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We present a new formulation of the hyperbolic singular value decomposition (HSVD)
for an arbitrary complex (or real) matrix without hyperexchange matrices and redundant
invariant parameters. In our formulation, we use only the concept of pseudo-unitary (or
pseudo-orthogonal) matrices. We show that computing the HSVD in the general case is
reduced to calculation of eigenvalues, eigenvectors, and generalized eigenvectors of some
auxiliary matrices. The new formulation is more natural and useful for some applications.
It naturally includes the ordinary singular value decomposition.
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1. Introduction

The method of the ordinary singular value decomposition (SVD, [1,2]) was independently developed by E. Beltrami
nd C. Jordan in 1873 and 1874, respectively. This method is very standard and is widely used in different applications —
omputer science, engineering, signal and image processing, process control, least squares fitting of data, etc. The method
f the hyperbolic singular value decomposition (HSVD) was proposed by R. Onn, A. O. Steinhardt, and A. W. Bojanczyk
n 1989 [3] (see also about known modifications of the HSVD in Section 2) and is also used in signal and image
rocessing [4,5], engineering [6], computer science [7,8], physics [9,10].
In this paper, we present a new version of the HSVD for an arbitrary complex (or real) matrix (see Theorems 2 or 3).

he advantage of the new version over the previous ones is that it does not involve hyperexchange matrices, which do not
orm a group. Instead of hyperexchange matrices, we use pseudo-unitary and pseudo-orthogonal matrices, which form
roups and are more natural from the theoretical and practical points of view. Another advantage is that the new version
ontains only three invariant parameters and does not contain other redundant parameters as the previous version [11]
oes (see Remark 2). In the previous known formulation of the HSVD (see Theorem 1), the matrix V is hyperexchange with
ive parameters j, l, t , k, and s, some of which, as it turns out in this paper, are redundant. We obtain a new formulation
f the HSVD with three parameters j, l, and t without the use of hyperexchange matrices for the general case.
Another advantage of the new version over the previous ones is that it naturally includes the ordinary SVD. The new

version of the HSVD is a more powerful mathematical tool, the ordinary SVD is just a special case of it. We use the HSVD
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instead of the SVD in applications where we cannot use two orthogonal transformations but we can use one orthogonal
transformation and one pseudo-orthogonal transformation. For example, we need the HSVD instead of the SVD to study
the Yang–Mills equations in Minkowski space (see the details in Section 6 and [9]). Other advantages of the HSVD over
the ordinary SVD are presented in [3,5].

Another result of this paper is the presentation of the relation between the HSVD and the generalized eigenvalue
roblem. The new version of the HSVD allows us to reduce the problem of computing the HSVD in the general case to
alculating the eigenvalues, eigenvectors, and generalized eigenvectors of some auxiliary matrices (see Theorem 4). This is
generalization of the well-known relation between the ordinary SVD and the eigenvalue problem. We give two examples
f computing the HSVD in Section 5 for the nondegenerate case (with j = 0) and the degenerate case (with j ̸= 0). Other

examples are given in [9].
The paper is organized as follows. In Section 2, we present the well-known formulation of the HSVD with some remarks.

In Section 3, we discuss that replacing hyperexchange matrices by corresponding pseudo-unitary (or pseudo-orthogonal)
matrices in the standard formulation of the HSVD is not correct for the general case of an arbitrary complex (or real)
matrix. However, this is correct in the particular case of full column rank matrices. In Section 4, we present a new
formulation of the HSVD without hyperexchange matrices and redundant invariant parameters in the general case. In
Section 5, we discuss relation between the HSVD and the generalized eigenvalue problem. Also we show that the new
version of the HSVD naturally includes the ordinary SVD and give examples. The conclusions follow in Section 6.

2. On the standard formulation of the HSVD with some remarks

We denote the identity matrix of size n by I = In = diag(1, . . . , 1) and the diagonal matrix with +1 appearing p times
followed by −1 appearing q times on the diagonal by J = Jm = diag(Ip, −Iq), p + q = m. In the current paper, we give
all statements for the complex case. All statements will be correct if we replace complex matrices by the corresponding
real matrices, the operation of Hermitian conjugation H by the operation of transpose T, the following unitary-like groups
m = p + q)

U(n) = {A ∈ Cn×n, AHA = I}, U(p, q) = {A ∈ Cm×m, AHJA = J} (1)

by the corresponding orthogonal-like groups

O(n) = {A ∈ Rn×n, ATA = I}, O(p, q) = {A ∈ Rm×m, ATJA = J}.

One calls the group O(p, q) a pseudo-orthogonal group, an indefinite orthogonal group, or a group of J-orthogonal
matrices [12,13]. There are also various names of the group U(p, q): a pseudo-unitary group, an indefinite unitary group,
a group of J-unitary matrices, a group of hypernormal matrices [14].

The most general version of the hyperbolic singular value decomposition (HSVD) is given in [11] by H. Zha.

Theorem 1 ([11]). Assume J = diag(Ip, −Iq), p + q = m. For an arbitrary matrix1 A ∈ Cn×m, there exist matrices U ∈ U(n)
and V ∈ Cm×m,

VHJV = Ĵ := diag(−Ij, Ij, −It , Il−t , Is, −Ik−s), (2)

such that

A = UΣVH, Σ =

(Ij Ij 0 0
0 0 Dl 0
0 0 0 0

)
∈ Rn×m, (3)

where Dl ∈ Rl×l is a diagonal matrix with all positive diagonal elements, which are uniquely determined. Here we have

j = rank(A) − rank(AJAH), l = rank(AJAH),

t is the number of negative eigenvalues of the matrix AJAH.

Remark 1. Note that the statement of Theorem 1 contains parameters j, l, t , k, and s. Prof. H. Zha in his work [11] (see
emark 6) says that there are four important HSVD parameters j, l, k, s and does not concretize who k and s are in (2). In
ur opinion, it is more correct to say about three (not four) invariants j, l, and t (or, alternatively, j, l, and s), which we
ention in Theorem 1. The numbers k and s are uniquely determined by j, l, and t:

k = m − 2j − l = m − 2rank(A) + rank(AJAH), (4)
s = p − j − l + t = p − rank(A) + t. (5)

ecause of the law of inertia the number p of +1 and the number q of −1 in the matrices J and Ĵ are the same. Using
+ l − t + s = p, we get (5). For determining k, we have 2j + l + k = m and obtain (4).

1 Note that in Theorems 1, 2, and Lemma 1, we use the same notation for the dimension n × m (not more standard m × n) of a rectangular
atrix as in Zha’s work.
2



D.S. Shirokov Journal of Computational and Applied Mathematics 391 (2021) 113450

t
e
n

d
T

c
d
g
a
H
e
o
t
f
B
g

3

w
h
J
T

L
g
o

P

W

s

W

i

R
t
w
t

Later we will see that a new formulation of the HSVD (Theorems 2 and 3) does not contain parameters k and s. Thus
here are three important HSVD parameters: j, l, and t , which depend on A and J . The numbers j, l and t with the diagonal
lements of the matrix D uniquely determine the HSVD for fixed p, m, and n. At the same time, the matrices U and V are
ot uniquely determined in the HSVD.
Positive numbers on the diagonal of the matrix Dl (the number of them equals l) and zeros on the continuation of this

iagonal in the matrix Σ (the number of such zeros equals min(m − 2j, n − j) − l) are called hyperbolic singular values.
hus the number of hyperbolic singular values equals min(m − 2j, n − j) in the general case.
The first formulation of the HSVD was presented by R. Onn, A. O. Steinhardt, and A. W. Bojanczyk in [3] for the particular

ase m ≥ n, rank(AJAH) = rank(A) = n (the notation as in Theorem 1). In this particular case, j = 0 and the matrix Σ is
iagonal with all positive diagonal elements. In [5], the same three authors formulate the statement for a slightly more
eneral case of arbitrary m and n, rank(AJAH) = rank(A) = min(m, n). In the third work of the same authors [14], there is
generalization of the HSVD to the case rank(AJAH) < rank(A). This generalization uses complex entries of the matrix Σ .
. Zha [11] indicated that this generalization seems rather unnatural and presented another generalization using only real
ntries of the matrix Σ . We discuss this generalization above (see Theorem 1). B. C. Levy [15] presented the statement
f Zha’s result in another form using another proof. At the same time, Levy’s statement is weaker than Zha’s statement:
here are additional arbitrary diagonal matrices instead of the identity matrices Ij in the matrix Σ; there is no explicit
orm of the matrix Ĵ (like (2) in Theorem 1); only the case m ≥ n is considered. Note interesting results of S. Hassi [16],
. N. Parlett [17], and V. Šego [18,19] on other generalizations of SVD to the hyperbolic case. In this paper, we give a
eneralization of Theorem 1 without using matrices of type (2), which are called hyperexchange matrices.

. On hyperexchange matrices and the HSVD

In [3], a complex matrix A with the condition

AHJA = Ĵ, (6)

here J = Jm = diag(Ip, −Iq), p + q = m, and Ĵ = Ĵm is a diagonal matrix with entries ±1 in some order, is called a
yperexchange matrix.2 In the particular case J = Ĵ , A becomes a J-unitary matrix AHJA = J (or, equivalently, AJAH

= J).
-unitary matrices are more natural and useful for different applications. In the next section, we give a generalization of
heorem 1 using only J-unitary matrices, without using hyperexchange matrices. Let us note the following fact.

emma 1. If we replace VHJV = Ĵ by VHJV = J in Theorem 1, then the statement of Theorem 1 will not be correct in the
eneral case. In other words, we cannot change the condition for matrix V from hyperexchange to J-unitary in the formulation
f Theorem 1 in the general case.

roof. Let us give a counterexample for the real case A ∈ Rn×m:

A1×2 =
(
0 1

)
, J = diag(1, −1), n = 1, m = 2.

e have rank(A) = 1 and rank(AJAT) = 1. Let us prove that there are no matrices D, U , and V of the following form

D =
(
d 0

)
∈ R1×2, U =

(
u
)

∈ R1×1, UTU = 1,

V =

(
v11 v12
v21 v22

)
∈ R2×2, V TJV = J

uch that A = UDV T.
The condition V TJV = J is equivalent to

v2
11 = 1 + v2

21, v2
12 = 1 + v2

22, v11v12 = v21v22.

e obtain(
0 1

)
=
(
u
) (

d 0
) (v11 v21

v12 v22

)
,

.e. udv11 = 0 and udv21 = 1. Using d ̸= 0 and u ̸= 0, we get v11 = 0, which is a contradiction to v2
11 = 1 + v2

21. ■

emark 2. If we add condition that An×m is a full column rank matrix (we have also n ≥ m and j = 0 in this case) to
he formulation of Theorem 1, then we can replace condition VHJV = Ĵ by VHJV = J and the statement of the theorem
ill be correct. This particular case is usually considered in the literature (see, for example, [8,20,21]). In this section, we
ry to distinguish the general case and the particular cases for the convenience of the reader.

2 One can find another definition of a hyperexchange matrix: AJAH
= Ĵ (see [15]). The second definition is not equivalent to the first one (6).

Multiplying both sides of (6) on the left by AĴ , and on the right by A−1J , we get AĴAH
= J , which differs from the second definition. Note that the

matrix B = A−1 satisfies BJBH
= Ĵ .
3
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The counterexample above shows us that we must use the concept of hyperexchange matrices in the formulation
f Theorem 1. However, in the next section, we give a generalization of Theorem 1 without using the concept of
yperexchange matrices for the general case.

. A new formulation of the HSVD

heorem 2. Assume J = diag(Ip, −Iq), p + q = m. For an arbitrary matrix A ∈ Cn×m, there exist U ∈ U(n) and V ∈ U(p, q)
uch that

A = UΣVH, (7)

here

Σ =

  
p

  
q

⎛⎜⎝ Pl−t 0 0 0 0 0
0 0 0 Qt 0 0
0 Ij 0 0 Ij 0
0 0 0 0 0 0

⎞⎟⎠ ∈ Rn×m, (8)

where the first block has p columns and the second block has q columns, Pl−t and Qt are diagonal matrices of corresponding
imensions l − t and t with all positive uniquely determined diagonal elements (up to a permutation).
Moreover, choosing U, one can swap rows of the matrix Σ . Choosing V , one can swap columns in individual blocks but not

across blocks. Thus we can always arrange diagonal elements of the matrices Pl−t and Qt in decreasing (or ascending) order.3
Here we have

j = rank(A) − rank(AJAH), l = rank(AJAH),

and t is the number of negative eigenvalues of the matrix AJAH (note that l − t is the number of positive eigenvalues of the
matrix AJAH).

Proof. Let us use the statement of Theorem 1 with hyperexchange matrix V satisfying

VHJV = Ĵ = diag(−Ij, Ij, −It , Il−t , Is, −Ik−s). (9)

It is not difficult to show that hyperexchange matrices and J-unitary matrices are closely connected: for an arbitrary
hyperexchange matrix V , there exists a permutation matrix ST = S−1 such that F := VS is J-unitary.

From the law of inertia, it follows that matrices J and Ĵ have the same numbers of 1 and −1 on the diagonal. It means
that these two matrices are connected with the aid of some permutation matrix S: Ĵ = SJST. Let us remind the reader
that a permutation matrix has exactly one nonzero element, equal to 1, in each column and in each row. A permutation
matrix is orthogonal STS = I . We get SJST = VHJV , i.e. (VS)HJ(VS) = J and F = VS is J-unitary.

From A = UΣVH (3), we obtain A = UΣSFH. Multiplying the matrix Σ on the right by S, we change the order of its
columns. Using ST ĴS = J and the explicit form of the matrix Ĵ (9), we get the explicit form of the matrix S:

S =

  
p

  
q

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 Ij 0
0 Ij 0 0 0 0
0 0 0 It 0 0
Il−t 0 0 0 0 0
0 0 Is 0 0 0
0 0 0 0 0 Ik−s

⎞⎟⎟⎟⎟⎟⎠ .

Then we calculate the explicit form of the matrix ΣS, where Σ is from (3):

ΣS =

  
p

  
q

⎛⎜⎝ 0 Ij 0 0 Ij 0
0 0 0 Qt 0 0

Pl−t 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎠ , (10)

here Dl = diag(Qt , Pl−t ).

3 Alternatively, we can change the order of the first l rows of the matrix Σ and obtain all nonzero elements of the first l rows of the matrix Σ

in decreasing (or ascending) order.
4
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We can multiply the matrix (10) by an arbitrary permutation matrix S ′ on the left S ′Σ because S ′
∈ O(n). Thus we can

swap rows of the matrix (10). We can multiply the matrix (10) on the right by an arbitrary permutation matrix of the
form (

S1 0
0 S2

)
∈ O(p, q),

here S1 and S2 are arbitrary permutation matrices of order p and q respectively. Thus we can swap columns in individual
blocks but not across blocks. Finally, we obtain the explicit form of the new matrix Σ (8), where Pl−t and Qt are diagonal
matrices with all positive uniquely determined diagonal elements in decreasing (or ascending) order. ■

Note that there are no indices k and s in the formulation of Theorem 2 (but they are in the formulation of Theorem 1,
see Remark 1). These indices do not have any important information on the HSVD.

Note that we can change VH to V in (7), because if V ∈ U(p, q), then VH
∈ U(p, q). Since analogous reasoning is not

correct for hyperexchange matrices, we cannot do the same in (3).
For the convenience of the reader, let us give a reformulation of Theorem 2 to the case when a J-unitary matrix is on

the left side and a unitary matrix is on the right side (as in [15] but now without using hyperexchange matrices and for
the general case).

Theorem 3. Assume J = diag(Ip, −Iq), p+ q = m. For an arbitrary matrix B ∈ Cm×n, there exist U0 ∈ U(n) and V0 ∈ U(p, q)
such that

VH
0 BU0 = Σ, (11)

where

Σ =

⎛⎜⎜⎜⎜⎜⎝
Pl−t 0 0 0
0 0 Ij 0
0 0 0 0
0 Qt 0 0
0 0 Ij 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
}
p}
q

∈ Rm×n, (12)

here the first block has p rows and the second block has q rows, Pl−t and Qt are diagonal matrices of corresponding dimensions
l − t and t with all positive uniquely determined diagonal elements (up to a permutation).

Moreover, choosing U0, one can swap columns of the matrix Σ . Choosing V0, one can swap rows in individual blocks but not
cross blocks. Thus we can always arrange diagonal elements of the matrices Pl−t and Qt in decreasing (or ascending) order.4
Here we have

j = rank(B) − rank(BHJB), l = rank(BHJB),

and t is the number of negative eigenvalues of the matrix BHJB (note that l − t is the number of positive eigenvalues of the
matrix BHJB).

Proof. Using A = UΣVH (3), we get AH
= VΣTUH. Multiplying both sides on the left by V−1, and on the right by U ,

we get V−1AHU = ΣT. Using the notation B = AH, VH
0 = V−1

∈ U(p, q), U0 = U ∈ U(n), we obtain the statement of the
theorem. ■

5. Computing the HSVD

The new formulation of the HSVD allows us to compute the HSVD in the general case. In Theorem 4, we show that
computing the HSVD is reduced to calculation of eigenvalues, eigenvectors, and generalized eigenvectors of some auxiliary
matrices.

In this section, we use the formulation of the HSVD from Theorem 3. For arbitrary matrix B ∈ Cm×n, we can easily find
matrices V0 ∈ U(p, q), U0 ∈ U(n), Σ ∈ Rm×n of the form (12) such that V0, B, and U0 satisfy (11).

Theorem 4. For the matrices B, V0, U0, and Σ from Theorem 3, we have the following equations:

(BHJB)U0 = U0(ΣTJΣ), (JBBH)V0 = V0(JΣΣT). (13)

The hyperbolic singular values of the matrix B are square roots of the modules of the eigenvalues of the matrix BHJB. The columns
of the matrix U0 are corresponding eigenvectors of the matrix BHJB. The columns of the matrix V0 are corresponding eigenvectors
of the matrix JBBH (in the case j = 0), or corresponding eigenvectors and generalized eigenvectors of the matrix JBBH (in the
case j ̸= 0).

4 Alternatively, we can change the order of the first l columns of the matrix Σ and obtain all nonzero elements of the first l columns of the
matrix Σ in decreasing (or ascending) order.
5
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Proof. From (11), we obtain

UH
0 B

HV0 = ΣT. (14)

ultiplying on the left by U0, and on the right by JΣ , we get

BHV0JΣ = U0Σ
TJΣ . (15)

sing (15) and (11), we obtain the first equation from (13).
Multiplying (11) on the left by V0J , and on the right by ΣT, we get

JBU0Σ
T

= V0JΣΣT. (16)

sing (16) and (14), we obtain the second equation from (13).
If we denote

Pl−t = diag(p1, . . . , pl−t ), Qt = diag(q1, . . . , qt ),

hen it can be easily verified that

ΣTJΣ = diag(P2
l−t , −Q 2

t , 0) = diag(p21, . . . , p
2
l−t , −q21, . . . ,−q2t , 0, . . . , 0).

rom this equation and the first equation (13), it follows that hyperbolic singular values of the matrix B are square roots
f the modules of the eigenvalues of the matrix BHJB. The columns of the matrix U0 are eigenvectors of the matrix BHJB.
We have

JΣΣT
=

  
p

  
q

⎛⎜⎜⎜⎜⎜⎝
P2
l−t 0 0 0 0 0
0 Ij 0 0 Ij 0
0 0 0 0 0 0
0 0 0 −Q 2

t 0 0
0 −Ij 0 0 −Ij 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
}
p}
q

.

Using this equation and the second equation (13), we can find the matrix V0. In the case j = 0, the columns of the matrix
V0 are eigenvectors of the matrix JBBH. In the case j ̸= 0, the columns of the matrix V0, which correspond to the blocks
P2, Q 2, and zero blocks, are eigenvectors of the matrix JBBH. The remaining columns vi, wi, i = 1, . . . , j of the matrix V0,
hich correspond to the two blocks Ij, satisfy the conditions

(JBBH)vi = (JBBH)wi = vi − wi, i = 1, . . . , j,

nd therefore

(JBBH)(vi − wi) = 0, (JBBH)2vi = (JBBH)2wi = 0, i = 1, . . . , j,

.e. vi, wi, i = 1, . . . , j are generalized eigenvectors of the matrix JBBH. ■

xample 1 (j = 0). Let us consider the following example

B =

(
1
2

)
, J = diag(1, −1), m = 2, p = q = 1, n = 1.

In this case, we have

BTJB = −3, rank(B) = rank(BTJB) = 1, j = 0, l = 1.

Since eigenvalue of the matrix BTJB equals −3, it follows that t = 1 and the hyperbolic singular value of the matrix B is√
3. We can choose the following matrix U0 ∈ O(1), the matrix Σ is determined uniquely:

Σ =

(
0

√
3

)
, U0 =

(
1
)
.

Using (JBBT)V0 = V0(JΣΣT), we get(
1 2

−2 −4

)
V0 = V0

(
0 0
0 −3

)
.

ote that 0 and −3 are eigenvalues of the matrix JBBT. Calculating eigenvectors of the matrix JBBT and choosing correct
multipliers (taking into account V T

0 JV0 = J), we get

V0 =

(
−2
√
3

−1
√
3

1
√

2
√

)
∈ O(1, 1).
3 3

6
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Finally, we have

V T
0 BU0 = Σ,

(
−2
√
3

−1
√
3

1
√
3

2
√
3

)T (
1
2

) (
1
)

=

(
0

√
3

)
. (17)

ote that the matrices V0 and U0 in (17) are not determined uniquely. For example, we can change the signs of these
atrices at the same time.

xample 2 (j ̸= 0). Let us consider the following example

B =

(
2
2

)
, J = diag(1, −1), m = 2, p = q = 1, n = 1.

In this case, we have

BTJB = 0, l = rank(BTJB) = 0, j = rank(B) − rank(BTJB) = 1.

We have no hyperbolic singular values in this case. We can choose the following matrix U0 ∈ O(1), the matrix Σ is
determined uniquely:

Σ =

(
1
1

)
, U0 =

(
1
)
.

We calculate the matrix BΣΣT and its eigenvector a1:

JΣΣT
=

(
2 2

−2 −2

)
, a1 :=

(
1

−1

)
.

Calculating corresponding generalized eigenvectors v1 and w1

(JBBT)v1 = (JBBT)w1 = a1

and choosing correct multipliers (taking into account V T
0 JV0 = J), we get

v1 =

( 5
4

−
3
4

)
, w1 =

(
−

3
4

5
4

)
, V0 =

(
5
4 −

3
4

−
3
4

5
4

)
∈ O(1, 1).

inally, we have

V T
0 BU0 = Σ,

(
5
4 −

3
4

−
3
4

5
4

)T (
2
2

) (
1
)

=

(
1
1

)
.

he matrices V0 and U0 are not determined uniquely.

emark 3. In the case J = I (p = m, q = 0), we obtain j = 0, t = 0, and the ordinary singular value decomposition [1,2]
as the particular case of Theorem 3 with V0 ∈ U(m), U0 ∈ U(n). In this case, the matrix Σ is diagonal with all nonnegative
diagonal elements. In this case, we obtain from (13) the well-known formulas

(BHB)U0 = U0(ΣTΣ), (BBH)V0 = V0(ΣΣT)

for finding Σ , U0, and V0. In this case, singular values of the matrix B are square roots of the eigenvalues of the positive-
definite Hermitian matrices BHB and BBH, the columns of the matrix V0 are eigenvectors of the matrix BBH, and the columns
of the matrix U0 are eigenvectors of the matrix BHB.

6. Conclusions

In this paper, we present a new formulation of the HSVD for an arbitrary complex (or real) matrix without hyperex-
change matrices and redundant invariant parameters. We use only the concept of pseudo-unitary (or pseudo-orthogonal)
matrices. The expressions (8) and (12) can be regarded as new useful canonical forms of an arbitrary complex (or
real) matrix. We show that computing the HSVD is reduced to calculation of eigenvalues, eigenvectors and generalized
eigenvectors of some auxiliary matrices. The new formulation of the HSVD naturally includes the ordinary SVD.

In the new formulation, we have two diagonal matrices P and Q in (8) instead of one diagonal matrix D in (3). This fact
has physical (or geometrical) meaning (see the details in [9] on applications to the Yang–Mills equations). The matrix A
may describe some tensor field, the matrices U and V may describe some (coordinate, gauge) transformations. The matrix
Σ describes the same tensor field, but in some new coordinate system and with a new gauge fixing. The blocks P and
Q of the matrix Σ describe the contributions of the tensor field to (using physical terminology for the case p = 1 and
q = 3) ‘‘time’’ (the first p) and ‘‘space’’ (the last q) coordinates. Such contributions depend on the number of positive l− t
7
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and negative t eigenvalues of the matrix AJAH respectively. From the statement of Theorem 1, it is not clear why there
re exactly two blocks Ij in (3) in the degenerate case j ̸= 0. From the new formulation (Theorems 2 or 3), we see the
eaning of this fact: each of two blocks Ij carries information about degeneration in each of two (‘‘space’’ and ‘‘time’’)
locks of the matrix Σ .
We use results of this paper to generalize results on Yang–Mills equations in Euclidean space Rn [22] to the case of

seudo-Euclidean space Rp,q [9,23] of an arbitrary dimension p + q. We expect further use of the HSVD in computer
cience [7,8], engineering [6], image and signal processing [4,5], and physics [9,10].
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