U = e.

Therefore

(diag(A − B,A + B))†diag(A + B,A − B) = 1

and (A − B)†(A + B) = 1. We obtain S†R = 1 and an isomorphism with linear group
again.

We have G12i03
p,q

∼= G23i01
q,p . To obtain this isomorphism we must change the basis ea →

iea, a = 1, . . . , n. Note that after this transformation of basis the operation ˜ does not
change, but the operation c̄hanges to ¯̂∗. Therefore, the operation ‡ = ˜̄ changes to ‡̂ = ˜̂̄
(see definitions of the groups G12i03

p,q and G23i01
p,q ).

We obtain the following Lie group isomorphisms

G12i03
p,q

∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U(2
n
2 ), if p = 0 and q is even;

U(2
n−1
2 ) ⊕ U(2

n−1
2 ), if p = 0 and q is odd;

U(2
n−2
2 , 2

n−2
2 ), if n is even and p = 0;

U(2
n−3
2 , 2

n−3
2 ) ⊕ U(2

n−3
2 , 2

n−3
2 ), if p = 0 is even and q is odd;

GL(2
n−1
2 ,C), if p is odd and q is even.

(22)

We have G2i0
p,q

∼= G12i03
p,q−1

∼= G12i03
q,p−1. To obtain these isomorphisms we must change the

basis ea → eaen, a = 1, . . . , n − 1, (en)2 = −e.
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We obtain the following Lie group isomorphisms

G2i0
p,q

∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U(2
n−1
2 ), if (n, 0) or (0, n), where n is odd;

U(2
n−2
2 ) ⊕ U(2

n−2
2 ), if (n, 0) or (0, n), when n is even;

U(2
n−3
2 , 2

n−3
2 ), if n is odd, p = 0, and q = 0;

U(2
n−4
2 , 2

n−4
2 ) ⊕ U(2

n−4
2 , 2

n−4
2 ), if p = 0 and q = 0 are even;

GL(2
n−2
2 ,C), if p and q are odd.

Note that G2i0
p,q

∼= G2i0
q,p .

Using isomorphisms of Lie groups we obtain isomorphisms of the corresponding Lie
algebras.

6. Lie algebras 23 ⊕ i23, 12 ⊕ i12, 2 ⊕ i2

Let us consider the Lie algebras 23 ⊕ i23, 12 ⊕ i12, 2 ⊕ i2 with numbers 9–11 in Table 1
(they are green in Figure 1).
Theorem 6.1: We have the following Lie algebra isomorphisms

23 ⊕ i23 ∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

so(2
n
2 ,C), if n = 0, 2 mod 8;

sp(2
n−2
2 ,C), if n = 4, 6 mod 8;

so(2
n−1
2 ,C) ⊕ so(2

n−1
2 ,C), if n = 1 mod 8;

sp(2
n−3
2 ,C) ⊕ sp(2

n−3
2 ,C), if n = 5 mod 8;

gl(2
n−1
2 ,C), if n = 3, 7 mod 8,

(23)

12 ⊕ i12 ∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

so(2
n
2 ,C), if n = 0, 6 mod 8;

sp(2
n−2
2 ,C), if n = 2, 4 mod 8;

so(2
n−1
2 ,C) ⊕ so(2

n−1
2 ,C), if n = 7 mod 8;

sp(2
n−3
2 ,C) ⊕ sp(2

n−3
2 ,C), if n = 3 mod 8;

gl(2
n−1
2 ,C), if n = 1, 5 mod 8,

(24)

2 ⊕ i2 ∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

so(2
n−1
2 ,C), if n = 1, 7 mod 8;

sp(2
n−3
2 ,C), if n = 3, 5 mod 8;

so(2
n−1
2 ,C) ⊕ so(2

n−1
2 ,C), if n = 0 mod 8;

sp(2
n−3
2 ,C) ⊕ sp(2

n−3
2 ,C), if n = 4 mod 8;

gl(2
n−2
2 ,C), if n = 2, 6 mod 8.

(25)

Proof: Let us prove the following Lie group isomorphisms

G23i23
p,q

∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

O(2
n
2 ,C), if n = 0, 2 mod 8;

Sp(2
n−2
2 ,C), if n = 4, 6 mod 8;

O(2
n−1
2 ,C) ⊕ O(2

n−1
2 ,C), if n = 1 mod 8;

Sp(2
n−3
2 ,C) ⊕ Sp(2

n−3
2 ,C), if n = 5 mod 8;

GL(2
n−1
2 ,C), if n = 3, 7 mod 8.

(26)
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Table 2. Possible values of additional signature ofC ⊗ C�p,q.

n mod 8 (k mod 4, l mod 4)

0 (0, 0), (1, 3)
1 (1, 0)
2 (1, 1), (2, 0)
3 (2, 1)
4 (3, 1), (2, 2)
5 (3, 2)
6 (3, 3), (0, 2)
7 (0, 3)

To prove these Lie group isomorphisms, we need the notion of additional signature of
C ⊗ C�p,q suggested by the author in [11].

Suppose we have the faithful and irreduciblematrix representation β overC orC⊕C of
complexified Clifford algebra. We can always use such matrix representation in which all
matrices βa = β(ea) are symmetric or skew-symmetric. Let k be the number of symmetric
matrices among {βa, a = 1, . . . , n} for the matrix representation β , and l be the number of
skew-symmetric matrices among {βa, a = 1, . . . , n}. Let eb1 , . . . , ebk denote the generators
forwhich thematrices are symmetric. Similarly,wehave ec1 , . . . , ecl for the skew-symmetric
matrices.

We use the notion of additional signature of Clifford algebra when we study the relation
between matrix representation and operations of conjugation. In complexified Clifford
algebra, we have (see [11])

UT = (eb1...bk)
−1Ũeb1...bk , k is odd;

UT = (eb1...bk)
−1 ˜̂Ueb1...bk , k is even; (27)

UT = (ec1...cl )
−1Ũec1...cl , l is even;

UT = (ec1...cl )
−1 ˜̂Uec1...cl , l is odd,

where UT = β−1((β(U))T), and (β(U))T is the transpose of matrix β(U).
Numbers k and l depend on the matrix representation β . But they can take only certain

values despite dependence on the matrix representation.
In [11], we proved that in a complexified Clifford algebra we have only the following

possible values of additional signature as in Table 2.
We use the following notation from [11]. Denote by [kq] the number of symmetric

matrices in {βa, a = p+1, . . . , n}.Note that this number equals thenumberof all symmetric
and purely imaginary matrices at the same time in {βa, a = 1, . . . , n}. Denote by [lp] the
number of skew-symmetricmatrices in {βa, a = 1, . . . , p}. Note that this number equals the
number of all skew-symmetric and purely imaginary at the same time in {βa, a = 1, . . . , n}.
Denote by [lq] the number of skew-symmetric matrices in {βa, a = p + 1, . . . , n}. This
number equals the number of all skew-symmetric and real matrices at the same time in
{βa, a = 1, . . . , n}. Denote by [kp] the number of symmetric matrices in {βa, a = 1, . . . , p}.
Note that this number equals the number of all symmetric and real matrices at the same
time in {βa, a = 1, . . . , n}. We have n = [kp] + [lp] + [kq] + [lq].
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Let us return to the proof of Lie group isomorphisms (26). We denote by �, the block
matrix

� =
(
0 −1
1 0

)
.

We use the faithful and irreducible matrix representation β : ea → βa of C ⊗ C�p,q from
the proof of Theorem 4.1 (we can use the matrix representation γ from the statement of
Theorem 4.1 too).

Let us consider the case of even n. Let k and l be odd. From (27) we have UT =
(eb1...bk)

−1Ũeb1...bk . Thus, we obtain for elements of the group G23i23
p,q the condition

UTeb1...bkU = eb1...bk . Let us consider a real matrix M = βb1...bk (in the case of even
[kq]) orM = iβb1...bk (in the case of odd [kq]). We haveM† = M−1, trM = 0,

M2 = ( − 1)[kq](βb1...bk)
2 = ( − 1)

k(k−1)
2 +[kq]+[kq]1 = ( − 1)

k(k−1)
2 1.

Therefore, there exists an orthogonal matrix TT = T−1 such that T−1MT equals J in the
case k = 1 mod 4 (in the cases n = 0, 2 mod 8 by Table 2) or equals � in the case k = 3
mod 4 (in the cases n = 4, 6 mod 8 by Table 2). In both cases, we use transformation
ζa = T−1βaT and obtain another matrix representation ζ such that ζb1...bk equals J , iJ , or
�, i�. Using the fact that T is orthogonal, we conclude that thematrices ζa and βa are both
symmetric or antisymmetric for all a = 1, . . . , n. Therefore, we have the same formulas
about the connection between operations T and .̃ Now we use the matrix representation ζ

and obtain UTJU = J in the cases n = 0, 2 mod 8 or UT�U = � in the cases n = 4, 6
mod 8. We obtain isomorphisms with O(2

n
2 ,C) (because O(a, b,C) ∼= O(a + b,C)) or

Sp(2
n−2
2 ,C).

In the case of even k and even l = 0 we use UT = (ec1...cl )
−1Ũec1...cl . In the same way,

we choose the real matrixM = βc1...cl (in the case of even [lp]) orM = iβc1...cl (in the case
of odd [lp]). We have

M2 = ( − 1)[lp]( − 1)
l(l−1)

2 +[lq]1 = ( − 1)
l(l−1)

2 +l1 = ( − 1)
l(l+1)

2 1.

Therefore, we obtain an isomorphism with O(2
n
2 ,C) in the case l = 0 mod 4 (n = 0, 2

mod 8) or an isomorphism with Sp(2
n−2
2 ,C) in the case l = 3 mod 4 (n = 4, 6 mod 8).

In the case of even k and l = 0 (the cases n = 0, 2 mod 8), we obtain UT = Ũ and an
isomorphism with O(2

n
2 ,C).

Let us consider the case of odd n. In the case of odd k and l = 0 (n = 1 mod 8),
we obtain UT = Ũ and an isomorphism with O(2

n−1
2 ,C) ⊕ O(2

n−1
2 ,C). Let k be odd

and l = 0 be even (the cases n = 1, 5 mod 8). We use UT = (ec1...cl )
−1Ũec1...cl . Let us

consider the matrixM = βc1...cl (in the case of even [lp]) or the matrixM = iβc1...cl (in the
case of odd [lp]). This matrix consists of two identical blocksD:M = diag(D,D). We have
M† = M−1, trM = 0, andM2 = ( − 1)[lp]( − 1)

l(l−1)
2 +[lq]1 = ( − 1)

l(l+1)
2 1. We obtain an

isomorphism with O(2
n−1
2 ,C) ⊕ O(2

n−1
2 ,C) in the case l = 0 mod 4 (n = 1 mod 8) or

an isomorphismwith Sp(2
n−3
2 ,C)⊕Sp(2

n−3
2 ,C) in the case l = 2 mod 4 (n = 5 mod 8).

In the case of even k and odd l (n = 3, 7 mod 8) we use UT = (eb1...bk)
−1 ˆ̃Ueb1...bk .

Similarly, we obtain ÛTJU = J or ÛT�U = �. Moreover, we use the fact that βa
are block-diagonal matrices with two blocks that differ in sign. The same is true for the
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matrices ζa = T−1βaT because thematrixT is block-diagonal. Let the evenpart of arbitrary
element has matrix representation diag(A,A) and its odd part has matrix representation
diag(B,−B). Then

diag(A − B,A + B)Tdiag(J , J)diag(A + B,A − B) = diag(J , J),

or, equivalently, (A − B)TJ(A + B) = J , (or the same equation, where J changes to �). In
both cases we obtain an isomorphism with GL(2

n−1
2 ,C).

In the case of k = 0 and odd l, we similarly obtain ÛTU = 1. Then

diag(A − B,A + B)Tdiag(A + B,A − B) = 1

and (A−B)T(A+B) = 1. We obtain an isomorphism with GL(2
n−1
2 ,C). We can similarly

obtain the following Lie group isomorphisms

G12i12
p,q

∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

O(2
n
2 ,C), if n = 0, 6 mod 8;

Sp(2
n−2
2 ,C), if n = 2, 4 mod 8;

O(2
n−1
2 ,C) ⊕ O(2

n−1
2 ,C), if n = 7 mod 8;

Sp(2
n−3
2 ,C) ⊕ Sp(2

n−3
2 ,C), if n = 3 mod 8;

GL(2
n−1
2 ,C), if n = 1, 5 mod 8.

We have
G12i12
p1,q1

∼= G2i2
p2,q2 , p1 + q1 + 1 = p2 + q2.

To obtain this isomorphism we must change the basis ea → eaen, a = 1, 2, . . . , n − 1.
Therefore, we have the following Lie group isomorphisms

G2i2
p,q

∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

O(2
n−1
2 ,C), if n = 1, 7 mod 8;

Sp(2
n−3
2 ,C), if n = 3, 5 mod 8;

O(2
n−1
2 ,C) ⊕ O(2

n−1
2 ,C), if n = 0 mod 8;

Sp(2
n−3
2 ,C) ⊕ Sp(2

n−3
2 ,C), if n = 4 mod 8;

GL(2
n−2
2 ,C), if n = 2, 6 mod 8.

(28)

Using Lie group isomorphisms, we obtain isomorphisms of the corresponding Lie
algebras.

Note that the groups G23i23
p,q , G12i12

p,q , G2i2
p,q and the correponding Lie algebras 23 ⊕ i23,

12⊕ i12, 2⊕ i2 depend only on n = p+q. However, the groups from the previous section
G12i03
p,q , G23i01

p,q , G2i0
p,q and the corresponding Lie algebras 12 ⊕ i03, 23 ⊕ i01, 2 ⊕ i0 depend

on p and depend on q. They change after the transformation ea → iea.

7. Relation between G2i2
p,q and complex spin groups Spin(n,C)

Let us consider the complex spin groups

Spin(n,C) = {U ∈ (C ⊗ C�(0)
p,q)

× | ∀x ∈ C�1p,q U−1xU ∈ C�1p,q, ŨU = e}.
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These groups are subgoupsof the groupsG2i2
p,q , G12i12

p,q , G23i23
p,q , (C⊗C�(0)

p,q)
×, and (C⊗C�p,q)×.

The groups Spin(n,C) are double covers of SO(n,C) (see [7]). It is well-known that
Spin(n,C) is isomorphic to the following classical matrix Lie groups (see [7])

Spin(n,C) ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{±1}, if = 0;
O(1,C), if n = 1;
GL(1,C), if n = 2;
Sp(2,C), if n = 3;
Sp(2,C) ⊕ Sp(2,C), if n = 4;
Sp(4,C), if n = 5;
SL(4,C), if n = 6.

Note that Spin(n,C) coincides with G2i2
p,q in the cases n ≤ 5. In the case n = 6, the

condition ∀x ∈ C�1p,q, U−1xU ∈ C�1p,q from the definition of Spin(6,C) leads to the
condition det γ (U) = 1 for the matrix representation γ and we obtain SL(4,C) (not
GL(4,C) as for the group G2i2

p,q).
Note that in the cases n ≥ 6 Spin(n,C) is a subgroup of G2i2

p,q . Therefore we know the
classical matrix groups (28) that contain Spin(n,C) in the cases n ≥ 6.

Notes

1. One can easily obtain these expressions using twice Binomial Theorem: 0 = (1 − 1)n =∑n
k=0 ( − 1)kCk

n and 2n = (1 + 1)n = ∑n
k=0 C

k
n .

2. Here and below we omit the sign of the direct sum to simplify notation: 0 ⊕ 2 = 02,
i1 ⊕ i3 = i13, 0 ⊕ 1 ⊕ 2 ⊕ 3 = 0123, etc.

3. The pseudo-Hermitian conjugation of Clifford algebra elements is related to the pseudo-
unitary matrix groups as Hermitian conjugation is related to the unitary groups, see [10,12].

4. Because, trace of this matrix equals (up to multiplication by a constant) the projection of
element e1...p onto the subspace C�0p,q (see [15]) that is zero.
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