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Abstract. In this paper, we consider inner automorphisms that leave in-
variant fixed subspaces of real and complex Clifford algebras—subspaces
of fixed grades and subspaces determined by the reversion and the grade
involution. We present groups of elements that define such inner auto-
morphisms and study their properties. Some of these Lie groups can be
interpreted as generalizations of Clifford, Lipschitz, and spin groups. We
study the corresponding Lie algebras. Some of the results can be refor-
mulated for the case of more general algebras—graded central simple
algebras or graded central simple algebras with involution.
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1. Introduction

In this paper, we study inner automorphisms that leave invariant fixed funda-
mental subspaces of the real and complex Clifford algebras. We present groups
of elements that define such inner automorphisms. Some of these groups are
associated with the vector subspace V of the Clifford algebra C�(V,Q) [4,12]
over a quadratic space (V,Q) with a nondegenerate quadratic form Q: well-
known Clifford group Γ, which preserves the subspace V and is widely used
in the theory of spin groups; the groups Γk, k = 0, 1, . . . , n, which preserve
the subspaces of fixed grades k. The others are naturally defined by the main
involution (the grade involution) and the reversion. We introduce the groups
P (preserve subspaces of fixed parity), A, B, Q, and Q′ (preserve some other
fundamental subspaces determined by the reversion and the grade involu-
tion) and study their properties. As one of the anonymous reviewers noted,
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these subspaces can be defined in more general algebras, and some of the
results of this paper can be reformulated for the more general case. Namely,
the groups P (see Sect. 3) can be introduced in the graded central simple
algebras (GCSAs) introduced by Wall in 1964 [25]. The groups A, B, Q (see
Sects. 4, 5, 6) can be introduced in the graded central simple algebras with
involution (GCSAsWI) introduced by Wall in 1968 [26]1. Let us also note the
paper [7] on GSCAs and GSCAsWI, including, as a special case, the Clifford
algebras. Clifford algebras are widely used in different applications—in engi-
neering, physics, robotics, computer vision, image and signal processing, etc.
Groups that preserve different structures of Clifford algebras under similar-
ity transformation may be of interest to these applications. All these groups
contain spin groups as subgroups and can be considered as generalizations of
Clifford, Lipschitz, and spin groups.

Let C be the real Clifford algebra C�(V,Q), V = R
p,q, p + q = n (or the

geometric algebra [6,8]) or the complex Clifford algebra C�(Cn) [3,9,10,12].
We denote the identity element by e and the generators of C by ea, a =
1, . . . , n. In the case of the real Clifford algebra, the generators ea, a = 1, . . . , n
satisfy

eaeb + ebea = 2ηabe, a, b = 1, . . . , n,

where η = (ηab) = diag(1, . . . , 1,−1, . . . ,−1) is the diagonal matrix with its
first p entries equal to 1 and the last q entries equal to −1 on the diagonal.
In the case of the complex Clifford algebra, the generators satisfy the same
conditions but with the identity matrix η = In of size n. Consider the sub-
spaces Ck of grades k = 0, 1, . . . , n. The elements of these subspaces are linear
combinations of the basis elements ea1...ak

:= ea1 · · · eak
, a1 < a2 < · · · < ak,

with multi-indices of length k. The Clifford algebra C can be represented as
the direct sum of the even and odd subspaces

C = C(0) ⊕ C(1), C(0) =
⊕

k=0 mod2

Ck, C(1) =
⊕

k=1 mod2

Ck,

C(j) = {U ∈ C : Û = (−1)jU}, j = 0, 1,

where ˆ is the grade involution (or the main involution). Also we consider
the following four subspaces (see [16–18]), which are naturally determined by
the grade involution ˆ and the reversion ˜ :

Cm :=
⊕

k=m mod4

Ck, m = 0, 1, 2, 3,

Cm = {U ∈ C : Û = (−1)mU, Ũ = (−1)
m(m−1)

2 U}. (1.1)

1The area of interest of the author of this paper is mostly the applications of some specific
algebras (as Clifford algebras) in physics, in particular, in the field theory. Therefore, let
us present results only for the particular case of Clifford algebras in this paper. One can
reformulate the statements for the more general cases of GCSAs or GCSAsWI, if the need
arises for some purpose. We accompanied the statements of this paper with footnotes,
including those received from the reviewer, about their possible reformulation for the more
general case.
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The algebra C is a Z2×Z2-graded algebra w.r.t. these four subspaces and the
operations of commutator [U, V ] = UV − V U and anticommutator {U, V } =
UV + V U :

[Cm,Cm] ⊂ C2, [Cm,C2] ⊂ Cm, m = 0, 1, 2, 3,

[C0,C1] ⊂ C3, [C0,C3] ⊂ C1, [C1,C3] ⊂ C0,

{Cm,Cm} ⊂ C0, {Cm,C0} ⊂ Cm, m = 0, 1, 2, 3,

{C1,C2} ⊂ C3, {C2,C3} ⊂ C1, {C3,C1} ⊂ C2.

We use the notation A× for the set of invertible elements of any set A.
Consider the adjoint representation (inner automorphism) ad : C× → AutC
acting on the group of all invertible elements of the Clifford algebra

C× = {T ∈ C : ∃ T−1}
as T �→ adT , where adT U = TUT−1 for any U ∈ C. The kernel of ad is

ker(ad) = {T ∈ C× : adT (U) = U ∀U ∈ C} = Z×,

where Z× is the group of all invertible elements of the center of C

Z :=
{

C0, if n is even,
C0 ⊕ Cn, if n is odd. (1.2)

Let us consider the well-known Clifford group [3,4,12,13], which consists of
elements that define inner automorphisms preserving the subspace of grade 1:

Γ := {T ∈ C× : TC1T−1 ⊆ C1} (1.3)
= {Wv1 · · · vm : m ≤ n, W ∈ Z×, vj ∈ C×1}, (1.4)

where C×1 = {vj ∈ C1 : v2
j �= 0} is the subset of all invertible elements

of grade 1. The equivalence of (1.3) and (1.4) is well-known and can be
proved using the Cartan–Dieudonné theorem [5,13] or the generalization of
the Pauli’s theorem [14,15]. From (1.3) and (1.4), we can easily obtain

Γ = {T ∈ Z×(C×(0) ∪ C×(1)) : TC1T−1 ⊆ C1}. (1.5)

In this paper, we present and study groups that leave invariant different other
fixed subspaces (the subspaces of fixed grades, the subspaces defined by the
reversion and the grade involution) of the Clifford algebra C. In the case
n = 1, the Clifford algebra C is commutative, and all such groups coincide
with C×. We consider the case n ≥ 2 below. We summarize the results for
the Lie groups and Lie algebras presented in this paper in Table 1.

We use notations with multi-indices for direct sums of different sub-
spaces:

C(k)lmr := C(k) ⊕ Cl ⊕ Cm ⊕ Cr

and similar ones. The group of elements that define inner automorphisms
preserving the subspace C(k)lmr is denoted by Γ(k)lmr.

We can illustrate the considered Lie groups in the following way (see
Fig. 1). Note that we have Γ ⊆ Q ⊆ Q′ ⊆ P and Q = A∩B = A∩P = B∩P.
All the considered groups are subgroups of the group C×. Spin groups are
subgroups of the smallest of the considered groups Γ.
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Table 1. Lie groups preserving fixed subspaces of C under
similarity transformation and corresponding Lie algebras

Lie group n Lie algebra Dimension

C× C 2n

Γ =
⋂n

k=0 Γk 1 mod2 C02n n(n−1)
2 + 2

0 mod2 C02 n(n−1)
2 + 1

P = Γ(0) = Γ(1) 1 mod2 C(0)n 2n−1 + 1
0 mod2 C(0) 2n−1

A = Γ01 = Γ23 1 mod4 C023n 2n−1 − 2
n−1
2 sin(π(n+1)

4 ) + 2
0, 2, 3 mod4 C023 2n−1 − 2

n−1
2 sin(π(n+1)

4 ) + 1
B = Γ03 = Γ12 3 mod4 C012n 2n−1 − 2

n−1
2 cos(π(n+1)

4 ) + 2
0, 1, 2 mod4 C012 2n−1 − 2

n−1
2 cos(π(n+1)

4 ) + 1
Q = Q′ = Γk 1, 3 mod4 C02n 2n−2 − 2

n−2
2 cos(πn

4 ) + 2
(k = 0, 1, 2, 3) 2 mod4 C02 2n−2 − 2

n−2
2 cos(πn

4 ) + 1
Q = Γ1 = Γ3 0 mod4 C02 2n−2 − 2

n−2
2 cos(πn

4 ) + 1
Q′ = Γ0 = Γ2 0 mod4 C02n 2n−2 − 2

n−2
2 cos(πn

4 ) + 2

A

B

P

Γ

Q

C×

Q

Figure 1. Lie groups preserving fixed subspaces of C under
similarity transformation

2. The Lie Groups Γk

Let us use the following notation for the groups that preserve subspaces of
fixed grades under similarity transformation

Γk := {T ∈ C× : TCkT−1 ⊆ Ck}, k = 0, 1, . . . , n. (2.1)

In the particular case, we get the Clifford group Γ1 := Γ (see (1.3)).

Lemma 2.1. We have

Γ0 = C×, Γn =
{

C×, if n is odd,
C×(0) ∪ C×(1), if n is even.
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Proof. We have Γ0 = C× in the case of arbitrary n and Γn = C× in the case
of odd n because of the center (1.2) of C.

In the case of even n, we can easily verify that C×(0) ∪ C×(1) ⊆ Γn

because e1...n commutes with all even elements and anticommutes with all
odd elements. Let us prove that Γn ⊆ C×(0) ∪ C×(1). Suppose that T =
T0 + T1 ∈ Γn, where T0 ∈ C(0) and T1 ∈ C(1). We get

(T0 + T1)e1...n(T0 + T1)−1 = e1...n(T0 − T1)(T0 + T1)−1 = λe1...n

for some constant λ, which is equivalent to (T0 − T1) = λ(T0 + T1), i.e.
T0 = λT0 and −T1 = λT1. We get λ = 1, T1 = 0 or λ = −1, T0 = 0, i.e.
T ∈ C×(0) ∪ C×(1). �
Theorem 2.2. We have2

Γ ⊆ Γk, k = 0, 1, . . . , n.

As a consequence, we obtain

Γ =
n⋂

k=0

Γk = {T ∈ C× : TCkT−1 ⊆ Ck, k = 0, 1, . . . , n}.

Proof. Suppose T = Wv1 · · · vm, W ∈ Z×, vj ∈ C×1, j = 1, . . . , m. For
Uk ∈ Ck, we have

TUkT−1 = Wv1 . . . vmUk(Wv1 . . . vm)−1 = v1 . . . vmUkv−1
m . . . v−1

1 .

Since (vj)2 ∈ C×0, we have (vj)−1 = λjvj for some nonzero constant λj ,

j = 1, . . . , m. Thus (̃vj)−1 = v−1
j , (̂vj)−1 = −(vj)−1, and we have

˜(vjUkv−1
j ) = vjŨkv−1

j , ̂(vjUkv−1
j ) = vjÛkv−1

j .

Using (1.1), we conclude that the elements Uk and vjUkv−1
j are from the

same subspace Ck. The grade of element vjUkv−1
j can take values between

k − 2 and k + 2. Thus the grade equals k, and we get

vjUkv−1
j ∈ Ck, j = 1, . . . , m

and TUkT−1 ∈ Ck. �
We present new properties of the groups Γk, k = 1, . . . , n in Sect. 7 (see

Lemmas 7.1, 7.2, 7.5).

3. The Lie Groups P

Let us use the following notation for the groups that preserve subspaces of
fixed parity under similarity transformation

Γ(k) : = {T ∈ C× : TC(k)T−1 ⊆ C(k)}, k = 0, 1. (3.1)

Using Theorem 2.2, we get

Γ ⊆ Γ(0), Γ ⊆ Γ(1).

2According to the reviewer, this fact is well-known. We present this statement for the sake
of completeness. The new results for the groups Γk are presented in Sect. 7.
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Let us consider the following group

P := Z×(C×(0) ∪ C×(1)) =
{

C×(0) ∪ C×(1), if n is even,
C×0nC×(0), if n is odd.

By Lemma 2.1, we have Γn = P for even n.
We need the following lemma to prove Theorems 3.2 and 6.3.

Lemma 3.1. We have

{U ∈ C : [U, V ] = 0, ∀V ∈ C(0)} = C0 ⊕ Cn. (3.2)

Proof. Let us have Ueab = eabU , ∀a < b. Taking a = 1 and b = 2, let us
represent U in the form

U = A + e1B + e2C + e12D,

where the elements A,B,C,D ∈ C do not contain e1 and e2. We get (A +
e1B + e2C + e12D)e12 = e12(A + e1B + e2C + e12D). Using Ae12 = e12A,
De12 = e12D, e1Be12 = −e12e1B, and e2Ce12 = −e12e2C, we obtain B =
C = 0. Acting similarly for the other a < b, we obtain U = ae + be1...n for
some constants a, b. �

Theorem 3.2. The following three groups coincide3

P = Γ(0) = Γ(1).

Proof. Let us prove that P ⊆ Γ(0) and P ⊆ Γ(1). Suppose that T ∈ Z×(C×(0)∪
C×(1)). Since TT−1 = e, we conclude that if T = WT0 ∈ Z×C×(0), W ∈
Z×, T0 ∈ C×(0), then T−1 = W−1T−1

0 ∈ Z×C×(0), and if T = WT1 ∈
Z×C×(1), W ∈ Z×, T1 ∈ C×(1), then T−1 = W−1T−1

1 ∈ Z×C×(1). Therefore
TC(1)T−1 ⊆ C(1) and TC(0)T−1 ⊆ C(0).

Let us prove that Γ(1) ⊆ P. Suppose TC(1)T−1 ⊆ C(1). Then we have

−TC(1)T−1 = ̂(TC(1)T−1) = −T̂C(1)T̂−1.

Multiplying both sides on the right by T and on the left by T̂−1, we get

T̂−1TC(1) = C(1)T̂−1T,

thus T̂−1T ∈ Z×, and T̂ = WT for some W ∈ Z×. Taking grade involution,
we obtain T = Ŵ T̂ . Thus T = ŴWT . If n is even, then for W = λe
with some constant λ, we get λ = ±1. We obtain T ∈ C×(0) ∪ C×(1). If
n is odd, then W = ae + be1...n for some constants a, b. Suppose we have
T = T0 + T1, T0 ∈ C(0), T1 ∈ C(1). Then T0 − T1 = (ae + be1...n)(T0 + T1),
and T0 = aT0 + be1...nT1. If b = 0, then a = 1, W = e, and T ∈ C(0) ∪C(1). If
b �= 0, then T1 = μe1...nT0 for some constant μ. Thus we have T = T0 + T1 =
(e + μe1...n)T0 ∈ Z×C×(0) = Z×(C×(0) ∪ C×(1)).

Let us prove that Γ(0) ⊆ P. Suppose TC(0)T−1 ⊆ C(0). Then we have

TC(0)T−1 = ̂(TC(0)T−1) = T̂C(0)T̂−1.

3As one of the anonymous reviewers of this paper noted, this statement can be reformulated
for the more general case of the graded central simple algebras (GCSAs).
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Multiplying both sides by T on the right and by T̂−1 on the left, we get

T̂−1TC(0) = C(0)T̂−1T.

Using Lemma 3.1, we obtain T̂−1T ∈ (C0 ⊕ Cn)×, and T̂ = WT for some
W ∈ C×0 n. In the case of odd n, the proof is analogous to the proof of the
previous case because Z = C0 n in this case. Let us consider the case of even
n. Suppose we have T = T0 + T1, T0 ∈ C(0), T1 ∈ C(1). Then T0 − T1 =
W (T0 + T1), i.e. T0 = WT0 and −T1 = WT1. We get (W − e)T0 = 0 and
(W + e)T1 = 0. If at least one of two elements W + e and W − e is invertible,
then we conclude that T0 = 0 or T1 = 0, and T ∈ C(0) ∪ C(1). Suppose that
both elements W + e and W − e are non invertible. For W = ae+ be1...n with
some constants a, b, we get W ± e = (a ± 1)e + be1...n. We obtain

((a ± 1)e + be1...n)((a ± 1)e − be1...n) = (a ± 1)2e − b2(e1...n)2e.

We see that both elements can be non invertible only in the case a = 0,
b = ±1, (e1...n)2 = e or a = 0, b = ±i, (e1...n)2 = −e (in the case of the field
C). We get W = ±e1...n or W = ±ie1...n. From T̂ = WT , we obtain

T = WT̂ = W ̂(T0 + T1) = W (T0 − T1) = WT0 − WT1 = T0W + T1W = TW,

i.e. a contradiction, because T is invertible and W �= e. �

Note that we can prove Γ(0) = Γ(1) in the case of odd n in a simpler
way. Multiplying both sides of TC(0)T−1 ⊆ C(0) by e1...n ∈ Z and using
C(0) = e1...nC(1), we obtain TC(1)T−1 ⊆ C(1). Similarly, in the opposite
direction.

Note that we can also prove Γ(1) ⊆ P in another way using the gener-
alization of the Pauli’s theorem (see [15,19,23]). Using TC(1)T−1 ⊆ C(1), we
get

βa := TeaT−1 ∈ C(1), a = 1, . . . , n. (3.3)

The elements (3.3) satisfy βaβb + βbβa = 2ηabe. By the generalized Pauli’s
theorem for odd elements (see Theorems 5.1 and 5.2 in [19]), we get T ∈
Z(C×(0) ∪ C×(1)) because the element T equals

∑

a1≤···≤ak

βa1...ak
F (ea1...ak

)−1

for some element F ∈ {ea1...ak
} up to an invertible element of the center Z×.

Note that subspaces of fixed parity are direct sums of the subspaces
(1.1): C(0) = C02 and C(1) = C13. Below we study other subspaces, which
are also direct sums of the subspaces (1.1): C01, C23, C03, and C12.

4. The Lie Groups A

Let us use the following notation for the groups that preserve subspaces (1.1)
or their direct sums under similarity transformation

Γk : = {T ∈ C× : TCkT−1 ⊆ Ck}, k = 0, 1, 2, 3, (4.1)

Γkl : = {T ∈ C× : TCklT−1 ⊆ Ckl}, k, l = 0, 1, 2, 3. (4.2)
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Consider the following group4

A := {T ∈ C× : T̃ T ∈ Z×}. (4.3)

Note that the “norm function” ψ(T ) := T̃ T is widely used in the theory of
spin groups (see, for example [2,3,10,13]). The spin groups

Pin(p, q) := {T ∈ Γ± : ψ(T ) = ±e}, Spin(p, q) := Pin(p, q) ∩ C(0)

are defined as normalized subgroups of the Lipschitz group

Γ± := {T ∈ C×(0) ∪ C×(1) : TC1T−1 ⊆ C1} ⊆ Γ. (4.4)

It is well-known that ψ : Γ± → C×0. The group A contains the groups Γ and
Γ± as subgroups.

Lemma 4.1. The norm function T̃ T takes values in C01, i.e.

T̃ T ∈ C01 ∀T ∈ C.

As a consequence, we get

A =
{{T ∈ C× : T̃ T ∈ C×0}, if n = 0, 2, 3 mod4,

{T ∈ C× : T̃ T ∈ (C0 ⊕ Cn)×}, if n = 1 mod4.
(4.5)

Proof. We have ˜̃TT = T̃ ˜̃T = T̃ T for any T ∈ C. We conclude that the
reversion does not change the expression T̃ T . Using (1.1), we obtain T̃ T ∈
C01. Using (4.3), we get (4.5). �
Theorem 4.2. The following three groups coincide

A = Γ01 = Γ23.

Proof. Let us prove that A ⊆ Γ01 and A ⊆ Γ23. Let us have T̃ T = W ∈ Z×.
For U ∈ C01, we have

T̃UT−1 = T̃−1UT̃ = TW−1UWT−1 = TUT−1

i.e. TUT−1 ∈ C01. For U ∈ C23, we have

T̃UT−1 = −T̃−1UT̃ = −TW−1UWT−1 = −TUT−1

i.e. TUT−1 ∈ C23.
Let us prove that Γ01 ⊆ A. For U ∈ C01, we have

TUT−1 = T̃UT−1 = T̃−1UT̃ .

Multiplying both sides on the right by T and on the left by T̃ , we get

(T̃ T )U = U(T̃ T ) ∀U ∈ C01.

In particular, we conclude that T̃ T commutes with all generators ea ∈ C01,
a = 1, . . . , n. Thus T̃ T ∈ Z×.

Let us prove that Γ23 ⊆ A. For U ∈ C23, we have

−TUT−1 = T̃UT−1 = −T̃−1UT̃ .

4As one of the anonymous reviewers of this paper noted, the groups A,B,Q can be defined

in the more general case of the graded central simple algebras with involution (GCSAsWI)

and the corresponding statements can be reformulated for this more general case.
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We get

(T̃ T )U = U(T̃ T ) ∀U ∈ C23.

If n ≥ 3, then we can always represent each generator ea, a = 1, . . . , n as
the product of elements of grade 2 and 3. This implies that T̃ T commutes
with all generators ea, a = 1, . . . , n. For example, if T̃ T commutes with e123

and e23, then it commutes with e1. We obtain T̃ T ∈ Z×. If n = 2, then
from [T̃ T, e12] = 0, we obtain T̃ T ∈ C0 ⊕ C2. Using T̃ T ∈ C01, we get
T̃ T ∈ C×0 = Z×. �

5. The Lie Groups B

Let us consider the following group

B := {T ∈ C× : ˆ̃TT ∈ Z×}. (5.1)

The norm function χ(T ) := ˆ̃TT as well as the function ψ(T ) (see above) is
widely used in the theory of spin groups (see [2,3,10,13]).

Lemma 5.1. The norm function ˆ̃TT takes values in C03, i.e.
ˆ̃TT ∈ C03 ∀T ∈ C.

As a consequence, we get

B =

{
{T ∈ C× : ˆ̃TT ∈ C×0}, if n = 0, 1, 2 mod4,

{T ∈ C× : ˆ̃TT ∈ (C0 ⊕ Cn)×}, if n = 3 mod4.
(5.2)

In the particular cases, we have

B = C×, n ≤ 3.

Proof. We have
̂̂̃
T̃ T = ˆ̃T

ˆ̂̃
T̃ = ˆ̃TT . We conclude that the operation ˆ̃ does

not change the expression ˆ̃TT . Using (1.1), we obtain ˆ̃TT ∈ C03. Using

(5.1), we get (5.2). In the cases n ≤ 3, the condition ˆ̃TT ∈ Z× = C03 holds
automatically. �

Theorem 5.2. The following three groups coincide

B = Γ03 = Γ12.

Proof. Let us prove that B ⊆ Γ03 and B ⊆ Γ12. Let us have ˆ̃TT = W ∈ Z×.
For U ∈ C03, we have

̂
T̃UT−1 =

̂̃
T−1U

˜̂
T = TW−1UWT−1 = TUT−1,

i.e. TUT−1 ∈ C03. For U ∈ C12, we have

̂
T̃UT−1 = − ̂̃

T−1U
˜̂
T = −TW−1UWT−1 = −TUT−1,

i.e. TUT−1 ∈ C12.
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Let us prove that Γ12 ⊆ B. For U ∈ C12, we have

−TUT−1 =
̂

T̃UT−1 = − ̂̃
T−1U

˜̂
T.

Multiplying both sides on the right by T and on the left by ˜̂
T , we get

( ˜̂
TT )U = U( ˜̂

TT ) ∀U ∈ C12.

In particular, we conclude that ˜̂
TT commutes with all generators ea ∈ C12,

a = 1, . . . , n. Thus ˜̂
TT ∈ Z×.

Let us prove that Γ03 ⊆ B. For U ∈ C03, we have

TUT−1 =
̂

T̃UT−1 =
̂̃
T−1U

˜̂
T.

Multiplying both sides on the right by T and on the left by ˜̂
T , we get

( ˜̂
TT )U = U( ˜̂

TT ) ∀U ∈ C03.

For n ≤ 3, we get Γ03 = B = C×. If n ≥ 4, then we can always represent
each generator ea, a = 1, . . . , n, as the product of two elements of grades 3
and 4. This implies that ˜̂

TT commutes with all generators ea, a = 1, . . . , n.
For example, if ˜̂

T commutes with e234 and e1234, then it commutes with e1.
We get ˜̂

TT ∈ Z×. �

6. The Lie Groups Q and Q′

Let us consider the following group

Q := {T ∈ Z×(C×(0) ∪ C×(1)) : T̃ T ∈ Z×}. (6.1)

Lemma 6.1. We have

Q = A ∩ P = B ∩ P = A ∩ B, Q ⊆ P, Q ⊆ A, Q ⊆ B. (6.2)

In the particular cases, we have

Q = P = Z×(C×(0) ∪ C×(1)), n ≤ 3; (6.3)
Q �= P, A �= P, n = 4. (6.4)

Note that below (see Lemma 7.4), using auxiliary statements, we also
prove that Q = P = A in the cases n ≤ 3, and Q �= A in the case n = 4.

Proof. The first two statements (6.2) are trivial because of the definition
(6.1). Let us prove the nontrivial statement A ∩ B = Q. Suppose we have

element T ∈ C× such that T̃ T = W1 ∈ Z× and ˆ̃TT = W2 ∈ Z×. We get
T̂ = WT for some W ∈ Z×. In the proof of Theorem 3.2, we have already
shown that this implies T ∈ Z×(C×(0) ∪ C×(1)). Thus A ∩ B = Q.

For n ≤ 3, we have C0 = C0. Using T̃ T ∈ C01 and ˆ̃TT ∈ C03, we get
Q = P for n ≤ 3.

In the case n = 4, the element

T = e12 + 2e34 ∈ C(0)
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is invertible because

(e12 + 2e34)(e12 − 2e34) = (e12)2 − 4(e34)2

is a nonzero scalar. Also we have

T̃ T = −(e12 + 2e34)(e12 + 2e34) = −(e12)2 − 4(e34)2 − 4e1234 /∈ Z×,

i.e. T ∈ P, T /∈ A, and T /∈ Q. Thus P �= A and P �= Q in the case n = 4.
�

Let us consider the group

Q′ := {T ∈ Z×(C×(0) ∪ C×(1)) : T̃ T ∈ (C0 ⊕ Cn)×}. (6.5)

This group coincides with the group Q in the cases n = 1, 3 mod4 because
Z = C0 ⊕ Cn for odd n, and in the case n = 2 mod4 because T̃ T ∈ C01,
ˆ̃TT ∈ C03:

Q′ = Q, n = 1, 2, 3 mod4.

Let us consider the group Q′ in the case n = 0 mod4.

Lemma 6.2. We have

Q ⊆ Q′ ⊆ P, n = 0 mod4, (6.6)

where

Q �= Q′, n = 4, 8, 12, . . . ; (6.7)
Q′ = P, n = 4; (6.8)
Q′ �= P, n = 8, 12, 16, . . . (6.9)

For the groups

A′ := {T ∈ C× : T̃ T ∈ (C0 ⊕ Cn)×}, (6.10)

B′ := {T ∈ C× : ˆ̃TT ∈ (C0 ⊕ Cn)×}, (6.11)

we have

A′ ∩ B′ = Q′. (6.12)

Proof. We obtain (6.6) using the definitions of the corresponding groups.
Let us prove (6.7). For the element T = e + 2e1...n, we have

T̃ T = (e + 2e1...n)(e + 2e1...n) = e + 4(e1...n)2 + 4e1...n ∈ C×0n,

i.e. T ∈ Q′ and T /∈ Q. The element T is invertible because

(e + 2e1...n)(e − 2e1...n) = e − 4(e1...n)2

is a nonzero scalar.
We have (6.8) because the condition T̃ T ∈ C0 = C0 ⊕ C4 holds auto-

matically in the case n = 4.
Let us prove (6.9). The element T = e12 + 2e34 ∈ C(0) is invertible

because

(e12 + 2e34)(e12 − 2e34) = (e12)2 − 4(e34)2
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is a nonzero scalar. Also we have

T̃ T = −(e12 + 2e34)(e12 + 2e34) = −(e12)2 − 4(e34)2 − 4e1234 /∈ C×0n,

i.e. T ∈ P and T /∈ Q′.
Let us prove (6.12). If n = 1, 2, 3 mod4, then A′ = A, B′ = B, and

Q′ = Q, thus Q′ = Q = A∩B = A′∩B′. Let us consider the case n = 0 mod4.
Suppose we have an element T ∈ C× such that

T̃ T = W1 ∈ (C0 ⊕ Cn)×, ˆ̃TT = W2 ∈ (C0 ⊕ Cn)×.

We get T̂ = WT for some W ∈ (C0 ⊕ Cn)×. In the proof of Theorem 3.2, we
have already shown that this implies T ∈ C×(0) ∪ C×(1). �

Theorem 6.3. In the cases n ≥ 4, we have

Q = Γ1 = Γ3 �= Q′ = Γ0 = Γ2, n = 0 mod4, (6.13)

Q = Γ0 = Γ1 = Γ2 = Γ3, n = 1, 2, 3 mod4. (6.14)

In the exceptional cases, we have

Γ0 = C× �= Γ1 = Γ2 = Q = P = C×(0) ∪ C×(1), n = 2,

Γ0 = Γ3 = C× �= Γ1 = Γ2 = Q = P = Z×C×(0), n = 3.

As a consequence, we obtain (the analogue of Theorem 2.2 for grades)

Γ1 ⊆ Γk, k = 0, 1, 2, 3,
3⋂

k=0

Γk = Γ1, i.e.

Γ1 = Q = {T ∈ C× : TCkT−1 ⊆ Ck, k = 0, 1, 2, 3}. (6.15)

Proof. Let us prove that Q ⊆ Γk, k = 0, 1, 2, 3. Suppose T ∈ Z×(C×(0) ∪
C×(1)) and T̃ T = W ∈ Z×. For an arbitrary Uk ∈ Ck, k = 0, 1, 2, 3, we have

˜TUkT−1 = T̃−1ŨkT̃ = W−1T ŨkT−1W = T ŨkT−1,

̂TUkT−1 = T̂ ÛkT̂−1 = T ÛkT−1.

Using (1.1), we conclude that the elements TUkT−1 ∈ Ck. Thus Q ⊆ Γk,
k = 0, 1, 2, 3.

Let us prove that in the cases n = 0 mod4, we have Q′ ⊆ Γ0, Q′ ⊆ Γ2.
Suppose T ∈ C×(0) ∪ C×(1) and T̃ T = W ∈ (C0 ⊕ Cn)×. For an arbitrary
Uk ∈ Ck, we have

˜TUkT−1 = T̃−1ŨkT̃ = TW−1ŨkWT−1 = T ŨkT−1, k = 0, 2,

̂TUkT−1 = T̂ ÛkT̂−1 = T ÛkT−1, k = 0, 1, 2, 3,

where we use that W commutes with even elements. Using (1.1), we conclude
that TUkT−1 ∈ Ck for k = 0 and 2. Thus Q′ ⊆ Γk, k = 0, 2.

Let us prove that Γ1 ⊆ Q. Suppose TC1T−1 ⊆ C1. From TeaT−1 ∈ C1,
a = 1, . . . , n, we get

(T̃ )−1eaT̃ = ˜(TeaT−1) = TeaT−1.
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Multiplying both sides on the right by T and on the left by T̃ , we get

ea(T̃ T ) = (T̃ T )ea, a = 1, . . . , n,

i.e. T̃ T ∈ Z×, and Γ1 ⊆ A. Also we have

−( ˆ̃T )−1ea
ˆ̃T =

̂
˜(TeaT−1) = −TeaT−1.

Multiplying both sides on the right by T and on the left by ˆ̃T , we get

ea( ˆ̃TT ) = ( ˆ̃TT )ea, a = 1, . . . , n,

i.e. ˆ̃TT ∈ Z×, and Γ1 ⊆ B. Using Lemma 6.1, we obtain Γ1 ⊆ A ∩ B = Q.
In the exceptional case n = 3, we have Γ3 = C× because C3 = C3 ∈ Z

in this case.
Let us prove that Γ3 ⊆ Q, n ≥ 4. Suppose TC3T−1 ⊆ C3. We obtain

−(T̃ )−1UT̃ = ˜(TUT−1) = −TUT−1, ∀U ∈ C3,

and

U(T̃ T ) = (T̃ T )U, ∀U ∈ C3.

If n ≥ 4, then we can always represent each generator ea, a = 1, . . . , n, as the
product of 3 elements from the subspace C3. This implies that T̃ T commutes
with all generators ea, a = 1, . . . , n. For example, if T̃ T commutes with e123,
e124, e134, then it is trivial that it commutes with e1. We obtain T̃ T ∈ Z×,
i.e. Γ3 ⊆ A. Analogously, we get

( ˆ̃T )−1U ˆ̃T =
̂
˜(TUT−1) = TUT−1, ∀U ∈ C3,

and

U( ˆ̃TT ) = ( ˆ̃TT )U, ∀U ∈ C3.

Finally, for n ≥ 4, we obtain ˆ̃TT ∈ Z×, and Γ3 ⊆ B. Thus Γ3 ⊆ A ∩ B = Q
in the cases n ≥ 4.

Let us prove that Γ2 ⊆ Q in the cases n = 1, 2, 3 mod4 and Γ2 ⊆ Q′ in
the case n = 0 mod4. Suppose TC2T−1 ⊆ C2. We have

−(T̃ )−1UT̃ = ˜(TUT−1) = −TUT−1, ∀U ∈ C2.

Therefore

U(T̃ T ) = (T̃ T )U, ∀U ∈ C2.

This implies

U(T̃ T ) = (T̃ T )U, ∀U ∈ C(0)

because we can always (n ≥ 2) represent all even basis elements of Clifford
algebra as the products of elements from the subspace C2. Using Lemma 3.1,
we get T̃ T ∈ C0 ⊕ Cn. Analogously,

−( ˆ̃T )−1U ˆ̃T =
̂
˜(TUT−1) = −TUT−1, ∀U ∈ C2.
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Therefore

U( ˆ̃TT ) = ( ˆ̃TT )U, ∀U ∈ C2.

This implies

U( ˆ̃TT ) = ( ˆ̃TT )U, ∀U ∈ C(0).

Using Lemma 3.1, we obtain ˆ̃TT ∈ C0 ⊕ Cn. We have T̃ T ∈ C01, ˆ̃TT ∈ C03.
Thus in the cases n = 1, 2, 3 mod4, we get T̃ T ∈ C0 and ˆ̃TT ∈ C0. We obtain
the group A ∩ B = Q in this case. In the case n = 0 mod4, we obtain the
group A′ ∩ B′ = Q′.

In the exceptional cases n = 2, 3, we have Γ0 = Γ0 = C× because
C0 = C0 ∈ Z in this case.

Let us prove that Γ0 ⊆ Q in the cases n = 1, 2, 3 mod4, n ≥ 5, and
Γ0 ⊆ Q′ in the cases n = 0 mod4, n ≥ 4. Suppose TC0T−1 ⊆ C0. We have

(T̃ )−1UT̃ = ˜(TUT−1) = TUT−1, ∀U ∈ C0.

Therefore

U(T̃ T ) = (T̃ T )U, ∀U ∈ C0. (6.16)

In the cases n ≥ 5, this implies

U(T̃ T ) = (T̃ T )U, ∀U ∈ C(0)

because we can always represent each basis element of grade 2 as the product
of elements from the subspace C0. For example, if T̃ T commutes with e1345

and e2345, then it commutes with e12. Using Lemma 3.1, we get

T̃ T ∈ C0 ⊕ Cn. (6.17)

If n = 4, then C0 = C0 ⊕ C4 and, from (6.16), we get T̃ T ∈ C(0) = C024.
Using T̃ T ∈ C0, we get T̃ T ∈ C04, i.e. (6.17) again. Analogously, we obtain

( ˆ̃T )−1U ˆ̃T =
̂
˜(TUT−1) = TUT−1, ∀U ∈ C0.

Therefore

U( ˆ̃TT ) = ( ˆ̃TT )U, ∀U ∈ C0. (6.18)

In the cases n ≥ 5, this implies

U( ˆ̃TT ) = ( ˆ̃TT )U, ∀U ∈ C(0).

Using Lemma 3.1, we get

ˆ̃TT ∈ C0 ⊕ Cn. (6.19)

In the case n = 4, from (6.18), we get again (6.19). Finally, in the cases

n = 1, 2, 3 mod4, for n ≥ 4, using T̃ T ∈ C01, ˆ̃TT ∈ C03, we get from (6.17)

and (6.19) the conditions T̃ T ∈ C0 and ˆ̃TT ∈ C0. We obtain the group
A ∩ B = Q in this case. In the cases n = 0 mod4, n ≥ 4, from the conditions
(6.17) and (6.19) we obtain the group A′ ∩ B′ = Q′. �
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Let us give one example for the case n = 4, p = 1, q = 3. The element
T = e + e1234 ∈ Γ2 = Q′ and T /∈ Γ1 = Q. We have (e1234)2 = −e and
T−1 = 1

2 (e − e1234). Thus

Te1T
−1 =

1
2
(e + e1234)e1(e − e1234) = −e234 /∈ C1,

and for an arbitrary U ∈ C2

TUT−1 =
1
2
(e + e1234)U(e − e1234)

=
1
2
(U − Ue1234 + e1234U − e1234Ue1234) = U ∈ C2.

We get Q = Γ1 �= Γ2 = Q′ in this case.

7. The Relations Between Groups

In this section, we prove some new properties of the groups Γk, Q, Q′ and
A. In particular, we show that these groups are closely related in the cases
of small dimensions.

Lemma 7.1. We have

Γk ⊆ Q, k = 1, 2, 3, . . . , n − 1, n = 1, 2, 3 mod4, (7.1)

Γk ⊆ Q, k = 1, 3, 5, . . . , n − 1, n = 0 mod4, (7.2)

Γk ⊆ Q′, k = 2, 4, 6, . . . , n − 2, n = 0 mod4. (7.3)

Below (see Theorem 7.3 and Lemma 7.5) we prove that we have equality
in (7.1), (7.2), and (7.3) in the cases n ≤ 5.

Proof. Let us have TUkT−1 ⊆ Ck for any Uk ∈ Ck with some fixed k. We
get

±TUkT−1 = ˜TUkT−1 = ±T̃−1UkT̃ , ∀Uk ∈ Ck.

Multiplying both sides by T on the right and by T̃ on the left, we get

Uk(T̃ T ) = (T̃ T )Uk, ∀Uk ∈ Ck.

If k is odd and k �= n, then we can always represent each generator ea,
a = 1, . . . , n as the product of elements of grade k. We obtain

ea(T̃ T ) = (T̃ T )ea, a = 1, . . . , n,

i.e. T̃ T ∈ Z×.
If k is even and k �= n, k �= 0, then we can always represent each basis

element of grade 2 as the product of elements of grade k. We obtain

eab(T̃ T ) = (T̃ T )eab, ∀a < b.

Using Lemma 3.1, we get T̃ T ∈ C0 ⊕ Cn, which is equivalent to T̃ T ∈ C0 in
the cases n = 1, 2, 3 mod4.

Also we have

±TUkT−1 =
̂
˜TUkT−1 = ± ̂̃

T−1Uk
ˆ̃T, ∀Uk ∈ Ck.
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Multiplying both sides by T on the right and by ˆ̃T on the left, we get

Uk( ˆ̃TT ) = ( ˆ̃TT )Uk, ∀Uk ∈ Ck.

If k is odd and k �= n, then we obtain ˆ̃TT ∈ Z×. If k is even and k �= n,
k �= 0, then we obtain ˆ̃TT ∈ C0 ⊕ Cn, which is equivalent to ˆ̃TT ∈ C0 in the
cases n = 1, 2, 3 mod4.

Finally, in the cases n = 1, 2, 3 mod4, we obtain the group Q = A ∩ B.
In the case n = 0 mod4, we obtain the group Q = A ∩ B for odd k and the
group Q′ = A′ ∩ B′ for even k. �

Using previous Lemma, we conclude that Γk ⊆ P because Q ⊆ P,
Q′ ⊆ P (see Lemmas 6.1 and 6.2). Thus we can rewrite the definitions of the
groups Γk (2.1) in the form

Γk := {T ∈ Z×(C×(0) ∪ C×(1)) : TCkT−1 ⊆ Ck}, k = 1, . . . , n − 1.

Lemma 7.2. We have

Γk = Γn−k, k = 1, . . . , n − 1.

Proof. If n is odd, then TCkT−1 ⊆ Ck is equivalent to TCn−kT−1 ⊆ Cn−k,
k = 1, . . . , n − 1, because we can multiply both sides of this conditions by
e1...n ∈ Z and use Cke1...n = Cn−k.

If n is even, then TCkT−1 ⊆ Ck is also equivalent to TCn−kT−1 ⊆
Cn−k, k = 1, . . . , n − 1. We can multiply both sides of this conditions by
e1...n and use that T ∈ C×(0) ∪ C×(1) (see the note before this Lemma), use
that e1...n commutes with all even elements and anticommutes with all odd
elements, and Cke1...n = Cn−k. �
Theorem 7.3. We have

Γ = Q, n ≤ 5; Γ �= Q, n = 6. (7.4)

Proof. In the cases n ≤ 4, we have

Q = Γ1 = {T ∈ C× : TC1T−1 ⊆ C1}
= {T ∈ C× : TC1T−1 ⊆ C1} = Γ1

because C1 = C1. In the case n = 5, we have for T ∈ Q

TC1T−1 ⊆ C1 = C1 ⊕ C5.

Suppose that

TvT−1 = w + λe1...5, v, w ∈ C1

with some constant λ. Then

λe = e−1
1...5TvT−1 − e−1

1...5w = 〈e−1
1...5TvT−1 − e−1

1...5w〉0
= 〈e−1

1...5TvT−1〉0 = 〈e1...5v〉0 = 0,

where we use the property 〈AB〉0 = 〈BA〉0 of the scalar part operation [10]
(it is the projection onto the subspace C0)5, and e1...5 ∈ Z.

5This operation coincides with the trace of the corresponding matrix representation up to
the scalar, which is the dimension of this representation (see [13]).
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In the case n = p = 6, q = 0, consider the element

T =
1√
2
(e12 + e3456) ∈ C(0).

We have

T̃ T =
1
2
(−e12 + e3456)(e12 + e3456) = e

and

Te1T
−1 =

1
2
(e12 + e3456)e1(−e12 + e3456) = −e23456 /∈ C1,

but e23456 ∈ C1. Thus T ∈ Q, T /∈ Γ, and Q �= Γ in this case. �

Note that the following analogue of the statement of the previous the-
orem is known: in the cases n ≤ 5, if T ∈ C(0) and T̃ T = ±e, then
TC1T−1 ⊆ C1. That is why the spin group in the cases n ≤ 5 (see, for
example, [13]) can be defined as

Spin(p, q) = {T ∈ C(0), T̃ T = ±e}, n ≤ 5.

Lemma 7.4. We have

A = Q = P = Z×(C×(0) ∪ C×(1)), n ≤ 3; (7.5)
Q �= A, n = 4. (7.6)

Proof. We have Q = P for n ≤ 3 by Lemma 6.1. Let us prove that Q = A
for n ≤ 3. If T ∈ A, then TC01T−1 ⊆ C01, in particular,

TC1T−1 ⊆ C0 ⊕ C1.

Using the property 〈TUT−1〉0 = 〈U〉0 of the scalar part operation, we get

TC1T−1 ⊆ C1.

Thus, A ⊆ Γ in the cases n ≤ 3. We have Γ = Q for n ≤ 5, and Q ⊆ A. Thus
we get A = Q for n ≤ 3.

In the case n = 4, for the element

S = e + 2e123 /∈ C×(0) ∪ C×(1),

we have

S̃S = (e − 2e123)(e + 2e123) = e − 4(e123)2 ∈ C×0.

Thus S ∈ A, S /∈ Q, and A �= Q in the case n = 4. �

Lemma 7.5. We have the following relations in the cases of small dimensions

Γ1 = Γ2 = Q = P = A, n = 3; (7.7)
Γ1 = Γ3 = Q �= Γ2 = Q′ = P, n = 4; (7.8)
Γ1 = Γ2 = Γ3 = Γ4 = Q, n = 5. (7.9)

Proof. We have Γ1 = Q for n ≤ 5. If we have Γ1 ⊆ Γk ⊆ Q for some fixed k
(see Lemma 7.1), then we can conclude that Γ1 = Γk = Q for this k. In the
case n = 4, we get Γ2 = Γ2 = Q′ = P from Theorem 6.3. �
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Note that Γ1 �= Γ3 in the case n = 6. This fact follows from Theorem 6.3
(we have Γ3 = Γ3 = Q in the case n = 6) and Theorem 7.3 (we have Γ �= Q
in the case n = 6). For example, the element T = e + 2e123456 is invertible
because

(e + 2e123456)(e − 2e123456) = e − 4(e123456)2,

is a nonzero scalar. We have

(e + 2e123456)U(e − 2e123456) = (e + 2e123456)2U ∈ C3

for an arbitrary U ∈ C3 because e123456 anticommutes with all odd elements.
Also we have

(e + 2e123456)e1(e − 2e123456) = (e + 2e123456)2e1 ∈ C1 ⊕ C5.

Thus T /∈ Γ and T ∈ Γ3.

8. The Corresponding Lie Algebras

It is well-known (see, for example, [3,13]) that the Lie algebra of the Lie group
Γ is the following subspace with respect to the operation of commutator

γ :=
{

C0 ⊕ C2, if n is even,
C0 ⊕ C2 ⊕ Cn, if n is odd,

with dimension

dim Γ = dim γ =

{
n(n−1)

2 + 1, if n is even,
n(n−1)

2 + 2, if n is odd.

Theorem 8.1. The Lie groups P, A, B, Q, and Q′ have the corresponding Lie
algebras6 p, a, b, q, and q′ illustrated in Table 1 with corresponding dimen-
sions. Also we have

γ ⊆ q ⊆ p, q ⊆ a, q ⊆ b, q = a ∩ p = b ∩ p = a ∩ b;
q = p = a, n ≤ 3;
q �= p, q �= a, p �= a, n = 4;
γ = q, n ≤ 5; γ �= q, n = 6. (8.1)

In the cases n = 0 mod4, we have

q ⊆ q′ ⊆ p, γ ⊆ q′; q �= q′, n ≥ 4;
q′ = p, n = 4; q′ �= p, n ≥ 8. (8.2)

Note that the statements (8.1) are analogues of the corresponding state-
ments (6.2), (6.3), (6.4), (7.1), (7.2), (7.4), (7.5), (7.6) for the Lie groups. The
statements (8.2) are analogues of the corresponding statements (6.6), (6.7),
(6.8), (6.9), (7.3) for the Lie groups.

6We present Lie algebras for all Lie groups considered in this paper for the sake of com-
pleteness. Some of them are known.
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Proof. To prove these statements, we use the standard facts about the rela-
tion between an arbitrary Lie group and the corresponding Lie algebra.

To calculate dimensions, we use (see, for example, [22])7

dim C2 = 2n−2 − 2
n−2
2 cos

(πn

4

)
, dim C(0) = 2n−1,

dim C23 = dim C2 + dim C3 = 2n−2 − 2
n−2
2 cos

(πn

4

)

+2n−2 − 2
n−2
2 sin

(πn

4

)
= 2n−1 − 2

n−1
2 sin

(
π(n + 1)

4

)
,

dim C12 = dim C2 + dim C1 = 2n−2 − 2
n−2
2 cos

(πn

4

)

+2n−2 + 2
n−2
2 sin

(πn

4

)
= 2n−1 − 2

n−1
2 cos

(
π(n + 1)

4

)
.

All statements (8.1), (8.2) are easily verified using definitions of the corre-
sponding Lie algebras. �

9. The Cases of Small Dimensions n ≤ 5

Let us write down all the Lie groups considered in this paper and the corre-
sponding Lie algebras for the cases of small dimensions n ≤ 5.

If n = 1, then the Clifford algebra C is a commutative algebra and all
considered Lie groups coincide with C×. The corresponding Lie algebra is C
considered w.r.t. the operation of commutator.

If n = 2, then we have two different groups

Γ0 = Γ0 = Γ03 = Γ12 = B = C×,

Γ1 = Γ2 = Γ2 = Γ23 = Γ01 = Γ(0) = Γ(1) = Γ1

= Γ = Q = P = A = C×(0) ∪ C×(1),

with the corresponding Lie algebras C and C02 respectively.
If n = 3, then we have two different groups

Γ0 = Γ0 = Γ3 = Γ3 = Γ03 = Γ12 = B = C×,

Γ1 = Γ(0) = Γ(1) = Γ1 = Γ2 = Γ2 = Γ23 = Γ01

= Γ = Q = P = A = Z×C×(0),

with the corresponding Lie algebras C and C023 respectively.
If n = 4, then we have five different groups

Γ0 = C×,

Γ(0) = Γ(1) = Γ0 = Γ4 = Γ2 = Γ2 = P = Q′ = C×(0) ∪ C×(1),

Γ1 = Γ1 = Γ3 = Γ3 = Γ = Q = {T ∈ C×(0) ∪ C×(1) : T̃ T ∈ C0×},

Γ03 = Γ12 = B = {T ∈ C× : ˆ̃TT ∈ C×0},

7As one of the anonymous reviewers noted, the dimensions of the four subspaces Ck,

k = 0, 1, 2, 3 in the case of more general algebras (GCSAsWI) are also known from other
works.
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Γ23 = Γ01 = A = {T ∈ C× : T̃ T ∈ C×0}.

with the corresponding Lie algebras C, C024, C02, C012, and C023 respectively.
If n = 5, then we have five different groups

Γ0 = Γ5 = C×,

Γ(0) = Γ(1) = P = Z×C×(0),

Γ1 = Γ2 = Γ3 = Γ4 = Γ1 = Γ2 = Γ3 = Γ0

= Γ = Q = {T ∈ Z×C×(0) : T̃ T ∈ C0×},

Γ03 = Γ12 = B = {T ∈ C× : ˆ̃TT ∈ C×0n},

Γ23 = Γ01 = A = {T ∈ C× : T̃ T ∈ C×0}.

with the corresponding Lie algebras C, C0245, C025, C012, and C0235 respec-
tively.

The relations between all the considered Lie groups are illustrated in
Fig. 1.

10. Conclusions

In this paper, we present an explicit form of the groups of elements that
define inner automorphisms preserving different naturally defined subspaces
(subspaces defined by the reversion and the grade involution and subspaces
of fixed grades) of the real or complex Clifford algebra C

Γ(0) = Γ(1) = P, Γ01 = Γ23 = A, Γ03 = Γ12 = B,

Γ1 = Γ3 = Q, Γ0 = Γ2 = Q or Q′, Γk, k = 0, 1, . . . , n.

We present the corresponding Lie algebras. The relations between Lie groups
(and Lie algebras) are illustrated in Table 1 and Fig. 1. One of this groups
(the Clifford group Γ, which preserves the subspace of grade 1) is well-known
and is widely used in the theory of spin groups. The other groups A,B,Q,Q′

are related to the norm functions ψ(T ) = T̃ T and χ(T ) = ˆ̃TT and can be
also used in different applications.

Note that the spin groups are defined as normalized subgroups (using
the norm functions ψ and χ) of the Lipschitz group

Γ± = {T ∈ C×(0) ∪ C×(1) : TC1T−1 ⊆ C1},

which is a subgroup of the Clifford group Γ (we have Γ± ⊆ Γ and Γ = Z×Γ±).
We can consider normalized subgroups (using the same norm functions ψ and
χ) of the groups P, A, B, Q, Q′. These normalized subgroups can be inter-
preted as generalizations of the spin groups and can be used in different
applications of Clifford algebras. In the papers [20–22], we have already con-
sidered some of these groups (see the groups G23

p,q, G12
p,q, G2

p,q in [22]) and
found isomorphisms between these groups and classical matrix Lie groups.
Some of these groups are related to automorphism groups of the scalar prod-
ucts on the spinor spaces (see [1,3,10,12]).
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All the groups considered in this paper contain spin groups as subgroups.
The real Clifford algebras are isomorphic to the matrix algebras over R, R⊕R,
C, H, or H ⊕ H depending on p − q mod8 and the complex Clifford algebras
are isomorphic to the matrix algebras over C or C⊕C depending on n mod2.
In the opinion of the author, the structure of naturally defined fundamental
subspaces (subspaces of fixed grades and subspaces defined by the reversion
and the grade involution) favourably distinguishes Clifford algebras from the
corresponding matrix algebras, when we use them for applications. Groups
that preserve different subspaces of Clifford algebra under similarity transfor-
mation may be of interest for different applications of Clifford algebras—in
physics, engineering, robotics, computer vision, image and signal processing
(see about applications of various groups in physics using Clifford algebra
formalism, for example, in [11,24]).
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