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In this paper, we present all constant solutions of the Yang-Mills equations with SU(2) gauge symmetry for an
arbitrary constant non-Abelian current in Euclidean space Rn of arbitrary finite dimension n. Using the invari-
ance of the Yang-Mills equations under the orthogonal transformations of coordinates and gauge invariance,
we choose a specific system of coordinates and a specific gauge fixing for each constant current and obtain all
constant solutions of the Yang-Mills equations in this system of coordinates with this gauge fixing, and then
in the original system of coordinates with the original gauge fixing. We use the singular value decomposition
method and the method of two-sheeted covering of orthogonal group by spin group to do this. We prove that the
number (0, 1, or 2) of constant solutions of the Yang-Mills equations in terms of the strength of the Yang-Mills
field depends on the singular values of the matrix of current. The explicit form of all solutions and the invariant
F2 can always be written using singular values of this matrix. The relevance of the study is explained by the
fact that the Yang-Mills equations describe electroweak interactions in the case of the Lie group SU(2). Non-
constant solutions of the Yang-Mills equations can be considered in the form of series of perturbation theory.
The results of this paper are new and can be used to solve some problems in particle physics, in particular, to
describe physical vacuum and to fully understand a quantum gauge theory.
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1. Introduction

Up to now the law of elementary particles physics is given by quantum gauge theories [5]. We need
exact solutions of classical Yang-Mills equations to describe the vacuum structure of the theory and
to fully understand a quantum gauge theory [15]. During the last 50 years, many scientists have been
searching for particular classes of solutions of the Yang-Mills equations. The well-known classes
of solutions of the Yang-Mills equations are described in detail in various reviews [1], [22]. Only
certain (nontrivial) classes of particular solutions of these equations are known because of their
nonlinearity: monopoles [21], [10], [16], instantons [4], [20], [3], merons [2], etc.

The main result of this paper is the presentation of all constant (that do not depend on x ∈ Rn)
solutions of the Yang-Mills equations with SU(2) gauge symmetry for an arbitrary constant non-
Abelian current in Euclidean space of arbitrary finite dimension. The relevance of the study is
explained by the fact that the Yang-Mills equations describe electroweak interactions in the case
of the Lie group SU(2). Note that instantons are solutions in Euclidean space-time (with imaginary
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time) and thus the Euclidean case (not only Minkowski case) is important for applications. Constant
solutions of the Yang-Mills equations are essentially nonlinear solutions and, from this point of
view, are particularly interesting for applications.

Constant solutions of the Yang-Mills equations with zero current were considered in [17] and
[18]. In [17], Prof. R. Schimming wrote: “The following problems concerning constant Yang-Mills
fields are actual ones in our opinion: Is there a gauge- and coordinate-invariant characterization
of those Yang-Mills fields which admit constant potentials with respect to some gauge and some
coordinate system? Find as many as possible (in the ideal case: all) constant Yang-Mills fields and
classify them! . . . ” In the current paper, we give a complete answer to these questions in the case
of the Lie group SU(2). Our results for an arbitrary current are consistent with the results of [17]
and [18] for zero current (and arbitrary compact Lie algebra).

In this paper, we present the general solution of the special system (system of the SU(2)
Yang-Mills equations for constant solutions with arbitrary current) of 3n cubic equations with 3n
unknowns and 3n parameters. This algebraic problem is solved using the singular value decompo-
sition method and the method of two-sheeted covering of orthogonal group by spin group. Using
the invariance of the Yang-Mills equations under the orthogonal transformations of coordinates and
gauge invariance, we choose a specific system of coordinates and a specific gauge fixing for each
constant current and obtain all constant solutions of the Yang-Mills equations in this system of coor-
dinates with this gauge fixing, and then in the original system of coordinates with the original gauge
fixing.

2. The main ideas

Let us consider Euclidean space Rn of arbitrary finite dimension n. We denote Cartesian coordinates
by xµ , µ = 1, . . . ,n and partial derivatives by ∂µ = ∂/∂xµ .

Let us consider the Lie group

G = SU(2) = {S ∈Mat(2,C) |S†S = 1,detS = 1}, dimG = 3 (2.1)

and the corresponding Lie algebra

g= su(2) = {S ∈Mat(2,C) |S† =−S, trS = 0}, dimg= 3. (2.2)

Denote by gTa
b a set of tensor fields of Rn of type (a,b) with values in the Lie algebra g. The

metric tensor of Rn is given by the identity matrix 1 = diag(1, . . . ,1) = ‖δµν‖ = ‖δ µν‖. We can
raise or lower indices of components of tensor fields with the aid of the metric tensor. For example,
Fµν = δ µαδ νβ Fαβ .

Let us consider the Yang-Mills equations

∂µAν −∂νAµ − [Aµ ,Aν ] = Fµν , (2.3)

∂µFµν − [Aµ ,Fµν ] = Jν , (2.4)

where Aµ ∈ gT1 is the potential, Jν ∈ gT1 is the non-Abelian current, Fµν = −Fνµ ∈ gT2 is the
strength of the Yang-Mills field. One suggests that Aµ ,Fµν are unknown and Jν is known.
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Note that (2.3) can be considered as a definition of the strength

Fµν := ∂µAν −∂νAµ − [Aµ ,Aν ]. (2.5)

We can substitute the components of the skew-symmetric tensor Fµν from (2.3) into (2.4) and obtain

∂µ(∂
µAν −∂

νAµ − [Aµ ,Aν ])− [Aµ ,∂
µAν −∂

νAµ − [Aµ ,Aν ]] = Jν . (2.6)

From this point of view, the system (2.3)-(2.4) can be considered as a system for the uknown Aµ

and the known Jν . For each potential Aµ , the corresponding strength (2.5) can be calculated. Note
that from a physical point of view, strength is important, not potential. Also note that a special
case of the system (2.3)-(2.4) for the Abelian Lie group G = U(1) (Maxwell’s equations) can be
considered only for the unknown Fµν and the known Jν , but in this paper, we consider the case of
the non-Abelian Lie group G = SU(2) and need the potential Aµ for calculations.

We may verify that the current (2.4) satisfies the non-Abelian conservation law

∂νJν − [Aν ,Jν ] = 0. (2.7)

The Yang-Mills equations are gauge invariant. Namely, the transformed tensor fields

Áµ = S−1AµS−S−1
∂µS,

F́µν = S−1FµνS, S = S(x) : Rn→ G, (2.8)

J́ν = S−1JνS

satisfy the same equations

∂µ Áν −∂ν Áµ − [Áµ , Áν ] = F́µν ,

∂µ F́µν − [Áµ , F́µν ] = J́ν .

One says equations (2.3)-(2.4) are gauge invariant w.r.t. the transformations (2.8). The Lie group G
is called the gauge group of the Yang-Mills equations.

From (2.6), we obtain the following algebraic system of equations for constant solutions (that
do not depend on x ∈ Rn)

[Aµ , [Aµ ,Aν ]] = Jν , ν = 1, . . . ,n, (2.9)

and the following expression for the strength of the Yang-Mills field

Fµν =−[Aµ ,Aν ].

Constant solutions of the Yang-Mills equations with zero current Jµ = 0 were considered in [17]
and [18]. In this paper, we give all solutions of (2.9) for an arbitrary constant non-Abelian current
Jν , ν = 1, . . . ,n.

Note that we have already studied constant solutions of the Yang-Mills-Proca equations, which
generalize the Yang-Mills equations and the Proca equation, in [13] and covariantly constant solu-
tions of the Yang-Mills equations in [12], [14], [19] using the techniques of Clifford algebras. We
do not use these results in the current paper.

Our aim is to obtain a general solution Aµ ∈ su(2)T1 of (2.9) for any Jµ ∈ su(2)T1. If n= 1, then
(2.9) transforms into 0 = J1. Therefore, the equation (2.9) has an arbitrary solution A1 ∈ gT1 for
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J1 = 0 and it has no solutions for J1 6= 0. Note that two dimensional Yang-Mills theory is discussed
in [8] and other papers. We consider the case n≥ 2 further for the sake of completeness.

The Pauli matrices σa, a = 1,2,3

σ
1 =

(
0 1
1 0

)
, σ

2 =

(
0 −i
i 0

)
, σ

3 =

(
1 0
0 −1

)
(2.10)

satisfy

(σa)† = σ
a, trσa = 0, {σa,σb}= 2δ

ab1, [σa,σb] = 2iεab
c σ

c,

where εab
c = εabc is the antisymmetric Levi-Civita symbol, ε123 = 1.

We can take the following basis of the Lie algebra su(2):

τ
1 =

σ1

2i
, τ

2 =
σ2

2i
, τ

3 =
σ3

2i
(2.11)

with

(τa)† =−τ
a, trτ

a = 0, [τa,τb] = ε
ab
c τ

c, (2.12)

i.e. the structural constants of the Lie algebra su(2) are the Levi-Civita symbol.
For the potential and the current, we have

Aµ = Aµ
aτ

a, Jµ = Jµ
aτ

a, Aµ
a,J

µ
a ∈ R. (2.13)

Latin indices take values a = 1,2,3 and Greek indices take values µ = 1,2, . . . ,n.
Let us substitute (2.13) into (2.9). We have

AµcAµ
aAν

b[τ
c, [τa,τb]] = Jν

aτ
a,

AµcAµ
aAν

bε
ab
d [τ

c,τd ] = Jν
aτ

a,

AµcAµ
aAν

bε
ab
dε

cd
k τ

k = Jν
aτ

a,

and, finally,

AµcAµ
aAν

bε
ab
dε

cd
k = Jν

k, ν = 1, . . . ,n, k = 1,2,3. (2.14)

We obtain 3n equations (k = 1,2,3, ν = 1,2, . . . ,n) for 3n expressions Aν
k and 3n expressions Jν

k.
We can consider this system of equations as the system of equations for two matrices An×3 = ‖Aν

k‖
and Jn×3 = ‖Jν

k‖.
We will give the general solution Aν

k of the system (2.14) for all Jν
k using algebraic methods. In

Section 3, we also calculate the strength Fµν (using (2.5)) and the invariant F2 = FµνFµν for each
solution Aµ , because they are important from a physical point of view.

We have the following well-known theorem on the singular value decomposition (SVD), see
[6], [7].
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Theorem 2.1. For an arbitrary real matrix An×N of the size n×N, there exist orthogonal matrices
Ln×n ∈ O(n) and RN×N ∈ O(N) such that

LT
n×nAn×NRN×N = Dn×N , (2.15)

where

Dn×N = diag(µ1, . . . ,µs), s = min(n,N), µ1 ≥ µ2 ≥ ·· · ≥ µs ≥ 0.

The numbers µ1, . . . ,µs are called the singular values, the columns li of the matrix L are called
the left singular vectors, the columns ri of the matrix R are called the right singular vectors. From
(2.15), we get AR = LD and ATL = RDT. We obtain the following relation:

AATL = LDRTRDT = LDDT, ATAR = RDTLTLD = RDTD,

i.e. the columns of the matrix L are eigenvectors of the matrix AAT, and the columns of the matrix
R are eigenvectors of the matrix ATA. The squares of the singular values are the eigenvalues of the
corresponding matrices. From this fact, it follows that singular values are uniquely determined.

Lemma 2.1. The system of equations (2.14) is invariant under the transformation

A→ Á = AP, J→ J́ = JP, P ∈ SO(3)

and under the transformation

A→ Â = QA, J→ Ĵ = QJ, Q ∈ O(n).

Proof. The system (2.9) is invariant under the transformation

Áµ = S−1AµS, J́ν = S−1JνS, S ∈ G = SU(2). (2.16)

It follows from the invariance under (2.8) and the fact that an element S ∈ G = SU(2) does not
depend on x now.

Let us use the theorem on the two-sheeted covering of the orthogonal group SO(3) by the
spin group Spin(3) ' SU(2). For an arbitrary matrix P = ‖pa

b‖ ∈ SO(3), there exist two matrices
±S ∈ SU(2) such that

S−1
τ

aS = pa
bτ

b.

We conclude that the system (2.14) is invariant under the transformation

Áµ = S−1Aµ
aτ

aS = Aµ
aS−1

τ
aS = Aµ

a pa
bτ

b = Áµ

bτ
b, Áµ

b = Aµ
a pa

b,

J́µ = S−1Jµ
aτ

aS = Jµ
aS−1

τ
aS = Jµ

a pa
bτ

b = J́µ

bτ
b, J́µ

b = Jµ
a pa

b.

The Yang-Mills equations are invariant under the orthogonal transformation of coordinates.
Namely, let us consider the transformation xµ → x̂µ = qµ

ν xν , where Q = ‖qµ

ν ‖ ∈ O(n). The sys-
tem (2.14) is invariant under the transformation

Âν = qν
µAµ = qν

µAµ
aτ

a = Âν
aτ

a, Âν
a = qν

µAµ
a,

Ĵν = qν
µJµ = qν

µJµ
aτ

a = Ĵν
aτ

a, Ĵν
a = qν

µJµ
a .

The lemma is proved. �
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Combining gauge and orthogonal transformations, we conclude that the system (2.14) is invari-
ant under the transformation

Aν
b →

´̂Aν
b = qν

µAµ
a pa

b, An×3→ ´̂An×3 = Qn×nAn×3P3×3,

Jν
b →

´̂Jν
b = qν

µJµ
a pa

b, Jn×3→ ´̂Jn×3 = Qn×nJn×3P3×3
(2.17)

for any P ∈ SO(3) and Q ∈ O(n).

Theorem 2.2. Let A = ‖Aν
k‖, J = ‖Jν

k‖ satisfy the system of 3n cubic equations (2.14). Then there
exist matrices P ∈ SO(3) and Q ∈ O(n) such that QAP is diagonal. For all such matrices P and Q,
the matrix QJP is diagonal too and the system (2.14) takes the following form under the transfor-
mation (2.17):

−a1((a2)
2 +(a3)

2) = j1,
−a2((a1)

2 +(a3)
2) = j2,

−a3((a1)
2 +(a2)

2) = j3
(2.18)

in the case n≥ 3 and

−a1(a2)
2 = j1,

−a2(a1)
2 = j2

(2.19)

in the case n = 2.
We denote diagonal elements of the matrix QAP by a1, a2, a3 (or a1, a2) and diagonal elements

of the matrix QJP by j1, j2, j3 (or j1, j2).

Proof. Let the system (2.14) has some solution Aµ
a, Jµ

a . Let us synchronize gauge transformation
and orthogonal transformation such that A = ‖Aµ

a‖ will have a diagonal form. Namely, we take
P ∈ SO(3) and Q ∈ O(n) such that QAP is diagonal. Note that we can always find the matrix
R ∈ SO(N) from the special orthogonal group in SVD (2.15). If it has the determinant −1, then we
can change the sign of the first columns of the matrices L and R and the determinant will be +1.

Let us consider the case n ≥ 3. In (2.14), we must take µ = a = c, ν = b to obtain nonzero
summands. Also we need b = k, i.e. ν = k. In this case, the product of two Levi-Civita symbols in
(2.14) equals −1. If ν 6= k, then the expression on the left side of the equation equals zero. If ν = k,
then we obtain the following sum over index µ = a = c

−
´̂

Ak
k ∑

a6=k
( ´̂Aa

a)
2,

where we have only 2 summands in the sum (except the value µ = k because of the Levi-Civita
symbols).

Under our transformation the expressions Jµ
a are transformed into some new expressions

´̂
Jµ

a . We
obtain the following system of 3n equations

− ´̂
A1

1((
´̂

A2
2)

2 +(
´̂

A3
3)

2) =
´̂

J1
1,

− ´̂
A2

2((
´̂

A1
1)

2 +(
´̂

A3
3)

2) =
´̂

J2
2, (2.20)

− ´̂
A3

3((
´̂

A1
1)

2 +(
´̂

A2
2)

2) =
´̂

J3
3,

0 =
´̂Jν
k, ν 6= k, ν = 1, . . . ,n, k = 1,2,3.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the author

204



D. Shirokov / On constant solutions of SU(2) Yang-Mills equations in Euclidean space Rn

This system of equations has solutions if the matrix ´̂J is also diagonal.
In the case n = 2, we obtain the system

− ´̂
A1

1(
´̂

A2
2)

2 =
´̂

J1
1,

− ´̂
A2

2(
´̂

A1
1)

2 =
´̂

J2
2, (2.21)

0 =
´̂Jν
k, ν 6= k, ν = 1,2, k = 1,2,3

instead of the system (2.20) and the proof is similar. �

Remark 2.1. In Theorem 2.2, we calculate SVD of the matrix A and obtain non-negative singular
values a1, a2, a3 (or a1, a2 in the case n = 2). The diagonal elements of the matrix QJP will be
non-positive because of the equations (2.18) (or (2.19)). If we want, we can change the matrix
Q ∈O(n) (multiplying by the matrix−1 ∈O(n)) such that the elements of the new matrix QJP will
be non-negative (they will be singular values of the matrix J) and the elements of the new matrix
QAP will be non-positive. Multiplying the matrices P and Q by permutation matrices, which are
also orthogonal, we can obtain the diagonal elements of the new matrix QJP in decreasing order,
the diagonal elements of the new matrix QAP will be in some other order.

Remark 2.2. Suppose we have known matrix J and want to obtain all solutions A of the system
(2.14). We can always calculate singular values j1, j2, j3 (or j1, j2) of the matrix J and solve the
system (2.18) (or (2.19)) using lemmas below. Finally, we obtain all solutions AD = diag(a1,a2,a3)

(or AD = diag(a1,a2)) of the system (2.14) but in some other system of coordinates depending on
Q ∈ O(n) and with gauge fixing depending on P ∈ SO(3). The matrix

A = Q−1ADP−1

will be solution of the system (2.14) in the original system of coordinates and with the original
gauge fixing.

Remark 2.3. Note that Q−1Q−1
1 ADP−1

1 P−1, for all Q1 ∈ O(n) and P1 ∈ SO(3) such that Q1JDP1 =

JD, will be also solutions of the system (2.14) in the original system of coordinates and with the orig-
inal gauge fixing because of Lemma 2.1. Here we denote JD = diag( j1, j2, j3) (or JD = diag( j1, j2)).

Let us give one example. If the matrix J = 0, then all singular values of this matrix equal zero
and we can take Q = P = 1 for its SVD. We solve the system (2.18) (or (2.19)) for j1 = j2 = j3 = 0
(or j1 = j2 = 0) and obtain all solutions AD = diag(a1,a2,a3) (or AD = diag(a1,a2)) of this system.
We have Q1JDP1 = JD for JD = 0 and any Q1 ∈ O(n), P1 ∈ SO(3). Therefore, the matrices Q1ADP1

for all Q1 ∈ O(n) and P1 ∈ SO(3) will be solutions of the system (2.14) because of Lemma 2.1.
Let us present a general solution of the systems (2.18) and (2.19) and discuss symmetries of

these systems.
The systems (2.18), (2.19) can be rewritten in the following form using bk :=−ak, k = 1,2,3 or

k = 1,2:

n≥ 3 : b1(b2
2 +b2

3) = j1, b2(b2
1 +b2

3) = j2, b3(b2
1 +b2

2) = j3, (2.22)

n = 2 : b1b2
2 = j1, b2b2

1 = j2. (2.23)

In the following lemmas, we assume that j1, j2, j3 are known (parameters), and b1, b2, b3 are
unknown. We give general solutions of the corresponding systems of equations.
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The system (2.22) has the following symmetry. Suppose that (b1,b2,b3) is a solution of (2.22)
for known ( j1, j2, j3). If we change the sign of some jk, k = 1,2,3, then we must change the sign of
the corresponding bk, k = 1,2,3. Thus, without loss of generality, we can assume that all expressions
bk, jk, k = 1,2,3 in (2.22) are non-negative. Similarly for the system (2.23).

Lemma 2.2. The system of equations (2.23) has the following general solution:

(1) in the case j1 = j2 = 0, has solutions (b1,0), (0,b2) for all b1,b2 ∈ R;
(2) in the cases j1 = 0, j2 6= 0; j1 6= 0, j2 = 0, has no solutions;
(3) in the case j1 6= 0, j2 6= 0, has a unique solution

b1 =
3

√
j2
2

j1
, b2 =

3

√
j2
1

j2
.

Proof. The proof is by direct calculation. �

The system (2.22) has the following symmetry.

Lemma 2.3. If the system (2.22) has a solution (b1,b2,b3), where b1 6= 0, b2 6= 0, b3 6= 0, then this
system has also a solution ( K

b1
, K

b2
, K

b3
), where K = (b1b2b3)

2
3 .

Proof. Let us substitute ( K
b1
, K

b2
, K

b3
) into the first equation. We have

j1 = 4
K
b1

(
K2

b2
2
+

K2

b2
3
) =

K3(b2
2 +b2

3)

b1b2
2b2

3
.

Using j1 = b1(b2
2 +b2

3), we obtain

K = (b1b2b3)
2
3 .

We can verify that the same will be for the other two equations. �

For example, let us take j1 = 13, j2 = 20, j3 = 15. Then the system (2.22) has solutions

(b1,b2,b3) = (1,2,3) and (6
2
3 , 6

2
3

2 , 6
2
3

3 ).

Lemma 2.4. The system of equations (2.22) has the following general solution:

(1) in the case j1 = j2 = j3 = 0, has solutions (b1,0,0), (0,b2,0), and (0,0,b3) for all b1,b2,b3 ∈R;
(2) in the cases j1 = j2 = 0, j3 6= 0 (or similar cases with circular permutation), has no solutions;
(3) in the case j1 6= 0, j2 6= 0, j3 = 0 (or similar cases with circular permutation), has a unique

solution

b1 =
3

√
j2
2

j1
, b2 =

3

√
j2
1

j2
, b3 = 0;

(4) in the case j1 = j2 = j3 6= 0, has a unique solution

b1 = b2 = b3 =
3

√
j1
2

;
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(5) in the case of not all the same j1, j2, j3 > 0 (and we take positive for simplicity), has the follow-
ing two solutions

(b1+,b2+,b3+), (b1−,b2−,b3−)

with the following expression for K from Lemma 2.3

K := b1+b1− = b2+b2− = b3+b3− = (b1+b2+b3+)
2
3 = (b1−b2−b3−)

2
3 :

(a) in the case j1 = j2 > j3 > 0 (or similar cases with circular permutation):

b1± = b2± = 3

√
j3

2z±
, b3± = z±b1±, z± =

j1±
√

j2
1− j2

3

j3
.

Moreover,

z+z− = 1, K = (
j3
2
)

2
3 .

(b) in the case j3 > j1 = j2 > 0 (or similar cases with circular permutation):

b1± =
1

w±
b3, b2± = w±b3, b3± = b3 =

3

√
j1
s
,

w± =
s±
√

s2−4
2

, s =
j3 +

√
j2
3 +8 j2

1

2 j1
.

Moreover,

w+w− = 1, b1± = b2∓, K = (
j1
s
)

2
3 .

(c) in the case of all different j1, j2, j3 > 0:

b1± = 3

√
j3

t0y±z±
, b2± = y±b1±, b3± = z±b1±,

z± =

√
y±( j1− j2y±)

j2− j1y±
, y± =

t0±
√

t2
0 −4

2
,

where t0 > 2 is the solution (it always exists, moreover, it is bigger than j2
j1
+ j1

j2
) of the

cubic equation

j1 j2t3− ( j2
1 + j2

2 + j2
3)t

2 +4 j2
3 = 0.

Moreover,

y+y− = 1, z+z− = 1, K = (
j3
t0
)

2
3 .

We can use the explicit Vieta or Cardano formulas for t0:

t0 = Ω+2Ωcos(
1
3

arccos(1− 2β

Ω3 )),
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Ω :=
α +β

3
, α := A+

1
A
> 2, β :=

B2

A
, A :=

j2
j1
, B :=

j3
j1
,

t0 = Ω+L+
Ω2

L
, L := 3

√
Ω3−2β +2

√
β (β −Ω3).

Proof. The proof is rather cumbersome, we give it in Appendix A. �

3. Results for the potential and the strength of the Yang-Mills field

In the case of the constant potential of the Yang-Mills field, we have the following expression for
the strength

Fµν =−[Aµ ,Aν ] =−[Aµ
aτ

a,Aν
bτ

b] =−Aµ
aAν

bε
ab
c τ

c = Fµν
c τ

c. (3.1)

If we take a system of coordinates depending on Q ∈ O(n) and a gauge fixing depending on P ∈
SO(3) such that the matrices A = ||Aµ

a|| and J = ||Jµ
a || are diagonal (see Theorem 2.2), then the

expressions Fµν
c are nonzero only in the case of three different indices µ = a, ν = b, and c, which

take the values 1,2,3. For each solution, we calculate the invariant F2 = FµνFµν , which is present
in the Lagrangian of the Yang-Mills field.

Using results of the previous section for the system (2.14) and the expression (3.1), we obtain
the following results for the potential A and strength F of the Yang-Mills field depending on the
constant current J. The case n = 2 is much simpler than the case n≥ 3, we discuss this case for the
sake of completeness.

In the case of dimension nnn === 222:

(1) In the case of zero current J = 0, we have zero potential A = 0 or nonzero potential (see Case 1
of Lemma 2.2)

A =

(
a 0 0
0 0 0

)
, a ∈ R\{0}.

In these cases, we have zero strength F = 0 (Fµν = 0). Note that this fact is already known
(see [17], [18]).

(2) In the case rank(J) = 1, we have no constant solutions (see Case 2 of Lemma 2.2).
(3) In the case rank(J) = 2, we have a unique solution (see Case 3 of Lemma 2.2)

A =

(
a1 0 0
0 a2 0

)
, a1 =− 3

√
j2
2

j1
, a2 =

3

√
j2
1

j2
.

For the strength, we have the following nonzero components

F12 =−F21 =− 3
√

j1 j2τ
3 (3.2)

using specific system of coordinates and specific gauge fixing, where j1 and j2 are singular
values of the matrix J = ||Jµ

a ||. In this case, we obtain the following expression for the invariant
F2 = FµνFµν :

F2 = FµνFµν =−1
2

3
√

( j1 j2)21 6= 0. (3.3)
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In the case of dimension nnn≥≥≥ 333:

(1) In the case J = 0, we have zero potential A = 0 or nonzero potential (see Case 1 of Lemma 2.4):

A =


a 0 0
0 0 0
. . . . . . . . .

0 0 0

 , a ∈ R\{0}. (3.4)

In these cases, we have zero strength F = 0.
(2) In the case rank(J) = 1, we have no constant solutions (see Case 2 of Lemma 2.4).
(3) In the case rank(J) = 2, we have a unique solution (see Case 3 of Lemma 2.4):

A =


a1 0 0
0 a2 0
0 0 0
. . . . . . . . .

0 0 0

 , a1 =− 3

√
j2
2

j1
, a2 =

3

√
j2
1

j2
. (3.5)

For the strength, we have the following nonzero components (3.2) and again (3.3) using specific
system of coordinates and gauge fixing, where j1, j2, and j3 = 0 are singular values of the
matrix J.

(4) In the case rank(J) = 3, we have one or two solutions.
In the specific case of all the same singular values j := j1 = j2 = j3 6= 0, we have a unique

solution (see Case 4 of Lemma 2.4)

A =



a 0 0
0 a 0
0 0 a
0 0 0
. . . . . . . . .

0 0 0


, a =− 3

√
j
2
. (3.6)

We have the following nonzero components of the strength:

F12 =−F21 =− 3

√
j2

4
τ

3, F23 =−F32 =− 3

√
j2

4
τ

1,

F31 =−F13 =− 3

√
j2

4
τ

2. (3.7)

In this case, we have

F2 = FµνFµν =
−3
2

3

√
j4

16
1 6= 0. (3.8)
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In the case of not all the same singular values j1, j2, j3 of the matrix J, we have two different
solutions

A =



−b1± 0 0
0 −b2± 0
0 0 −b3±
0 0 0
. . . . . . . . .

0 0 0


, (3.9)

where bk±, k = 1,2,3 are from Case 5 of Lemma 2.4.
We have the following nonzero components of the strength:

F12
± =−F21

± =−b1±b2±τ
3, F23

± =−F32
± =−b2±b3±τ

1,

F31
± =−F13

± =−b3±b1±τ
2. (3.10)

In this case, we have

F2
± = Fµν±Fµν

± =−1
2
((b1±b2±)

2 +(b2±b3±)
2 +(b3±b1±)

2)1 6= 0. (3.11)

In the next lemma, we give the explicit form of (3.11).

Lemma 3.1. In the case of not all the same j1, j2, j3, (3.11) takes the form:

(1) in the case j1 = j2 > j3 > 0 (or similar cases with circular permutation):

F2
± =
−K2(1+2z2

±)

2z
4
3
±

1, F2
+ 6= F2

−, (3.12)

where z± =
j1±

√
j2
1− j2

3

j3
d, K = (

j3
2
)

2
3 .

(2) in the case j3 > j1 = j2 > 0 (or similar cases with circular permutation):

F2
± =
−K2(s2−1)

2
1, F2

+ = F2
−, (3.13)

where s =
j3 +

√
j2
3 +8 j2

1

2 j1
> 2, K = (

j1
s
)

2
3 .

(3) in the case of all different j1, j2, j3 > 0:

F2
± =
−K2(y2

±+ z2
±+ y2

±z2
±)

2(y±z±)
4
3

1, F2
+ 6= F2

−, (3.14)

where K = ( j3
t0
)

2
3 , and y±, z±, t0 are from Case (5) - (c) of Lemma 2.4.

In all cases of Lemma, the expression K is the invariant for each pair of solutions (see Lemmas 2.3
and 2.4).

Proof. We give the proof in Appendix B. �
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Note that in Case 2 of Lemma 3.1, we have two constant solutions of the Yang-Mills equations
with the same invariant F2 = F2

±. In each of two Cases 1 and 3, we have two constant solutions of
the Yang-Mills equations with different invariants F2

+ 6= F2
−.

We summarize the results for the case of arbitrary Euclidean space Rn, n≥ 2, in Table 1.

Table 1. All constant solutions of SU(2) Yang-Mills equations in Rn.

n rank(J) additional conditions rank(A) A F F2

n≥ 2 0 0 A = 0 F = 0 F2 = 0
n≥ 2 0 1 see (3.4) F = 0 F2 = 0
n≥ 2 1 ∅ ∅ ∅
n≥ 2 2 2 see (3.5) see (3.2) see (3.3)
n≥ 3 3 j1 = j2 = j3 3 see (3.6) see (3.7) see (3.8)
n≥ 3 3 j1 = j2 > j3 3 see (3.9) see (3.10) see (3.12)
n≥ 3 3 j3 > j1 = j2 3 see (3.9) see (3.10) see (3.13)
n≥ 3 3 all different j1, j2, j3 3 see (3.9) see (3.10) see (3.14)

4. Conclusions

The main result of this paper is the presentation of all constant solutions of the Yang-Mills equations
with SU(2) gauge symmetry for an arbitrary constant current in Euclidean space of arbitrary finite
dimension. Using the invariance of the Yang-Mills equations under the orthogonal transformations
of coordinates and gauge invariance, we choose a specific system of coordinates and a specific gauge
fixing for each constant current and obtain all constant solutions of the Yang-Mills equations in this
system of coordinates with this gauge fixing, and then in the original system of coordinates with the
original gauge fixing (see Remarks 2.2 and 2.3). We prove that the number (0, 1, or 2) of constant
solutions of the Yang-Mills equations (solutions of the system (2.14)) in terms of the strength F
(3.1) depends on the rank of the matrix J and, sometimes, on the singular values of this matrix (see
Section 3). The explicit form of these solutions and the invariant F2 can always be written using
singular values of the matrix J.

We plan to solve the same problem as in this paper, but in pseudo-Euclidean space of arbitrary
finite dimension, in particular, in the case of Minkowski space. This will allow us to obtain all
constant solutions of the Dirac-Yang-Mills equations, which is interesting for applications. Another
task is to consider the same problem on curved manifolds. We need another technique to solve
the same problem for the case of the Lie group SU(3), which is important for describing strong
interactions.

Note that now we can consider nonconstant solutions of Yang-Mills equations in the form of
series of perturbation theory using all constant solutions from Lemmas 2.2 and 2.4 as a zeroth
approximation. The problem reduces to solving systems of linear partial differential equations. This
will allow us to give a local classification of all solutions of the classical SU(2) Yang-Mills equa-
tions.
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The results of this paper are new and can be used to solve some problems in particle physics, in
particular, in describing physical vacuum [1], [9], [11], [15]. In this paper, we discuss mathematical
structures and constructions. Relating the proposed mathematical constructions to real world objects
goes beyond the scope of this investigation. The explicit formulas for solutions (see the results of
Section 3 and Lemmas 2.2, 2.3, and 2.4) are fundamental for the Yang-Mills field and should be
interesting for physicists.

Appendices

A. The proof of Lemma 2.4

The first four cases of Lemma 2.4 are easily verified.
Let us consider the case of not all the same positive j1, j2, j3. As we mentioned before the

lemma, we can assume that jk > 0 and bk > 0 because if we change the sign of jk, then the sign of
bk is also changed.

We use the following change of variables

x = b1 > 0, y =
b2

b1
> 0, z =

b3

b1
> 0.

We obtain

j1 = x3(y2 + z2), j2 = yx3(1+ z2), j3 = zx3(1+ y2). (A.1)

Using notation

A =
j2
j1

> 0, B =
j3
j1

> 0,

we get the system for two variables y and z:

y(1+ z2) = A(y2 + z2), z(1+ y2) = B(y2 + z2). (A.2)

For the variable x = b1, we have

b1 = x = 3

√
j1

(y2 + z2)
. (A.3)

From the first equation (A.2), we obtain

(A− y)z2 = y(1−Ay). (A.4)

Let us consider two cases: A = 1 and A 6= 1.
If A = 1 (and B 6= 1, because we consider the case of not all the same j1, j2, j3), then we can

rewrite (1−y)z2 = y(1−y) in the form (1−y)(y−z2) = 0. If y= 1, then we substitute this condition
into the second equation (A.2) and obtain 2z = B(1+z2). If 0 < B < 1, then z = 1±

√
1−B2

B . For B > 1,
there is no solution of this type. If y = z2, then we substitute this condition into the second equation
(A.2) and get z(1+ z4) = B(z2 + z4), z5−Bz4−Bz2 + z = 0. Dividing both sides by z2 and using
notation s = z+ 1

z > 0, we get s = B±
√

B2+8
2 . We have z > 0 and s > 2 (if s = 2, then z = y = 1 and

we obtain the case j1 = j2 = j3, which is not considered now). Therefore, B > 1 and we have two
expressions z = s±

√
s2−4
2 for one s = B+

√
B2+8
2 .
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The results for the case A = 1 can be summarized as follows. If j1 = j2 > j3 (A = 1, 0 < B < 1),
then we have two solutions

b1± = b2± = 3

√
j1

1+ z2
±
, b3± = z±b1±, z± =

1±
√

1−B2

B
, B =

j3
j1
.

Using z+z− = 1 and z±
1+z2

±
= B

2 , we can verify that K = b1+b1− = b2+b2− = b3+b3− =

(b1+b2+b3+)
2
3 = (b1−b2−b3−)

2
3 = (B j1

2 )
2
3 = ( j3

2 )
2
3 and rewrite solutions in the following form

b1± = b2± = 3

√
j3

2z±
, b3± = z±b1±, z± =

j1±
√

j2
1− j2

3

j3
.

If j3 > j1 = j2 (A = 1, B > 1), then we have two solutions

b1± = 3

√
j1

w2 +w4 , b2± = w2
±b1±, b3± = w±b1±,

w± =
s±
√

s2−4
2

, s =
B+
√

B2 +8
2

, B =
j3
j1
.

Using w±
1+w2

±
= 1

s and w+w− = 1, we can verify that K = b1+b1− = b2+b2− = b3+b3− =

(b1+b2+b3+)
2
3 = (b1−b2−b3−)

2
3 = ( j1

s )
2
3 . Moreover, b3+ = b3−, b1+ = b2−, b1− = b2+ and we can

rewrite solutions in the following form

b1± =
1

w±
b3, b2± = w±b3, b3± = b3 =

3

√
j1
s
,

w± =
s±
√

s2−4
2

, s =
j3 +

√
j2
3 +8 j2

1

2 j1
.

Now let us consider the case A 6= 1. If B= 1, then we can similarly consider this case as previous
case (A = 1, B 6= 1), since the system (A.2) is symmetric w.r.t. the change y↔ z, A↔ B. Therefore,
let us consider the remaining case, when A 6= 1 and B 6= 1. If A = B, then j2 = j3 and this case is
similar to the previous one again. Let us consider the case A 6= B, i.e. all jk, k = 1,2,3 are different
now.

If A 6= 1, then A 6= y. Really, suppose that A = y. Then from (A.4) we obtain A = 1 and a
contradiction. Since A 6= y, we get from (A.4)

z2 =
y(1−Ay)

A− y
. (A.5)

Because all variables are positive, the second equation (A.2) is equivalent to z2(1+ y2)2 = B2(z2 +

y2)2. Substituting (A.5) into this expression, we get

y(1−Ay)
A− y

(1+ y2)2 = B2(
y(1−Ay)

A− y
+ y2)2.
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Note, that when we will find y from this equation, expression y(1−Ay)
A−y will be positive. Therefore

z =
√

y(1−Ay)
A−y . We have

y(1−Ay)(1+ y2)2

A− y
=

B2(y− y3)2

(A− y)2 , (1−Ay)(1+ y2)2(A− y) = B2y(1− y2)2,

Ay6− (B2 +A2 +1)y5 +3Ay4 +2(B2−A2−1)y3 +3Ay2− (B2 +A2 +1)y+A = 0.

Dividing both sides by y3 and using notation t = y+ 1
y > 0 (t2 = y2+ 1

y2 +2, t3 = y3+3y+3 1
y +

1
y3 ),

we get

A(y3 +
1
y3 )− (B2 +A2 +1)(y2 +

1
y2 )+3A(y+

1
y
)+2(B2−A2−1) = 0,

A(t3−3t)− (B2 +A2 +1)(t2−2)+3At +2(B2−A2−1) = 0,

At3− (B2 +A2 +1)t2 +4B2 = 0.

We obtain the following cubic equation

f (t) := t3− (
B2

A
+A+

1
A
)t2 +4

B2

A
= 0. (A.6)

We are interested only in the positive solutions t > 0 of this equation. We have y2− ty+1 = 0. This
equation has positive solutions y = t±

√
t2−4
2 only in the case t ≥ 2.

We have f (−∞) = −∞, f (0) = 4B2

A > 0, f (2) = −4(A−1)2

A < 0, f (+∞) = +∞. This means that
the cubic equation (A.6) has one negative solution, one solution between 0 and 2, and one solution
t0 > 2. Moreover, solution t0 is bigger than A+ 1

A , because f (A+ 1
A) = −

B2(A2−1)2

A3 < 0. We can
calculate t0 using Cardano formulas.

Finally, if A 6= 1 and B 6= 1, then we have two solutions

b1± = 3

√
j1

y2
±+ z2

±
, b2± = y±b1±, b3± = z±b1±,

z± =

√
y±(1−Ay±)

A− y±
, y± =

t0±
√

t2
0 −4

2
,

where t0 = t0(A,B)> 2 is a solution of the equation (A.6). Using y±z±
y2
±+z2

±
= By±

1+y2
±
= B

t0
, y+y− = 1, and

z+z− = 1, we can verify that K = b1+b1− = b2+b2− = b3+b3− = (b1+b2+b3+)
2
3 = (b1−b2−b3−)

2
3 =

( j3
t0
)

2
3 and rewrite solutions in the following form

b1± = 3

√
j3

t0y±z±
, b2± = y±b1±, b3± = z±b1±,

z± =

√
y±(1−Ay±)

A− y±
, y± =

t0±
√

t2
0 −4

2
,

where t0 = t0(A,B)> 2 is a solution of the equation (A.6). The lemma is proved.
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B. The proof of Lemma 3.1

1) In Case (5) - (a) of Lemma 2.4, using

b1± = b2±, b3± = z±b1±, b1± = 3

√
j3

2z±
, K = (

j3
2
)

2
3 ,

we obtain

F2
± =−1

2
((b1±b2±)

2 +(b2±b3±)
2 +(b3±b1±)

2)1 =−1
2

b4
1±(1+2z2

±)1

=−1
2
(

j3
2z±

)
4
3 (1+2z2

±)1 =
−K2(1+2z2

±)

2z
4
3
±

1.

Let us prove that F2
+ 6= F2

− in this case. Suppose that we have F2
+ = F2

−, i.e.

1+2z2
+

z
4
3
+

=
1+2z2

−

z
4
3
−

, z
4
3
−+2z2

+z
4
3
− = z

4
3
++2z2

−z
4
3
+.

Using z+z− = 1, we get

z
4
3
−+2z

2
3
+ = z

4
3
++2z

2
3
−, (z

2
3
−−1)2 = (z

2
3
+−1)2, (z

2
3
−+ z

2
3
+−2)(z

2
3
−− z

2
3
+) = 0,

which is not possible, because z
2
3
−+ z

2
3
+ ≥ 2(z−z+)

1
3 = 2 and z+, z− do not equal ±1.

2) In Case (5) - (b) of Lemma 2.4, using

b1± =
1

w±
b3, b2± = w±b3, b3± = b3 =

3

√
j1
s
, K = (

j1
s
)

2
3 ,

we obtain

F2
± =−1

2
((b1±b2±)

2 +(b2±b3±)
2 +(b3±b1±)

2)1 =−1
2

b4
3±(1+w2

±+
1

w2
±
)1

=−1
2
(

j1
s
)

4
3 (1+w2

±+
1

w2
±
)1 =−K2

2
(1+w2

±+
1

w2
±
)1 =−K2

2
(s2−1)1.

In the last equality, we used w±+ 1
w±

= s, i.e. w2
±+

1
w2
±
= s2−2.

We have F2
+ = F2

−, because F2
± does not depend on w± in this case.

3) In Case (5) - (c) of Lemma 2.4, using

b2± = y±b1±, b3± = z±b1±, b1± = 3

√
j3

t0y±z±
, K = (

j3
t0
)

2
3 ,

we obtain

F2
± =−1

2
((b1±b2±)

2 +(b2±b3±)
2 +(b3±b1±)

2)1 =−1
2

b4
1±(y

2
±+ z2

±+ y2
±z2
±)1

=−1
2
(

j3
t0y±z±

)
4
3 (y2
±+ z2

±+ y2
±z2
±)1 =−

K2(y2
±+ z2

±+ y2
±z2
±)

2(y±z±)
4
3

1.
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Using z2
± = y±(1−Ay±)

A−y±
, we also get

F2
± =−

K2(y2
±+ z2

±+ y2
±z2
±)

2(y±z±)
4
3

1 =−
K2(y2

±+(1+ y2
±)

y±(1−Ay±)
A−y±

))

2y
4
3
±(

y±(1−Ay±)
A−y±

)
2
3

1

=
−K2(1−Ay3

±)

2y±(A− y±)
1
3 (1−Ay±)

2
3

1.

Let us prove that F2
+ 6= F2

− in this case. Suppose that we have F2
+ = F2

−, i.e.

(1−Ay3
+)

3

y3
+(A− y+)(1−Ay+)2

=
(1−Ay3

−)
3

y3
−(A− y−)(1−Ay−)2

.

Using y− = y−1
+ , we get

y3
+(A− y+)(1−Ay+)2(1− A

y3
+

)3 = (1−Ay3
+)

3 1
y3
+

(A− 1
y+

)(1− A
y+

)2,

(y3
+−A)3(1−Ay+) = (1−Ay3

+)
3(y+−A),

(A3−A)y10
+ +(1−A4)y9

++3(A3−A)y6
++3(A−A3)y4

++(A4−1)y++(A−A3) = 0.

Dividing both sides of the equation by A2−1 6= 0 and y5
+ 6= 0, we obtain

A(y5
+−

1
y5
+

)− (1+A2)(y4
+−

1
y4
+

)+3A(y+−
1

y+
) = 0.

Dividing both sides of the equation by (y+− 1
y+
) 6= 0, we obtain

A(y4
++ y2

++1+
1

y2
+

+
1

y4
+

)− (1+A2)(y3
++ y++

1
y+

+
1

y3
+

)+3A = 0.

Using t = y++ 1
y+

= y++ y−, we have

y2
++

1
y2
+

= t2−2, y3
++

1
y3
+

= t3−3t, y4
++

1
y4
+

= t4−4t2 +2

and obtain

At4− (1+A3)t3−3At2 +2(1+A2)t +4A = 0.

Dividing by t 6= 0, we get

A(t2 +
4
t2 )− (1+A2)(t− 2

t
)−3A = 0.

Using d := t− 2
t , we have t2 + 4

t2 = d2 +4 and obtain

Ad2− (1+A2)d +A = 0, i.e. d = A, d = 1
A .
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If d = A, then

t2−At−2 = 0. (B.1)

But it is in a contradiction with

At3− (B2 +A2 +1)t2 +4B2 = 0. (B.2)

Really, multiplying both sides of (B.1) by At, we get

At3−A2t2−2At = 0. (B.3)

From (B.2) and (B.3), we obtain

(1+B2)t2−2At−4B2 = 0. (B.4)

From (B.4) and (B.1), we get

2At +4B2

1+B2 = At +2, tA(1−B2) = 2(1−B2), t =
2
A
,

because B 6=±1. Substituting t = 2
A into (B.1), we get 4

A2 = 4, i.e. a contradiction, because A 6=±1.
If d = A−1, then

At2− t−2A = 0. (B.5)

But it is in a contradiction with

At3− (B2 +A2 +1)t2 +4B2 = 0. (B.6)

Really, multiplying both sides of (B.5) by t, we get

At3− t2−2t = 0. (B.7)

From (B.6) and (B.7), we obtain

(A2 +B2)t2−2At−4B2 = 0. (B.8)

From (B.8) and (B.5), we get

2At +4B2

A2 +B2 =
t +2A

A
, t(A2−B2) = 2A(A2−B2), t = 2A,

because A 6=±B. Substituting t = 2A into (B.5), we get 4A(A2−1) = 0, i.e. a contradiction, because
A 6= 0, A 6=±1.

The lemma is proved.
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