
ISSN 1063-7796, Physics of Particles and Nuclei, 2020, Vol. 51, No. 4, pp. 589–594. © Pleiades Publishing, Ltd., 2020.
Russian Text © The Author(s), 2020, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2020, Vol. 51, No. 4.
On Some Equations Modeling the Yang–Mills Equations
N. G. Marchuka, * and D. S. Shirokovb, c, **

aSteklov Mathematical Institute, Russian Academy of Sciences, Moscow, 119991 Russia
bNational Research University Higher School of Economics, Moscow, 101000 Russia

cInstitute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 1127051 Russia
*e-mail: nmarchuk@mi-ras.ru

**e-mail: dm.shirokov@gmail.com
Received December 20, 2019; revised January 16, 2020; accepted January 29, 2020

Abstract—The paper considers plane-wave solutions of the Yang–Mills equations, which allow one to write
out three systems of equations modeling the Yang–Mills system. An explicit form of all plane-wave solutions
of the Yang–Mills equations with the  gauge symmetry and zero current in a (pseudo)Euclidean space
of arbitrary finite dimension is presented.
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INTRODUCTION
The Yang–Mills equations were introduced in

1954 and have long been considered fundamental
equations of quantum physics. The Yang–Mills equa-
tions comprise a class of equations depending on a
gauge Lie group and its real Lie algebra. In physics, as
a rule, unitary gauge groups, or (more general) semis-
imple Lie groups, are used. In the Standard Model,
the Yang–Mills equations are used to describe elec-
troweak and strong interactions of elementary parti-
cles [1]. As noted by many authors, the study of the
Yang–Mills equations and their solution involves dif-
ficulties arising from the nonlinearity of the equations.
To simplify the situation, mathematicians introduce
certain additional conditions restricting the class of
solutions of the Yang–Mills equations. In particular,
they consider self-dual (instanton) solutions, as well as
solutions depending on a smaller number of indepen-
dent variables. In this article, we present some plane
wave solutions of the Yang–Mills equations, which
enable one to write out three systems of equations
modeling the Yang–Mills equations.

Particular classes of solutions of the Yang–Mills
equations are presented in classical works [2–7],
review [8], and other works. Particular classes of
plane-wave solutions of the Yang–Mills equations
were considered in [9–16]. In this paper, we present all
plane-wave solutions of the Yang–Mills equations
with the  gauge symmetry with zero current in a
Euclidean or pseudo-Euclidean space of arbitrary
finite dimension. These results generalize the results
of one of the authors about all constant solutions in
Euclidean and pseudo-Euclidean spaces of arbitrary
finite dimension [17, 18]. Issues concerning constant

and covariantly constant solutions of the Yang–Mills
equations were also considered in [19–21].

1. THE YANG–MILLS EQUATIONS

Let p, and q be nonnegative integers and 
be a positive integer. We consider equations in a
(pseudo)Euclidean space with Cartesian coordinates

, . Partial derivatives are denoted by
. We assume that all functions of 

considered below are sufficiently smooth (their
smoothness is sufficient for the validity of the reason-
ing).

Let  be a semisimple Lie group (in particular,
may be a unitary Lie group) and  be a real Lie

algebra of the Lie group . We assume that the Lie
group  and the Lie algebra  are represented by
square matrices of some dimension . In this case,
the Lie bracket  defining the multiplication in
the Lie algebra  is implemented in the form of a
matrix commutator [A, B] = AB – BA.

We denote by  the set of tensor fields of the type
 of the (pseudo)Euclidean space  with the val-

ues in .

Let , , , , and
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are called the Yang–Mills equations (the Yang–Mills
system).

It is usually assumed that Am, and Fμν are unknown

and  is a known vector with values in the Lie algebra .
It is said that Eqs. (1) define a Yang–Mills field

, where  is the potential and  is the

Yang–Mills field strength. The vector  is called a
non-Abelian current (in the case of an Abelian group

, the vector  is called a current).
We can verify that the system of equations (1)

implies the relationship

which is called the non-Abelian conservation law (in
the case of an Abelian group , we have ; i.e.,
the divergence of the vector  is zero).

Let the tensor fields  satisfy Yang–Mills equa-
tions (1). Take some element  (a func-
tion ) and consider the transformed ten-
sor fields

(2)

Then, these quantities satisfy the same Yang–Mills
equations

i.e., Eqs (1) are invariant with respect to transforma-
tions (2). Transformation (2) is called the gauge trans-
formation (or gauge symmetry), and the group K is
called the gauge group of Yang–Mills equations (1).

The components of the skew-symmetric tensor
field  defined by the first equation (1) can be sub-
stituted into the second equation to obtain a second-
order equation for the covector potential of the Yang–
Mills field:

(3)

1.1. Particular Solutions of the Yang–Mills Equations
The system of Yang–Mills equations (1) (or (3)) is

considered as a system of nonlinear partial differential
equations for unknown tensor fields  with

a known right-hand side . The knowledge of the
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theory of partial differential equations suggests that,
for an in-depth analysis of the solutions of the Yang–
Mills equations, it is necessary to consider boundary
value problems in a certain region of space . The
formulation of boundary value problems (that is,
which boundary conditions should be imposed, and
where they should be imposed) depends on the signa-
ture  of the pseudo-Euclidean space. A correct
formulation of boundary value problems for the
Yang–Mills equations, first of all, can be obtained in
the case of signatures  and  hyperbolic
cases, and in the case of signatures  and :
elliptic cases.

It is also of interest to search for particular solutions
of the Yang–Mills equations in which the right-hand
side  has one or another special form (e.g., dic-
tated by the physical formulation of the problem).

If , we have a zero solution of the Yang–
Mills equations: , . If ,
then, using gauge transformation (2), from the zero
solution, we obtain another trivial (gauge equivalent to
zero) solution of the Yang–Mills equations:

  

2. PLANE-WAVE SOLUTION 
OF THE YANG–MILLS EQUATIONS

In the theory of linear partial differential equations
in the (pseudo)Euclidean space , an important
role is played by plane-wave solutions. In such solu-
tions, the dependence on points  of the
(pseudo)Euclidean space reduces to the dependence
on a scalar (invariant) , which is defined by a
given constant (independent of points ) covector
field  (real or complex).

We will seek solutions of the Yang–Mills equa-
tions (3) in the following form

(4)

and  are the components of a constant covector field
with values in the Lie algebra L. Partial derivatives act
on the exponential  according to the standard rule

Substituting  from (4) into the left-hand side
of (3), we have
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Now assume that the right-hand side of Eq. (3) has
the form

(6)

where , , independent of the  compo-
nents of three vectors (vector fields) with values in the
Lie algebra . Equating the right-hand sides of equal-
ities (5) and (6), we obtain the system of equations

(7)

(8)

(9)

which can be considered a system of algebraic equa-
tions for finding a complex vector  and a vector 
with values in the Lie algebra  from the known right-
hand side , .

3. ANALYSIS OF SYSTEM (7)–(9) 
AND THE SOLUTION IN THE FORM 

OF A SUM OF WAVES
Let us discuss in more detail the systems of alge-

braic equations (7)–(9), proposed in the previous sec-
tion. System (9) is a system of equations for finding
constant solutions of the Yang–Mills equations
(a similar system can be obtained from (3) if we
assume that the solutions are independent of the point

 of the (pseudo)Euclidean space under consider-
ation). The solution of such a system of equations for
an arbitrary current in the case of the Lie group 
is discussed in [17, 18]. Under certain conditions on
the current, solutions may not exist. For example, in
the case of the Lie group  in the Euclidean space

, the condition for the existence of solutions is the
following restriction  on the rank of the
matrix of coefficients of the expansion of the current

 =  via the basis , , of the Lie alge-
bra  (see [17]). In the cases in which constant
solutions  exist, we can find them from system (9)
and substitute them into (7) and (8). Note that sys-
tem (8) is a system of linear equations for unknowns 
and the matrix of this system is the skew-symmetric
matrix of the corresponding constant Yang–Mills
field strength:

As is known, the determinant of a skew-symmetric
matrix of an odd order  is equal to zero and
the determinant of a skew-symmetric matrix of an

even order  is the square of a homogeneous
polynomial of degree , which is called the Pfaffian.
System (7)–(9) under consideration has solutions

under certain constraints on the currents , , and

. The existence of the solution and its explicit form
depend on the signature and dimension of the space,
as well as on the Lie group under consideration.

In the case of zero current  = , we
obtain the system

(10)

(11)

(12)

If the Lie algebra  is compact, then, in the case of

a space  of the Lorentz signature, 
or , or Euclidean signature  or , for

all solutions  of system (12), we have  =

 (this fact was proved in [22, 23]); i.e., sys-
tem (11) is satisfied automatically for any  and
expressions  should be sought from system (10). This
is not true in the case of other signatures; a counterex-

ample for the case of  with  and  is given
below.

We restrict ourselves to the case of the Lie group

 and a (pseudo)Euclidean space , ,
of arbitrary finite dimension . To solve system (12),
we use the previously obtained results [17, 18] on all
constant solutions  of the Yang–Mills equa-

tions. Denote by , , the standard basis

of the Lie algebra , constructed using the Pauli

matrices , . Let us list the explicit form of

all solutions  of system (10)–(12). The solu-
tions are written out with an appropriate choice1 of the
coordinate system and gauge:
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Note that, in the last two cases, the expression for
the Yang–Mills field strength is nonzero, ,
and the calculations included Eqs. (11).

We also consider a more general formulation of the
problem than that proposed in (4) and (6). Namely,
we consider the solutions of Eqs. (3) in the form of the
sum of waves (Fourier series2). Let the current have
the form

(13)

We will seek solutions of system (3) in the form

(14)

We obtain the system

(15)

This system is split into a system of equations of
the form

where  are given expressions that are polynomials of

degree not higher than 2 in the unknowns  and poly-
nomials of degree not higher than 3 in the unknowns

. We can also consider a more particular formula-
tion of the problem, when the summation in (13) and

(14) is carried out from  to  (i.e.,  =  for
all ). The system obtained in this case is
split into a system of equations with respect to the

unknowns , , and . The first three
equations of this system have the form:
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The first system (16) is a system for finding all con-
stant solutions  of the Yang–Mills equations with a

constant current . Finding all the constant solu-

tions  (in the case of the Lie group , such a
problem was solved in [17, 18]), we can substitute them
into the second system (17), which is linear in the
unknowns  and quadratic in the unknowns . Sys-

tem (18), following it, is linear in  and quadratic in

, etc. The existence and the explicit form of the solu-
tions depend on the considered Lie group , the
dimension and signature of the space , and the
currents , .

4. ON SYSTEMS OF EQUATIONS MODELING 
THE YANG–MILLS EQUATIONS

The reasoning in the previous section, which led us
to algebraic system of equations (7)–(9), leads us to
the idea that we can postulate three systems of equa-
tions, each of which models certain aspects of the
Yang–Mills equations. Namely, it is proposed to con-
sider the following systems of equations:
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(21)

where , , depending on the  components
of three vector fields with values in the Lie algebra .

The system of equations (19) is just several
instances of Maxwell’s equations, and this number of
instances is equal to the dimension of the Lie algebra

, considered as a vector space.
The system of equations (21) is called an algebraic

approximation of the Yang–Mills equations. Note
that this system of equations contains, as a particular
class of solutions, all constant solutions of the Yang–
Mills equations. This system also contains other
classes of (nonconstant) solutions of the Yang–Mills
equations, which are both solutions of systems (19)
and (20).

In [17, 18], explicit formulas were presented for all
solutions  of system (21) in the case in which all the

expressions  and  in this system do not depend

on the point  of the (pseudo)Euclidean space  in
the case of the Lie group . These results can be
reformulated locally for system (21) in the general case,
since it does not include any differential operators.

It seems interesting to further study the system of
equations (7)–(9) in the general formulation, with an
arbitrary current, as well as for other semisimple Lie
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groups, in particular, the Lie group . Systems of
equations (19), (20), and (21) are of interest for further
studies. It would be interesting to find particular
classes of solutions to system (20). In the future, it is
planned to generalize the results of this article to the
system of Yang–Mills–Dirac equations in Minkowski
space.
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