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We find general solutions of some field equations (systems of equations) in pseudo-Euclidean
spaces (the so-called primitive field equations). These equations are used in the study of the
Dirac equation and Yang–Mills equations. These equations are invariant under orthogonal O(p, q)
coordinate transformations and invariant under gauge transformations, which depend on some Lie
groups. In this paper we use some new geometric objects—Clifford field vector and an algebra
of h-forms which is a generalization of the algebra of differential forms and the Atiyah–Kähler
algebra.
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1. Introduction
In physics field equations describe physical fields and (using quantization) elemen-

tary particles. The following equations are fundamental relativistic field equations:
Maxwell’s equations (1862), the Klein–Gordon–Fock equation (1926), the Dirac
equation (1928), the Yang–Mills equations (1954). These equations are considered in
Minkowski space R1,3, they are invariant under Lorentz coordinate transformations.
They are also invariant under certain unitary gauge transformations.

In this paper we consider a class of the so-called primitive field equations (systems
of equations) (27). These equations are considered in pseudo-Euclidean spaces Rp,q
and have different Lie groups of gauge symmetry. We find general solutions of
primitive field equations corresponding to a wide class of gauge Lie groups. A partial
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case of such equations was considered in 1930–1939 in the theory of Dirac equation
on curved pseudo-Riemannian manifolds of signature (1, 3). Namely, it is a condition
of generalized covariant constancy of γ -matrices, which is gauge invariant w.r.t. the
spinor Lie group Spin(1, 3) (see, for example, [12] formula (4.5.13)).

In the theory of model field equations developed by authors in a series of papers
and in monograph [7] there arises necessity to solve primitive field equations in
pseudo-Euclidean space R1,3 with various gauge Lie groups (see Section 2). Also,
primitive field equations are used in the theory of Yang–Mills equations. Namely,
we present a new class of gauge-invariant solutions of Yang–Mills equations, which
correspond to solutions of primitive field equations (see [8]).

In Section 2 of this paper we consider the Dirac equation and make some
important notes about the Lie group SU(2, 2) in connection with the Dirac equation.
As a result of these notes we get new system of equations (8) and (9). Eqs. (8)
are a special case of primitive field equations and we study these equations in the
next sections of the paper in pseudo-Euclidean spaces Rp,q .

In Section 3 we discuss some known facts about Clifford algebras. We actively use
tensor fields with values in Clifford algebra. Also we discuss some Lie algebras in
Clifford algebra, especially Lie algebras w(C̀ (p, q))). Results about Lie subalgebras
of the Lie algebras w(C̀ (p, q))) of pseudo-unitary Lie group are our original results
published in [7, 11].

In Section 4 we present original results about projection operators and contractions
in Clifford algebras. We use these results in Section 7.

In Section 5 of this paper we present some new geometric objects—Clifford
field vector and an algebra of h-forms which is a generalization of the algebra of
differential forms and the Atiyah-Kähler algebra [1, 5]1. These objects are helpful
for consideration of some problems related to field theory equations.

In Sections 6 and 7 we consider a primitive field equation and present original
results about its gauge symmetry and about general solutions of this equation.

Note that all considerations of this paper are valid for a general pseudo-Euclidean
metric of signature (p, q) and, in particular, for the Lorentzian metric (+,−,−,−).
Results of the paper can be understood either on the base of Dirac gamma matrices
or on the base of Clifford algebras.

2. A new view on the Dirac equation and γ -matrices

Consider the Dirac equation for an electron in the Minkowski space R1,3 with
coordinates xµ, µ = 0, 1, 2, 3 (∂µ = ∂/∂xµ—partial derivatives),

iγ µ(∂µψ − iaµψ)−mψ = 0, (1)

where γ µ are 4 complex square matrices of order 4 satisfying conditions

1We combine the technique of the Dirac gamma matrices and the technique of differential forms, in
particular, the Atiyah–Kähler algebra of differential forms.
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∂µγ
ν
= 0, (2)

γ µγ ν + γ νγ µ= 2ηµνI, (3)

where η = ‖ηµν‖ = diag(1,−1,−1,−1), I is the identity matrix of order 4,
aµ = aµ(x) is a covector potential of electromagnetic field, ψ = ψ(x) is a Dirac
spinor (column of four complex functions ψ : R1,3

→ C4), i is the imaginary unit,
m is a real number (mass of electron).

In the theory of the Dirac equation it is assumed that we have a fixed set of
matrices γ µ that satisfy conditions (2) and (3) and the condition2 for Hermitian
conjugated matrices

(γ µ)† = γ 0γ µγ 0. (4)

Matrices γ µ satisfying conditions (2), (3) and (4) are defined up to a similarity
transformation with a unitary matrix U ∈ U(4), i.e. matrices

γ́ µ = U−1γ µU, where U−1
= U †, (5)

satisfy the same conditions (2), (3) and (4).
In particular, matrices γ 0, γ 1, γ 2, γ 3 in the Dirac representation satisfy these

conditions and the matrix γ 0 is diagonal γ 0
= diag(1, 1,−1,−1). This matrix γ 0

changes under unitary transformation (5).
Denote β = diag(1, 1,−1,−1) and consider Lie group SU(2, 2) of special

pseudo-unitary matrices and its real Lie algebra su(2, 2) (see [3])

SU(2, 2)= {S ∈ Mat(4,C) : S†βS = β, det S = 1},
su(2, 2)= {s ∈ Mat(4,C) : βs†β = −s, tr s = 0},

where Mat(4,C) is the algebra of complex matrices of order 4. Dirac gamma
matrices γ µ satisfy (4) and tr γ µ = 0, therefore

iγ µ ∈ su(2, 2). (6)

We may consider conditions (2) and (3) together with condition (6) and allow
a similarity transformation

iγ µ→ iγ́ µ = S−1iγ µS (7)

with a matrix S ∈ SU(2, 2), which preserves (2), (3) and (6).
If we consider conditions (2) and (3) as equations for matrices γ µ with condition

(6), then we can consider transformation (7) as a global symmetry (it does not
depend on x ∈ R1,3) of this system of equations.

Now we change Eqs. (2) and obtain a system of equations with local (gauge)
symmetry with respect to the pseudo-unitary group SU(2, 2).

Namely, consider the following system of equations [7]:

∂µγ
ν
− [Cµ, γ

ν
] = 0, (8)

γ µγ ν + γ νγ µ= 2ηµνI, (9)

2This condition is required when we consider bilinear covariants of the Dirac spinors.
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where iγ µ = iγ µ(x) and Cµ = Cµ(x) are smooth functions of x ∈ R1,3 with values
in the Lie algebra su(2, 2). The system of equations (8) and (9) is invariant under
the local (gauge) transformation

iγ µ→ iγ́ µ = S−1iγ µS, (10)

Cµ→ Ćµ = S
−1CµS − S

−1∂µS, (11)

where the matrix S = S(x) is a function of x ∈ R1,3 with values in the Lie group
SU(2, 2).

We consider the system of equations (8) and (9) as a new field equation (system
of equations). We call this equation a primitive field equation. Let us analyze
this equation in pseudo-Euclidean spaces. We use a formalism of Clifford algebras
because, in our opinion, this formalism is the most convenient for this task.

3. Clifford algebras
Consider real C̀ R(p, q) or complexified C̀ (p, q) = C ⊗ C̀ R(p, q) (see [6])

Clifford algebra with p + q = n, n ≥ 1. Note that C̀ R(p, q) ⊂ C̀ (p, q). When our
argumentation is applicable to both cases, we write C̀ F(p, q), implying that F = R
or F = C. The construction of Clifford algebra is discussed in details in [6, 10, 11].

Let e be the identity element and let ea , a = 1, . . . , n, be generators3 of the
Clifford algebra C̀ R(p, q)

eaeb + ebea = 2ηabe, (12)

where η = ||ηab|| = ||ηab|| is the diagonal matrix with p pieces of +1 and q pieces
of −1 on the diagonal. Elements

ea1...ak = ea1 · · · eak , a1 < · · · < ak, k = 1, . . . , n, (13)

together with the identity element e form the basis of the Clifford algebra. The
number of basis elements is equal to 2n.

Any element U of the Clifford algebra C̀ F(p, q) can be expanded in the basis

U = ue + uae
a
+

∑
a1<a2

ua1a2e
a1a2 + · · · + u1...ne

1...n, (14)

where u, ua, ua1a2, . . . , u1...n are real or complex numbers (in the respective cases
C̀ R(p, q) or C̀ (p, q)).

Vector (real or complex) subspaces spanned on basis elements ea1...ak labeled
by ordered multi-indices of length k are denoted by C̀ F

k (p, q), k = 0, . . . , n.
Elements of the subspace C̀ F

k (p, q) are called elements of rank4 k. We have
C̀ F(p, q) = C̀ F

0 (p, q)⊕ · · · ⊕ C̀ F
n(p, q).

3We use notation from [2] (see, also [7]). Note that there exists another notation instead of ea - with lower
indices. But we use upper indices because we take into account relation with differential forms. Note that ea

is not exponent.
4There is a difference in notation in literature. We use term “rank” and notation C̀ k(p, q) because we take

into account a relation with differential forms, see [7].
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The Clifford algebra C̀ F(p, q) is a superalgebra. It is represented as the direct
sum of even and odd subspaces (of even and odd elements respectively)

C̀ F(p, q) = C̀ F
Even(p, q)⊕ C̀ F

Odd(p, q),

C̀ F
Even(p, q) =

⊕
k−even

C̀ F
k (p, q), C̀ F

Odd(p, q) =
⊕
k−odd

C̀ F
k (p, q).

We introduce the operations of projection onto subspaces of rank-k elements
(k = 0, 1, . . . , n):

πk : C̀ F(p, q)→ C̀ F
k (p, q), πk(U) =

∑
a1<···<ak

ua1...ake
a1...ak . (15)

The Clifford algebra C̀ F(p, q), n = p + q, has the center

Cen(C̀ F(p, q)) =

C̀ F
0 (p, q), if n is even;

C̀ F
0 (p, q)⊕ C̀ F

n(p, q) if n is odd.

Pseudo-Euclidean space Rp,q and changes of coordinates. Let p, q be nonnegative
integers and n = p + q ≥ 1. We denote an n-dimensional pseudo-Euclidean space
of signature (p, q) with Cartesian coordinates xµ, µ = 1, . . . , n, by Rp,q . Tensor
indices corresponding to the coordinates are denoted by small Greek letters. The
metric tensor of pseudo-Euclidean space Rp,q is given by the diagonal matrix of
order n,

η = ‖ηµν‖ = ‖η
µν
‖ = diag(1, . . . , 1,−1, . . . ,−1) (16)

with p copies of 1 and q copies of −1 on the diagonal.
In Rp,q we deal with linear coordinate transformations5

xµ→ x́µ = pµν x
ν, (17)

preserving the metric tensor. So, the real numbers pµν satisfy relations pµαp
ν
βη

αβ
= ηµν ,

pµαp
ν
βηµν = ηαβ . In matrix formalism we can write P T ηP = η, PηP T = η, where T

is the matrix transposition and the matrix P = ‖pµν ‖ is from the pseudo-orthogonal
group O(p, q) = {P ∈ Mat(n,R) : P T ηP = η}.

We denote the set of (r, s) tensor fields (of rank r + s) of pseudo-Euclidean
space Rp,q by Trs . Real or complex tensor field u ∈ Trs has components uµ1...µr

ν1...νs in
coordinates xµ. These components are smooth functions Rp,q → F, where F is the
field of real numbers R or complex numbers C. In all considerations of this work
it is sufficient that all functions of x ∈ Rp,q have continuous partial derivatives up
to the second order.

Functions with values in Clifford algebra. Further we consider functions Rp,q →
C̀ (p, q) with values in Clifford algebra. We assume that the basis elements (13)

5We use the Einstein summation convention. For example pµν xν =
∑n
ν=1 p

µ
ν x

ν .
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do not depend on the points x ∈ Rp,q , i.e.

∂µe
a
= 0, ∀µ, a = 1, . . . , n,

where ∂µ = ∂/∂xµ are partial derivatives. The coefficients in the basis expansion of
the Clifford algebra element ua1...ak = ua1...ak (x) may depend on x ∈ Rp,q . In the
present paper we also consider the functions with values in Lie algebras generated
by the Clifford algebra (see p. 312).

Tensor fields with values in Clifford algebra. A tensor at the point x ∈ Rp,q
with values in Clifford algebra is a mathematical object that belongs to the tensor
product of the tensor algebra and Clifford algebra.

If a tensor field of rank (r, s) in Rp,q has components u
µ1...µr
ν1...νs = u

µ1...µr
ν1...νs (x)

in Cartesian coordinates xµ, then these components are considered as functions
Rp,q → F. These functions transform by the standard tensor transformation rule.

Components U
µ1...µr
ν1...νs of tensor fields with values in Clifford algebra C̀ F(p, q)

are considered as functions Rp,q → C̀ F(p, q) that transform under changes of
coordinates by the standard tensor transformation rule.

We use the following notation for tensor fields with values in Clifford algebra:
U
µ1...µr
ν1...νs ∈ C̀ (p, q)Trs or U ∈ C̀ (p, q)Trs . In this notation the letter T means that

this object is a tensor field. In particular, for scalar functions U : Rp,q → C̀ F(p, q)
we use the notation U ∈ C̀ F(p, q)T.

For example, if we consider a tensor field Uµ
ν ∈ C̀ (p, q)T1

1 with values in
Clifford algebra, then we can write

Uµ
ν = u

µ
ν e + u

µ
νae

a
+

∑
a1<a2

uµνa1a2
ea1a2 + · · · + u

µ

ν1...ne
1...n,

where uµν , u
µ
νa, u

µ
νa1a2, . . . , u

µ

ν1...n are real (in the case of C̀ R(p, q)) or complex (in
the case of C̀ (p, q)) tensor fields from T1

1.
In the present paper we also consider tensor fields with values in Lie algebras

and scalar fields with values in Lie groups (see p. 312).

Lie algebras in Clifford algebras. Let us consider the commutator (Lie bracket)
[U,V ] = UV − VU of Clifford algebra elements U,V ∈ C̀ (p, q). This operation
satisfies the Jacobi identity

[[U,V ],W ] + [[V,W ], U ] + [[W,U ], V ] = 0, ∀U,V,W ∈ C̀ (p, q).

Therefore, Clifford algebra C̀ (p, q) can be considered as a Lie algebra with respect
to the commutator. We can consider vector subspaces L ⊂ C̀ (p, q) of Clifford
algebra that are closed under commutator, i.e. with the condition: if U,V ∈ L then
[U,V ] ∈ L. These subspaces are Lie algebras (generated by Clifford algebra), see
also [4]. Primarily we are interested in Lie algebras that are direct sums (as vector
spaces) of subspaces of Clifford algebra elements of fixed ranks [13].
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With the help of the operator π0 : C̀ F(p, q)→ C̀ F
0 (p, q) we define operation of

Clifford algebra trace Tr : C̀ F
→ F,

Tr(U) = π0(U)|e→1, ∀U ∈ C̀ F(p, q).

THEOREM 1. In a Clifford algebra C̀ F(p, q) of arbitrary dimension n = p + q
we have Tr([U,V ]) = 0 for all U,V ∈ C̀ F(p, q). In a Clifford algebra C̀ F(p, q)
of odd dimension n = p + q we have πn([U,V ]) = 0 for all U,V ∈ C̀ F(p, q).

Proof : Using (12) for 2 arbitrary basis elements we obtain

[ea1...ak , eb1...bl ] = (1− (−1)kl−s)ea1...akeb1...bl ∈ C̀ F
k+l−2s(p, q), (18)

where s is the number of coincident indices in the ordered multi-indices a1 . . . ak
and b1 . . . bl . If k = l = s, then 1− (−1)kl−s equals 0. If k + l = n, s = 0 and n
is odd, then it equals 0 again. For more details see Theorem 1 in [13]. �

Consider the set of Clifford algebra elements with zero projection onto the
Clifford algebra center

C̀ s(p, q) = C̀ (p, q) \ Cen(C̀ (p, q)).

THEOREM 2. The set C̀ s(p, q) is a Lie algebra with respect to the commutator
[A,B] = AB − BA.

Proof : See the previous theorem. �

THEOREM 3. Let F = F(x) be a function with values in the Lie algebra C̀ s(p, q).
Then the partial derivatives ∂µF are functions (components of a covariant vector
field) with values in the same Lie algebra C̀ s(p, q).

Proof : If n is even, then the function F = F(x) can be written as basis expansion
(13)

F = fae
a
+

∑
a1<a2

fa1a2e
a1a2 + · · · + f1...ne

1...n. (19)

Since TrF = 0, then the first term f e is absent. We assume that the Clifford algebra
generators ea do not depend on x ∈ Rp,q . So ∂µe

a
= 0 for all µ, a = 1, . . . n, and

∂µF = (∂µfa)e
a
+

∑
a1<a2

(∂µfa1a2)e
a1a2 + · · · + (∂µf1...n)e

1...n.

We obtain TrF = 0 and Tr(∂µF) = 0, i.e. ∂µF ∈ C̀ s(p, q).
If n is odd, then the function F = F(x) ∈ C̀ s(p, q) can be written as basis

expansion (19) without the first term f e and without the last term f1...ne
1...n. We

obtain ∂µF ∈ C̀ s(p, q) again. �

The following subspaces of Clifford algebra are Lie algebras with respect to
the commutator: C̀ 2(p, q), C̀ 1(p, q) ⊕ C̀ 2(p, q), C̀ 2(p, q) ⊕ C̀ 3(p, q), C̀ 0(p, q),
Cen(C̀ (p, q)), C̀ s(p, q).
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In Section 2 we have considered gamma matrices in the Dirac representation
(which are used in the Dirac equation for an electron) and found that iγ µ ∈ su(2, 2).
In the Clifford algebra C̀ (p, q) the following Lie algebra is an analogue6 of the
Lie algebra su(2, 2),

w(C̀ (p, q)) =
ń⊕
k=1

i
k(k−1)

2 +1C̀ R
k (p, q)

where ń = n in the case of even n and ń = n− 1 in the case of odd n.
We are interested in Lie subalgebras of this Lie algebra. As we will see, the Lie

algebra C̀ R
2 (p, q) plays an important role in field theory equations. Other important

Lie algebras contain Lie subalgebra iC̀ R
1 (p, q)⊕ C̀ R

2 (p, q):
• For n ≥ 2: iC̀ R

1 (p, q)⊕ C̀ R
2 (p, q).

• For n ≥ 6: iC̀ R
1 (p, q)⊕ C̀ R

2 (p, q)⊕ań−1C̀ R
ń−1(p, q)⊕ańC̀

R
ń
(p, q), where ń = n

for even n and ń = n− 1 for odd n.
• For n ≥ 8: iC̀ R

1 (p, q) ⊕ C̀ R
2 (p, q) ⊕ iC̀ R

5 (p, q) ⊕ C̀ R
6 (p, q) ⊕ iC̀ R

9 (p, q) ⊕

C̀ R
10(p, q)⊕ · · · ⊕ ar C̀ R

r (p, q), where r = n− 2 if n = 0 mod 4, r = n− 3 if
n = 1 mod 4, r = n if n = 2 mod 4, r = n− 1 if n = 3 mod 4.

We consider pinor groups as the following sets of Clifford algebra elements,

Pin(p, q) = {S ∈ C̀ R
Even(p, q) or S ∈ C̀ R

Odd(p, q) : S
∼S = ±e, S−1eaS ∈ C̀ R

1 (p, q)},

where the linear operation ∼: C̀ k(p, q) → C̀ k(p, q), k = 0, 1, . . . , n, is called
reversion. This operation reverses the order of generators in products: (ea1 · · · eak )∼ =
eak · · · ea1 .

Note that the set of rank 2 Clifford algebra elements C̀ F
2 (p, q) is closed

w.r.t. commutator and hence generates a Lie algebra. The Lie algebra C̀ R
2 (p, q) ⊂

w(C̀ (p, q)) is a real Lie algebra of the Lie group Pin(p, q) (see [14]).

4. Relation between projection operators and contractions in Clifford algebras
Consider operations of projection (15) onto subspaces C̀ k(p, q) of Clifford algebra

elements of rank k.
The following sum is called a generator contraction of an arbitrary Clifford

algebra element U ∈ C̀ (p, q),
F(U) = eaUea, (20)

where ea = ηabe
b. We use the notation F 0(U) = U , F 1(U) = F(U), F 2(U) =

F(F(U)), etc. Note that F l : C̀ k(p, q)→ C̀ k(p, q) for all k, l = 0, 1, . . . , n.
According to the theorem on generator contraction [10] we have

F(U) =

n∑
k=0

λkπk(U), where λk = (−1)k(n− 2k). (21)

6See [7, 11].
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THEOREM 4. Consider an arbitrary Clifford algebra element U ∈ C̀ (p, q),
n = p + q. Then we have

πk(U) =

n∑
l=0

bklF
l(U) if n is even;

πk,n−k(U) =

n−1
2∑
l=0

gklF
l(U) if n is odd,

(22)

where B = ||bkl|| is inverse of matrix A(n+1)×(n+1) = ||akl||, akl = (λl−1)
k−1,

G = ||gkl|| is inverse of matrix D n+1
2 ×

n+1
2
= ||dkl||, dkl = (λl−1)

k−1 and λk =

(−1)k(n − 2k) and πk,n−k = πk + πn−k is operation of projection onto subspace
C̀ k(p, q)⊕ C̀ n−k(p, q).

Proof : We have F l(U) =
∑n

k=0(λk)
lπk(U), then

F 0(U)

F 1(U)

. . .

F n(U)

 = A

π0(U)

π1(U)

. . .

πn(U)

 , A =


1 1 . . . 1

λ0 λ1 . . . λn

. . . . . . . . . . . .

(λ0)
n (λ1)

n . . . (λn)
n

 .
The matrix A is a Vandermonde matrix. Its determinant equals

detA =
∏

0≤i<j≤n

(λj − λi).

In the case of even n we have λk = −λn−k, because λn−k = (−1)n−k(n−2(n−k)) =
(−1)k(2k−n) = −λk. In particular, λ n

2
= 0. It is easy to see that all λk are different

in the case of even n, and the Vandermonde matrix is invertible. Denote the inverse
matrix by B = ||bij ||:

π0(U)

π1(U)

. . .

πn(U)

 =

b00 b01 . . . b0n

b10 b11 . . . b1n

. . . . . . . . . . . .

bn0 bn1 . . . bnn




F 0(U)

F 1(U)

. . .

F n(U)

 .
There exists an explicit formula for inverse of the Vandermonde matrix but we do
not use it.

In the case of odd n we have λk = λn−k, and hence the Vandermonde matrix
is singular and projection operations are not expressed through contractions. In this
case we use projections πk,n−k,
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F 0(U)

F 1(U)

. . .

F
n−1

2 (U)

 =


1 1 . . . 1

λ0 λ1 . . . λ n−1
2

. . . . . . . . . . . .

(λ0)
n−1

2 (λ1)
n−1

2 . . . (λ n−1
2
)
n−1

2




π0,n(U)

π1,n−1(U)

. . .

π n−1
2 , n+1

2
(U)

 .

We denote the invertible matrix from the last formula by D and inverse of D
by G = ||gij ||.

We obtain the relation between projection operations and contractions in the
following form:

π0,n(U)

π1,n−1(U)

. . .

π n−1
2 , n+1

2
(U)

 =

g00 g01 . . . g0 n−1

2

g10 g11 . . . g1 n−1
2

. . . . . . . . . . . .

g n−1
2 0 g n−1

2 1 . . . g n−1
2

n−1
2




F 0(U)

F 1(U)

. . .

F
n−1

2 (U)

 . �

So, in the case of even n the operations of projection of Clifford algebra elements
U ∈ C̀ (p, q) are uniquely expressed through contractions (of order not more than n)
of element U . Note that we can use these formulae as the definition of operations
of projection onto subspaces of fixed ranks.

Let us give some examples. In the case of n = 2 we have

A =


1 1 1

2 0 −2

4 0 4

 , B =


0 1

4
1
8

1 0 − 1
4

0 − 1
4

1
8

 ,
F 0(U) = U, F 1(U) = 2π0(U)− 2π2(U), F 2(U) = 4π0(U)+ 4π2(U),

π0(U) =
1
4
eaUea +

1
8
eaebUebea, π1(U) = U −

1
4
eaebUeaeb,

π2(U) = −
1
4
eaUea +

1
8
eaebUebea.

In the case of n = 4 we have

A =



1 1 1 1 1

4 −2 0 2 −4

16 4 0 4 16

64 −8 0 8 −64

256 16 0 16 256


, B =



0 − 1
24 −

1
96

1
96

1
384

0 − 1
3

1
6

1
48 −

1
96

1 0 −
5
16 0 1

64

0 1
3

1
6 −

1
48 −

1
96

0 1
24 −

1
96 −

1
96

1
384


.
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In the case of odd dimension n = 3 we have

F 0(U)=U = π0(U)+ π1(U)+ π2(U)+ π3(U),

F 1(U)= 3π0(U)− π1(U)− π2(U)+ 3π3(U),

F 2(U)= 9π0(U)+ π1(U)+ π2(U)+ 9π3(U),

F 3(U)= 27π0(U)− π1(U)− π2(U)+ 27π3(U).

The matrix of this system of equations is singular. But we can consider expressions
π03(U) = π0(U)+ π3(U), π12(U) = π1(U)+ π2(U) and obtain

F 0(U)=U = π03(U)+ π12(U), F 1(U) = 3π03(U)− π12(U),

π03(U)=
1
4
F 0(U)+

1
4
F 1(U) =

1
4
U +

1
4
eaUea,

π12(U)=
3
4
F 0(U)−

1
4
F 1(U) =

3
4
U −

1
4
eaUea,

D=

(
1 1

3 −1

)
, G =

( 1
4

1
4

3
4 −

1
4

)
.

5. Clifford field vectors and an algebra of h-forms
In this section we introduce new geometric objects—Clifford field vector and an

algebra of h-forms which is a generalization of the algebra of differential forms and
the Atiyah-Kähler algebra [1, 5]. We combine the technique of the Dirac gamma
matrices and the technique of differential forms, in particular, the Atiyah-Kähler
algebra of differential forms. From our point of view, these objects are helpful for
consideration of some problems related to field theory equations.

Frame field y
µ
a . A set of n real vector fields yµa = y

µ
a (x) ∈ T1 of pseudo-Euclidean

space Rp,q enumerated by the Latin index (a = 1, . . . , n) and satisfying
yµa y

ν
bη

ab
= ηµν, ∀x ∈ Rp,q,

is called a frame field. Using a local (that depends on x) pseudo-orthogonal
transformation, we can get another frame field from the frame field y

µ
a ,

yµa → ŷµa = q
b
ay

µ

b ,

where qba = q
b
a (x) are smooth functions of x ∈ Rp,q and the matrix Q = Q(x) = ‖qba‖

is such that Q ∈ O(p, q) for any x. It is easy to see that
ŷµa ŷ

ν
bη

ab
= ηµν, ∀x ∈ Rp,q,

i.e. the set of n vector fields ŷµa is also a frame field.

Coframe field ybν . A set of n real covector fields ybν = ybν (x) ∈ T1 of pseudo-
Euclidean space Rp,q enumerated by the Latin index (b = 1, . . . , n) and satisfying

yaµy
b
νηab = ηµν, ∀x ∈ Rp,q,

is called a coframe field.
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If we have a frame field y
µ
a , then we can get the coframe field using the

Minkowski matrix,
ybν = η

abηµνy
µ
a .

Clifford field vector hµ. If hµ = hµ(x) are components of a vector field with
values in C̀ (p, q) that satisfy the following relations

hµhν + hνhµ = 2ηµνe, µ, ν = 1, . . . , n, (23)
for any ∀x ∈ Rp,q and the condition

Tr(h1
· · ·hn) = 0, (24)

then the vector hµ ∈ C̀ (p, q)T1 is called a Clifford field vector.
Note that condition (24) holds automatically in the case of even n, i.e. this

condition is necessary for the case of odd n.
Denote the set of invertible Clifford algebra elements by C̀ ×(p, q). Note that

C̀ ×(p, q) is a Lie group with respect to the Clifford multiplication.
If hµ is a Clifford field vector and S ∈ C̀ ×(p, q)T is a continuous function, then

we can get the pair of new Clifford field vectors using similarity transformation7

ĥµ = ±S−1hµS.
For example, let us consider a frame field y

µ
a = y

µ
a (x) and a smooth function

S ∈ C̀ ×(p, q)T with values in the set of invertible Clifford algebra elements. With
the help of generators ea we get the vector field

hµ = hµ(x) = yµa S
−1eaS ∈ C̀ (p, q)T1.

It is easy to see that components of this vector field satisfy relations (23) and (24),
i.e. hµ is a Clifford field vector.

Components of field vector transform under (orthogonal) changes of coordinates
(17) using the standard tensor transformation law

hµ→ h́µ = pµν h
ν, P = ‖pµν ‖ ∈ O(p, q). (25)

With the help of the metric tensor we can raise and lower indices:

hν = ηµνh
µ, hµ = ηµνhν .

THEOREM 5. If n = p + q ≥ 2 and hµ is a Clifford field vector, then
hµ ∈ C̀ s(p, q)T1.

Proof : Let us consider a coframe field yaµ. We define n elements ha = yaµh
µ
∈

C̀ (p, q), satisfying hahb + hbha = 2ηabe for all a, b = 1, . . . , n.
Let n = p+ q be even. We prove that for any x ∈ Rp,q we have Trhµ = 0. By

the generalized Pauli’s theorem [15] there exists an invertible element S ∈ C̀ (p, q)
(at any x ∈ Rp,q) such that ha = S−1eaS, a = 1, . . . n. So

Trha = Tr(S−1eaS) = Tr ea = 0, Trhµ = Tr(yµa h
a) = 0.

It proves the theorem for the case of even n.

7In the case of even n it is sufficiently to consider only the relation ĥµ = S−1hµS (see [11]).
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Let n = p + q ≥ 3 be odd. We prove that for any x ∈ Rp,q we have Trhµ = 0
and Tr(e1...nhµ) = 0. By the generalized Pauli theorem [15] there exists an invertible
element S ∈ C̀ (p, q) (at any x ∈ Rp,q) such that two sets of n elements {ea} and
{ha} are related by one of two following formulae: ha = ε S−1eaS, a = 1, . . . n,
ε = ±1. Then e1...nha = ε e1...nS−1eaS, a = 1, . . . , n.

Note that the element e1...nea is an element of rank n−1. Therefore Tr(e1...nea) = 0
for n > 1. Since the element e1...n (for n odd) is from the center of the Clifford
algebra C̀ (p, q), then for n ≥ 3

Trha = ε Tr ea = 0, Tr(e1...nha) = ε Tr(e1...nea) = 0, a = 1, . . . , n.

Consequently, for odd n ≥ 3 and for any x ∈ Rp,q we have

Trhµ = 0, Tr(e1...nhµ) = 0, a = 1, . . . , n.

It means that hµ ∈ C̀ s(p, q)T1. �

h-forms. Let us consider a covariant skew-symmetric tensor field uµ1...µk ∈ T[k] of
rank k and a Clifford field vector hµ ∈ C̀ (p, q)T1. We say that the expression

1
k!
uµ1...µkh

µ1 · · ·hµk =
∑

ν1<···<νk

uν1...νkh
ν1 · · ·hνk

is an h-form of rank k.
If we have a scalar function u = u(x) and n covariant skew-symmetric tensor

fields uµ1...µk ∈ T[k] of ranks k = 1, 2, . . . , n, then we say that

U = ue +

n∑
k=1

1
k!
uµ1...µkh

µ1 · · ·hµk = ue +

n∑
k=1

∑
ν1<···<νk

uν1...νkh
ν1 · · ·hνk (26)

is an h-form or a heterogeneous h-form.
An h-form is invariant under orthogonal changes of coordinates (17). Components

uµ1...µk of an h-form are components of covariant skew-symmetric tensor fields of
ranks k = 0, . . . , n.

If we do not pay attention to the difference between the tensor (Greek) and
nontensor (Latin) indices8, then, by relations (23), we can consider components of
the field vector hµ as generators of Clifford algebra. A set of h-forms over the field
F is called9 the algebra of h-forms C̀ [h]F(p, q). We denote the set of h-forms of
rank k by C̀ [h]Fk (p, q). If U is an h-form (26) then we denote projections of U
onto C̀ [h]Fk (p, q) by π [h]k(U), k = 0, 1, . . . , n. To calculate projections π [h]k(U)
we can use the method of contractions by components of Clifford field vector using
the Vandermonde matrix (as in Section 4). These structure of the algebra of h-forms
is considered as a geometrization of the structure of Clifford algebra.

8The difference between the tensor and nontensor indices appears only when we consider coordinate
transformations of pseudo-Euclidean space Rp,q .

9In notation C̀ [h]F(p, q) the symbol h means that the basis is generated by the Clifford field vector hµ.
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Lie algebras generated by Clifford algebra were considered on page 312. We
will use the following Lie algebras generated by the algebra of h-forms,

C̀ [h]2(p, q), C̀ [h]1(p, q)⊕ C̀ [h]2(p, q), C̀ [h]2(p, q)⊕ C̀ [h]3(p, q),
Cen(C̀ [h](p, q)), C̀ [h]s(p, q),

where Cen(C̀ [h](p, q)) is the center of algebra of h-forms, C̀ [h]s(p, q) =
C̀ [h](p, q) \ Cen(C̀ [h](p, q)) is the set of h-forms with zero projection onto
the center of algebra of h-forms.

Note that C̀ [h]s(p, q) ' C̀ s(p, q), because C̀ [h]0(p, q) ' C̀ 0(p, q) for any
natural n = p + q and C̀ [h]n(p, q) ' C̀ n(p, q) for any odd n.

Tensor fields with values in h-forms. Tensor field U
ν1...νk
ρ1...ρr with values in h-forms

(at a point x ∈ Rp,q) belongs to the tensor product of tensor algebra and the
algebra of h-forms. We write U

ν1...νk
ρ1...ρr ∈ C̀ [h](p, q)Tkr . For example, a tensor field

U ν
ρ ∈ C̀ [h](p, q)T1

1 can be represented as

U ν
ρ = u

ν
ρe +

n∑
k=1

1
k!
uνρµ1...µk

hµ1 · · ·hµk ,

where uνρµ1...µk
= uνρ[µ1...µk ]

are components of (1, k + 1) tensor field which are
skew-symmetric w.r.t. k covariant indices (antisymmetrization is denoted by square
brackets).

Note that we can consider Clifford field vector hµ as vectors with values in h-
forms of rank 1. Actually, hµ = δµν h

ν
∈ C̀ [h]1(p, q)T1, where δµν is Kronecker tensor

(δkr = 0 if k 6= r and δkr = 1 if k = r). Also we have hµ = ηµνhν ∈ C̀ [h]1(p, q)T1,
where ηµν are components of the metric tensor of pseudo-Euclidean space Rp,q .

Note that we also consider tensor fields with values in Lie algebras generated
by algebra of h-form in this paper (see p. 318).

6. Primitive field equation and its gauge symmetry

Consider the equation (system of equations)

∂µhρ − [Cµ, hρ] = 0, µ, ρ = 1, . . . , n, (27)

where hρ ∈ C̀ (p, q)T1 is an arbitrary Clifford field vector and Cµ = Cµ(x) (x ∈ Rp,q)
is a covector field with values in C̀ (p, q).

We consider the system of equations (27) as a new field equation. This equation
is called a primitive field equation.

Note that if we have a solution Cµ = Cµ(x) ∈ C̀ (p, q)T1 of the system of
equations (27) and αµ = αµ(x) are arbitrary continuous components of covector field
with values in center of Clifford algebra, then components Cµ + αµ ∈ C̀ (p, q)T1
also satisfy Eq. (27).

Therefore it is reasonable to assume that Cµ ∈ C̀ s(p, q)T1.
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THEOREM 6. Let hν ∈ C̀ s(p, q)T1 be a Clifford field vector and Cµ ∈
C̀ s(p, q)T1 satisfy the primitive field equation

∂µhρ − [Cµ, hρ] = 0, ∀µ, ρ = 1, . . . , n.

Let S : Rp,q → C̀ ×(p, q) be a function with values in C̀ ×(p, q) such that
S−1∂µS ∈ C̀ s(p, q)T1. Then, the following components of covectors

h́ρ = S
−1hρS ∈ C̀ s(p, q)T1, Ćµ = S

−1CµS − S
−1∂µS ∈ C̀ s(p, q)T1

also satisfy the equation ∂µh́ρ − [Ćµ, h́ρ] = 0, ∀µ, ρ = 1, . . . , n.

Proof : The condition h́ρ ∈ C̀ s(p, q)T1 holds automatically for every S ∈

C̀ ×(p, q)T because Tr(S−1hρS) = Tr(hρ) in the case of natural n and π [h]n(S−1hρS)
= π [h]n(hρ) in the case of odd n (see Theorems 1 and 5).

To satisfy the condition Ćµ ∈ C̀ s(p, q)T1 we need functions S from the class S

S = {S ∈ C̀ ×(p, q)T : S−1∂µS ∈ C̀ s(p, q)T1}.

Then

∂µh́ρ − [Ćµ, h́ρ] = ∂µ(S
−1hρS)− (S

−1CµS − S
−1∂µS)S

−1hρS

+ S−1hρS(S
−1CµS − S

−1∂µS)

= ∂µS
−1hρS + S

−1∂µhρS + S
−1hρ∂µS

− S−1CµhρS + S
−1∂µSS

−1hρS + S
−1hρCµS − S

−1hρ∂µS

= S−1(∂µhρ − [Cµ, hρ])S + S
−1(S∂µS

−1
+ ∂µSS

−1)hρS = 0. �

REMARK. Professor G. A. Alekseev called our attention to the following fact.
If we consider elements S = S(x) as matrices then we can use the well-known
formula

Tr(S−1∂µS) = ∂µ(ln(det S)).

By this formula, from the condition S−1∂µS ∈ C̀ s(p, q)T1 it follows that det S does
not depend on x ∈ Rp,q . So we may normalize S and take detS = 1 or detS = −1.

THEOREM 7. Let hµ ∈ C̀ s(p, q)T1 be a Clifford field vector and Cµ ∈
C̀ s(p, q)T1 be a covector field. If hµ and Cν are related by the equation

∂µh
ν
− [Cµ, h

ν
] = 0, ∀µ, ν = 1, . . . , n,

then components of the covector field Cµ satisfy the conditions

∂µCν − ∂νCµ − [Cµ, Cν] = 0, ∀µ, ν = 1, . . . , n. (28)

Conditions (28) are invariant under the gauge transformation

Cµ→ Ćµ = S
−1CµS − S

−1∂µS,

where S = S(x) is a function from S, i.e. S ∈ C̀ ×(p, q)T and S−1∂µS ∈ C̀ s(p, q)T1.
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Proof : Let us differentiate conditions ∂µhλ = [Cµ, hλ], and obtain

∂ν∂µh
λ
= [∂νCµ, h

λ
] + [Cµ, ∂νh

λ
] = [∂νCµ, h

λ
] + [Cµ, [Cν, h

λ
]],

0= (∂µ∂ν − ∂ν∂µ)hλ = [∂µCν − ∂νCµ − [Cµ, Cν], hλ]. (29)

If an element of a Clifford algebra commutes with all generators (with hµ,
µ = 1, . . . , n in this case), then this element belongs to the center of this Clifford
algebra. Therefore, (29) implies

∂µCν − ∂νCµ − [Cµ, Cν] = cµνe, if n = p + q is even,

∂µCν − ∂νCµ − [Cµ, Cν] = cµνe + dµνe
1
· · · en, if n = p + q is odd,

where cµν , dµν are components of tensors of rank 2. Since Cµ ∈ C̀ s(p, q)T1, then
(by Theorem 3) ∂µCν ∈ C̀ s(p, q)T2. So

∂µCν − ∂νCµ − [Cµ, Cν] ∈ C̀ s(p, q)T2

and, hence, cµν = 0, dµν = 0. Eq. (28) is proved. Gauge invariance of Eq. (28) is
proved by the formula

∂µĆν − ∂νĆµ − [Ćµ, Ćν] = S
−1(∂µCν − ∂νCµ − [Cµ, Cν])S. �

7. General solution of the primitive field equation
In this section we find a general solution (up to elements of the center of

Clifford algebra) of the primitive field equation (27).

THEOREM 8. Suppose that n is a natural number and Cµ ∈ C̀ s(p, q)T1. Then
the following two systems of equations are equivalent:

∂µhρ − [Cµ, hρ] = 0 ⇔ Cµ =

ń∑
k=1

µkπ [h]k((∂µh
ρ)hρ), (30)

where ń = n for even n, ń = n− 1 for odd n and

µk =
1

n− (−1)k(n− 2k)
=

1
n− λk

.

REMARK. Using formulae (22), we can rewrite the general solution (30) of the
primitive field equation in the following form (we use contractions and do not use
projection operators):

Cµ =

n∑
k=1

µk

n∑
l=0

bklF
l((∂µh

ρ)hρ) =

n∑
l=0

rlF
l((∂µh

ρ)hρ), rl =

n∑
k=1

µkbkl (31)

in the case of even n and

Cµ =

n−1∑
k=1

µk

n−1
2∑
l=0

gklF
l((∂µh

ρ)hρ) =

n−1
2∑
l=0

slF
l((∂µh

ρ)hρ), sl =

n−1
2∑
k=1

µkgkl (32)

in the case of odd n.
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On page 325 we write explicit formulae for solution of the primitive field
equation in the cases of small dimensions n = 2, 3, 4.

Proof : Consider the decomposition of solution Cµ of system of equations (27),

Cµ =

n∑
k=0

π [h]k(Cµ), (33)

where π [h]k(Cµ) ∈ C̀ [h]k(p, q)T1. Multiply the left-hand side of Eq. (27) by hρ

and consider the corresponding contraction (summation over index ρ): hρ∂µhρ −
hρCµhρ + h

ρhρCµ = 0. Using formula (33) and formulae

hρhρ = ne, hρCµhρ =

n∑
k=0

hρπ [h]k(Cµ)hρ =

n∑
k=0

(−1)k(n− 2k)π [h]k(Cµ),

we obtain
n∑
k=0

(n− (−1)k(n− 2k))π [h]k(Cµ) = −hρ∂µhρ = (∂µhρ)hρ . (34)

It is easy to see that n − (−1)k(n − 2k) = 0 holds for k = 0, ∀n and for k = n,
odd n. From (34) we obtain the required formula (27) for Cµ.

Now we shall prove that this expression for Cµ satisfies the primitive field
equation.

Consider the following contractions Ma,s

(−1)t (U):

M
a,s
1 (U, hν)= h

µ1 · · ·hµshρ1 · · ·hρaUhρa · · ·hρ1hνhµs · · ·hµ1,

M
a,s
−1 (U, hν)= h

µ1 · · ·hµshνh
ρ1 · · ·hρaUhρa · · ·hρ1hµs · · ·hµ1 .

We contract an arbitrary element U ∈ C̀ (p, q) over a + s indices. An element
hν is on the right if t = 0 and on the left if t = 1. The number s is a distance
between hν and the boundary of expression, the number a is a distance between
hν and the center of expression.

LEMMA 1. We have M
a,s

(−1)t (U, hν) = −M
a−1,s+1
(−1)t (U, hν)+ 2Ma−1,s

(−1)t+1(U, hν).

Proof : In the case t = 0 we permute the neighbouring elements hν and hρ1 using
hρ1hν = −hνhρ1 + 2ηνρ1e and obtain 2 another contractions from the statement. In
the case t = 1 we use hνh

ρ1 = −hρ1hν + 2ηρ
1
ν e. �

LEMMA 2. We have M
a,s

(−1)t (U, hν) =
∑a

i=0(−1)i2a−iCa−ia M
0,i+s
(−1)a−i+t

(U, hν).

Proof : We use the method of mathematical induction (over index a). For a = 0
we have M

0,s
(−1)t (U, hν) = M

0,s
(−1)t (U, hν). Suppose that this formula is valid for

some a. Let us prove the validity of this formula for a + 1. We have
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M
a+1,s
(−1)t =−M

a,s+1
(−1)t + 2Ma,s

(−1)t+1

=−

a∑
i=0

(−1)i2a−iCa−ia M
0,i+s+1
(−1)a−i+t

+ 2
a∑
i=0

(−1)i2a−iCa−ia M
0,i+s
(−1)a−i+t+1

=

a+1∑
j=1

(−1)j2a−j+1Ca−j+1
a M

0,j+s
(−1)a−j+1+t +

a∑
i=0

(−1)i2a−i+1Ca−ia M
0,i+s
(−1)a−i+t+1

=

a∑
i=1

(−1)i2a+1−i(Ca−i+1
a + Ca−ia )M

0,i+s
(−1)a−i+t+1

+ (−1)a+1M
0,a+1−s
(−1)t + 2a+1M

0,s
(−1)a+t+1

=

a+1∑
i=0

(−1)i2a+1−iCa+1−i
a+1 M

0,i+s
(−1)a+1−i+t ,

where we use Ck+1
n +Ckn=C

k+1
n+1 and we use the notation M

a,s

(−1)t (U, hν)=M
a,s

(−1)t . �

We continue the proof of the theorem in the case of even n. Let us substitute
formulae (31) for Cµ in the primitive field equation,

∂µhν =

n∑
l=0

rlF
l((∂µh

ρ)hρ)hν −

n∑
l=0

rlhνF
l((∂µh

ρ)hρ).

Using lemmata, we obtain

∂µhν =

n∑
l=0

rlF
l((∂µh

ρ)hρ)hν −

n∑
l=0

rlhνF
l((∂µh

ρ)hρ)

=

n∑
l=0

rl(M
l,0
1 ((∂µh

ρ)hρ, hν)−M
l,0
−1((∂µh

ρ)hρ, hν))

=

n∑
l=0

rl

l∑
i=0

(−1)i2l−iC l−il (M
0,i
(−1)l−i

((∂µh
ρ)hρ, hν)−M

0,i
(−1)l−i+1((∂µh

ρ)hρ, hν)).

We have

M
0,i
(−1)l−i

((∂µh
ρ)hρ, hν)−M

0,i
(−1)l−i+1((∂µh

ρ)hρ, hν)

= (−1)l−ihb1 · · ·hbi ((∂µh
ρ)hρhν − hν(∂µh

ρ)hρ)hbi · · ·hb1

= (−1)l−iF i((∂µhρ)hρhν − hν(∂µhρ)hρ)

and

(∂µh
ρ)hρhν − hν(∂µh

ρ)hρ = (∂µh
ρ)(−hνhρ + 2ηνρe)+ hνhρ(∂µhρ)

= −(∂µh
ρ)hνhρ + 2∂µhν + (−hρhν + 2ηρνe)(∂µhρ)

= 4∂µhν − ((∂µhρ)hνhρ + hρhν(∂µhρ)) = 4∂µhν − (∂µ(hρhνhρ)− hρ∂µ(hν)hρ)
= 4∂µhν − ((2− n)∂µhν − hρ∂µ(hν)hρ) = (2+ n)∂µhν + hρ(∂µhν)hρ .
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Then

M
0,i
(−1)l−i

((∂µh
ρ)hρ, hν)−M

0,i
(−1)l−i+1((∂µh

ρ)hρ, hν)

= (−1)l−iF i((2+ n)∂µhν + hρ(∂µhν)hρ)

= (−1)l−i
n∑

m=0

λim(2+ n+ λm)π [h]m(∂µhν),

where λm = (−1)m(n− 2m). So

∂µhν =

n∑
l=0

rl

l∑
i=0

(−1)l2l−iC l−il

n∑
m=0

λim(2+ n+ λm)π [h]m(∂µhν),

where

rl =

n∑
k=1

µkbkl =

n∑
k=1

1
n− λk

bkl

and B = ||bkl|| is inverse of the Vandermonde matrix.
We change the index j = l − i and change the order of summation

∂µhν =

n∑
m=0

(2+ n+ λm)π [h]m(∂µhν)
n∑
k=1

1
n− λk

n∑
l=0

bkl(−1)l
l∑

j=0

2jCjl λ
l−j
m

=

n∑
m=0

(2+ n+ λm)π [h]m(∂µhν)
n∑
k=1

1
n− λk

n∑
l=0

bkl(−1)l(2+ λm)l.

Further we consider the sum over m starting with m = 1 because π [h]0(∂µhν) = 0.
We have −2 − λm = λm+(−1)m+1 , 1 ≤ m ≤ n. Indeed, in the cases of even and

odd m we have, respectively,

−2− λm = −2− (n− 2m) = −2− n+ 2m = −(n− 2(m− 1)) = λm−1 = λm+(−1)m+1,

−2− λm = −2+ (n− 2m) = −2+ n− 2m = n− 2(m+ 1) = λm+1 = λm+(−1)m+1 .

Using
∑n

l=0 bkl(λa)
l
= δk,a, we obtain

∂µhν =

n∑
m=1

(2+ n+ λm)π [h]m(∂µhν)
n∑
k=1

1
n− λk

n∑
l=0

bkl(λm+(−1)m+1)
l

=

n∑
m=1

(2+ n+ λm)π [h]m(∂µhν)
n∑
k=1

δk,m+(−1)m+1

n− λk

=

n∑
m=1

(2+ n+ λm)π [h]m(∂µhν)
n− λm+(−1)m+1

=

n∑
m=1

π [h]m(∂µhν).

This completes the proof of theorem for the case of even n.
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Let us prove the theorem in the case of odd n. In this case we have λk = λn−k,
hence µk = µn−k.

We have

Cµ=

n−1
2∑
k=1

µkπ [h]k,n−k((∂µh
ρ)hρ), π[h]k,n−k(U) = π [h]k(U)+ π [h]n−k(U),

Cµ=

n−1
2∑
k=1

µk

n−1
2∑
l=0

gklF
l((∂µh

ρ)hρ) =

n−1
2∑
l=0

slF
l((∂µh

ρ)hρ), sl =

n−1
2∑
k=1

µkgkl.

Substitute this expression for Cµ in the primitive field equation and obtain

∂µhν =

n−1
2∑
l=0

slF
l((∂µh

ρ)hρ)hν −

n−1
2∑
l=0

slhνF
l((∂µh

ρ)hρ).

Similarly to the case of even n we get

∂µhν =

n−1
2∑
l=0

sl

l∑
i=0

(−1)l2l−iC l−il

n−1
2∑

m=0

λim(2+ n+ λm)π [h]m,n−m(∂µhν),

where

sl =

n−1
2∑
k=1

µkgkl =

n−1
2∑
k=1

1
n− λk

gkl

and G = ||gkl|| is inverse of the Vandermonde matrix.
Further we consider the sum over m starting with m = 1 because π [h]0,n(∂µhν)

= 0. We change the index j = l − i and change the order of summation,

∂µhν =

n−1
2∑

m=1

(2+ n+ λm)π [h]m,n−m(∂µhν)

n−1
2∑
k=1

1
n− λk

n−1
2∑
l=0

(−1)lgkl
l∑

j=0

2jCjl λ
l−j
m

=

n−1
2∑

m=1

(2+ n+ λm)π [h]m,n−m(∂µhν)

n−1
2∑
k=1

1
n− λk

n−1
2∑
l=0

(−1)lgkl(2+ λm)l.

Using −2− λm = λm+(−1)m+1 , 1 ≤ m ≤ n and
∑ n−1

2
l=0 gkl(λa)

l
= δk,a, we get

∂µhν =

n−1
2∑

m=1

(2+ n+ λm)π [h]m,n−m(∂µhν)

n−1
2∑
k=1

δk,m+(−1)m+1

n− λk

=

n−1
2∑

m=1

(2+ n+ λm)π [h]m,n−m(∂µhν)
n− λm+(−1)m+1

=

n−1
2∑

m=1

π [h]m,n−m(∂µhν).

So, in the case of odd n the theorem is also proved. �
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In the case of small dimensions n = 2, 3, 4 the expressions Cµ from the formula
(30) have the following explicit form.

In the case n = 2,

Cµ=

2∑
k=1

µkπ [h]k((∂µh
ρ)hρ) =

1
2
π [h]1((∂µh

ρ)hρ)+
1
4
π [h]2((∂µh

ρ)hρ)

=
1
2
(∂µh

ρ)hρ −
1

16
hα(∂µh

ρ)hρhα −
3

32
hβhα(∂µh

ρ)hρhαhβ .

In the case n = 3,

Cµ=

2∑
k=1

µkπ [h]k((∂µh
ρ)hρ) =

1
4
π [h]1((∂µh

ρ)hρ)+
1
4
π [h]2((∂µh

ρ)hρ)

=
1
4
π [h]12((∂µh

ρ)hρ) =
3

16
(∂µh

ρ)hρ −
1
16
hα(∂µh

ρ)hρhα.

In the case n = 4,

Cµ=

4∑
k=1

µkπ [h]k((∂µh
ρ)hρ) =

1
6
π [h]1((∂µh

ρ)hρ)

+
1
4
π [h]2((∂µh

ρ)hρ)+
1
2
π [h]3((∂µh

ρ)hρ)+
1
8
π [h]4((∂µh

ρ)hρ)

=
1
4
(∂µh

ρ)hρ +
67
576

hα(∂µh
ρ)hρhα +

73
2304

hβhα(∂µh
ρ)hρhαhβ

−
19

2304
hγhβhα(∂µh

ρ)hρhαhβhγ −
25

9216
hδhγhβhα(∂µh

ρ)hρhαhβhγhδ.

8. Conclusion
We have invented a class of primitive field equations (27), which depend on the

real Lie algebra of a Lie group G. Eq. (27) has gauge symmetry w.r.t. the Lie
group G. Also we have discussed related mathematical structures— the Lie groups
and Lie algebras in the Clifford algebra, tensor fields with values in the Clifford
algebra, Clifford field vectors, an algebra of h-forms and so on. Also we have
developed techniques needed to solve primitive fields equations—theory of h-forms,
a method of calculation of projection operators onto vector subspaces of h-forms
of different ranks using the inverse of Vandermonde matrices, etc. We gave general
solutions of primitive field equations. In particular, we gave explicit formulae for
solutions in cases of small dimensions n = 2, 3, 4.

Primitive field equations are models of Yang–Mills equations with a Clifford field
vector as a current in the right-hand part [8]. A necessity to solve the primitive
field equations arises, in particular, in model equations of field theory [7] and in the
theory of Dirac equation on curved pseudo-Riemannian manifolds [12]. Presented
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in this article results on primitive field equations show us a direction for further
investigation—to find new classes of solutions of Yang–Mills equations.
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