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Abstract. In this paper, we discuss characteristic polynomials in (Clif-
ford) geometric algebras Gp,q of vector space of dimension n = p+q. We
present basis-free formulas for all characteristic polynomial coefficients
in the cases n ≤ 6, alongside with a method to obtain general form of
these formulas. The formulas involve only the operations of geometric
product, summation, and operations of conjugation. All the formulas
are verified using computer calculations. We present an analytical proof
of all formulas in the case n = 4, and one of the formulas in the case
n = 5. We present some new properties of the operations of conjugation
and grade projection and use them to obtain the results of this paper.
We also present formulas for characteristic polynomial coefficients in
some special cases. In particular, the formulas for vectors (elements of
grade 1) and basis elements are presented in the case of arbitrary n, the
formulas for rotors (elements of spin groups) are presented in the cases
n ≤ 5. The results of this paper can be used in different applications
of geometric algebras in computer graphics, computer vision, engineer-
ing, and physics. The presented basis-free formulas for characteristic
polynomial coefficients can also be used in symbolic computation.
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1. Introduction

In this paper, we discuss characteristic polynomials in (Clifford) geometric
algebras Gp,q, p + q = n ≥ 1. We solved the problem of obtaining basis-free
formulas for characteristic polynomial coefficients for the cases n ≤ 6. These
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formulas involve only the operations of geometric product, summation, and
the operations of conjugation (the grade involution, the reversion, and one
additional operation of conjugation �).

This paper is an extended version of the short note in Conference Pro-
ceedings [1], where the cases n ≤ 5 are considered. In the present paper,
for the first time, we introduce the formulas for the characteristic polyno-
mial coefficients in geometric algebras in the case n = 6. Also, we present a
method to obtain general form of these formulas using basis-free form of one
of the coefficients (determinant). For the first time, we present formulas for
the characteristic polynomial coefficients in some special cases. In particular,
we present the formulas for vectors (elements of grade 1) and basis elements
in the case of arbitrary n. We present simplification of the formulas for rotors
(elements of spin groups Spin+(p, q)) in the cases p+ q = n ≤ 5. Lemmas 6.1
and 6.2 and Theorems 6.3, 6.4, 6.5, and 7.1 are new.

This paper is organized as follows. In Sect. 2, we present some new prop-
erties of the operations of conjugation and grade projection and use them to
obtain the results of this paper. In Sect. 3, we discuss the notion of charac-
teristic polynomial in geometric algebras and remind the recursive formulas
for characteristic polynomial coefficients from [25]. In Sect. 4, we present an
analytic proof of the basis-free formulas for characteristic polynomial coeffi-
cients in the case n = 4. In Sect. 5, we solve the same problem in the case
n = 5. The formulas are verified using symbolic computation. We present an
analytical proof of one of the formulas. In Sect. 6, we present formulas for
the characteristic polynomial coefficients of elements with some specific con-
ditions on their powers. In particular, we obtain the basis-free formulas for
vectors and basis elements in the case of arbitrary n, and rotors in the cases
n ≤ 5. In Sect. 7, we introduce a method to obtain a general form of basis-free
formulas for characteristic polynomial coefficients. We illustrate the method
for the cases n ≤ 5. In Sect. 8, we apply the method for the case n = 6. Us-
ing numerical Geometric Algebra package for Python [11], we checked that
the formulas give valid results for geometric algebra elements with random
integer coefficients. Some of the formulas are moved to Appendix A because
of their cumbersomeness.

The geometric algebras of vector spaces of dimensions n = 4, 5, and 6
are important for different applications. The space-time algebra G1,3 is widely
used for applications in physics [8,13,17], the conformal geometric algebra
G4,1 is widely used in computer science and engineering [4,5,10,14,18], the
geometric algebra G3,3 of projective geometry is used in computer vision and
computer graphics [9,16], the conformal space-time algebras G4,2 and G2,4 are
used in physics [7,8].

The characteristic polynomial and related concepts (eigenvectors, eigen-
values) are widely used in computer vision (see, for example, on eigenfaces
and the computer vision problem of human face recognition [6,28,29]). The
characteristic polynomial coefficients are used to solve the Sylvester and Lya-
punov equations in geometric algebra [22,24]. The presented basis-fee formu-
las for characteristic polynomial coefficients can also be used in symbolic
computation using different software [2,11,20,27].
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2. Grade Projections and Operations of Conjugation in
Geometric Algebras

Let us consider the (Clifford) geometric algebra Gp,q, p + q = n [13,17,19]
with the generators e1, e2, . . . , en and the identity element e. The generators
satisfy the conditions

eaeb + ebea = 2ηabe, a, b = 1, . . . , n,

where η = (ηab) = diag(1, . . . , 1,−1, . . . ,−1) is the diagonal matrix with its
first p entries equal to 1 and the last q entries equal to −1 on the diagonal.

We call the subspace of Gp,q of elements, which are linear combinations
of the basis elements

ea1...ak
:= ea1 · · · eak

, a1 < a2 < · · · < ak, k = 0, 1, . . . , n, (2.1)

with multi-indices of length k, the subspace of grade k and denote it by Gk
p,q.

Elements of grade 0 are identified with scalars G0
p,q ≡ R, e ≡ 1. The projection

of any element U ∈ Gp,q onto the subspace Gk
p,q is denoted by 〈U〉k (or Uk to

simplify notation) in this paper. We have

〈U + V 〉k = 〈U〉k + 〈V 〉k, 〈λU〉k = λ〈U〉k, λ ∈ R, U, V ∈ Gp,q. (2.2)

An arbitrary element U ∈ Gp,q can be written in the form

U =
n∑

k=0

〈U〉k, 〈U〉k ∈ Gk
p,q. (2.3)

The scalar 〈U〉0 is called the scalar part of U . We have the property

〈UV 〉0 = 〈V U〉0, ∀U, V ∈ Gp,q. (2.4)

Definition 2.1. [25] Any operation of the form

U 
→
n∑

k=0

λk〈U〉k, λk = ±1 (2.5)

is called an operation of conjugation in Gp,q.

Note that the operation of conjugation is an involution: the square of
each operation equals the identical operation. The operations of conjugation
commute with each other. We have three classical operations of conjugation:
the grade involution, the reversion, and the Clifford conjugation1:

Û =
n∑

k=0

(−1)k〈U〉k, Ũ =
n∑

k=0

(−1)
k(k−1)

2 〈U〉k,
̂̃
U =

n∑

k=0

(−1)
k(k+1)

2 〈U〉k.

(2.6)

These operations have the following properties

ÛV = Û V̂ , ŨV = Ṽ Ũ ,
̂̃
UV = ̂̃

V
̂̃
U, ∀U, V ∈ Gp,q. (2.7)

1The Clifford conjugation is a superposition of the grade involution ̂ and the reversion .̃
Note that some authors [19] denote the Clifford conjugation by . We do not use separate

notation for the Clifford conjugation in this paper and write the combination of the two

symbols ̂ and .̃
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Definition 2.2. [25] We call an operation of conjugation of the form

U� =
n∑

k=0

(−1)
k(k−1)(k−2)(k−3)

24 〈U〉k (2.8)

an additional operation of conjugation in Gp,q (or �-conjugation).

Note that we have (UV )� �= U�V � and (UV )� �= V �U� in the
general case. However, the operation � has the following weaker property by
Lemma 2.3 and (2.4):

〈(UV )�〉0 = 〈U�V �〉0 = 〈V �U�〉0, ∀U, V ∈ Gp,q. (2.9)

We widely use the operation � in this paper.
We need the following two lemmas to prove the results of this paper.

Lemma 2.3. We have the following properties

〈UV �〉0 = 〈U�V 〉0, ∀U, V ∈ Gp,q, (2.10)
〈U�V �〉0 = 〈UV 〉0, ∀U, V ∈ Gp,q, (2.11)

where � is any operation of conjugation (2.3);

〈U〉0 = 〈U•〉0, ∀U ∈ Gp,q, (2.12)
〈U•V •〉0 = 〈(UV )•〉0, ∀U, V ∈ Gp,q, (2.13)

where • is any operation of conjugation (2.3) that does not change the sign
of grade 0 (i.e. λ0 = +1).

Proof. If

U = X + x, where (X + x)� = X − x,

V = Y + y, where (Y + y)� = Y − y,

then

〈Xy〉0 = 〈Y x〉0 = 0, (2.14)

because the elements X and y are of different grades (similarly for the ele-
ments Y and x) by construction. Using (2.14) and (2.2), we get

〈UV �〉0 = 〈(X + x)(Y − y)〉0 = 〈XY − Xy + xY − xy〉0
= 〈XY − xy〉0, (2.15)

〈U�V 〉0 = 〈(X − x)(Y + y)〉0 = 〈XY + Xy − xY − xy〉0
= 〈XY − xy〉0. (2.16)

From the equality of the right-hand sides of the expressions (2.15),
(2.16), we get the equality of the left-hand sides (2.10). Substituting U� for
U in (2.10), we get (2.11). Substituting e for V in (2.10) and using e• = e,
we get (2.12)2. Using (2.11) and (2.12), we get (2.13). �

2Note that the property (2.12) is also follows from the definition of • and the fact that
grade projections commute with operations of conjugation.
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In the next lemma, we discuss the relation between the operations
of conjugation (left-hand sides of the equalities) and the grade projections
(right-hand sides of the equalities). Note that the same left-hand sides of
equalities are used in [25] to realize the scalar part operation 〈 〉0 in the cases
of smaller dimensions n. For example, the left-hand side of (2.18) is equal to
4〈U〉0 in the cases n ≤ 6.

Lemma 2.4. For n ≤ 7, the following equalities hold

U + ̂̃
U = 2(U0 + U3 + U4 + U7), (2.17)

U + ̂̃
U + Û� + Ũ� = 4(U0 + U7), (2.18)

U + Û + Ũ� + ̂̃
U

�
= 4(U0 + U6), (2.19)

U + Ũ + Û� + ̂̃
U

�
= 4(U0 + U5), (2.20)

U + Û + Ũ + ̂̃
U = 4(U0 + U4), (2.21)

where the simplified notation Uk is used for 〈U〉k.

Proof. The proof is by direct calculation. For example, from (2.3) and (2.6),
we have

U = U0 + U1 + U2 + U3 + U4 + U5 + U6 + U7, (2.22)
̂̃
U = U0 − U1 − U2 + U3 + U4 − U5 − U6 + U7. (2.23)

Summing (2.22) and (2.23), we obtain the expression (2.17) from Lemma
2.4

U + ̂̃
U = 2U0 + 2U3 + 2U4 + 2U7.

Similarly one can prove all the other equalities from Lemma 2.4. �

3. Characteristic Polynomials in Geometric Algebras

Characteristic polynomials in geometric algebras Gp,q, n = p+q, are discussed
in [12] and [25]. We use the notation N := 2[n+1

2 ], where square brackets mean
taking the integer part.

Definition 3.1. ([25])Let us consider an arbitrary element U ∈ Gp,q. We call
the characteristic polynomial of U

ϕU (λ) := det(β(λe − U)) = Det(λe − U)

= λN − C(1)λ
N−1 − · · · − C(N−1)λ − C(N) ∈ G0

p,q, (3.1)

where C(j) = C(j)(U) = c(j)(β(U)) ∈ G0
p,q ≡ R, j = 1, . . . , N can be inter-

preted as constants or as elements of grade 0 and are called characteristic
polynomial coefficients of U . Here c(j)(β(U)) are the ordinary characteristic
polynomial coefficients of the matrix β(U) and

β : Gp,q → β(Gp,q) ⊂ Mp,q,
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where

Mp,q :=
{

Mat(2
n
2 ,C), if n is even,

Mat(2
n−1
2 ,C) ⊕ Mat(2

n−1
2 ,C), if n is odd,

is a representation of Gp,q (of not minimal dimension, see the details in [25]).

Note that the trace Tr(U) := tr(β(U)) = N〈U〉0 = C(1) and the deter-
minant Det(U) := det(β(U)) = −C(N) are particular cases of characteristic
polynomial coefficients. The basis-free formulas for the determinant allow us
to calculate the adjugate Adj(U) and the inverse U−1 in Gp,q (see [3,15,25]).

We use the following recursive formulas for the characteristic polynomial
coefficients C(k), k = 1, . . . , N , N = 2[n+1

2 ] from [25]. The elements U(k) ∈
Gp,q, k = 1, . . . , N , are auxiliary.

Theorem 3.2. [25] Let us consider an arbitrary element U ∈ Gp,q, n = p+ q,
N = 2[n+1

2 ]. Setting U(1) = U , we have

U(k+1) = U(U(k) − C(k)), C(k) =
N

k
〈U(k)〉0, k = 1, . . . , N, (3.2)

Det(U) = −U(N) = −C(N) = U(C(N−1) − U(N−1)), (3.3)

Adj(U) = C(N−1) − U(N−1), U−1 =
Adj(U)
Det(U)

. (3.4)

4. The Cases n ≤ 4

The basis-free formulas for all characteristic polynomial coefficients in Gp,q,
n = p + q ≤ 4 were presented in [25]. These formulas were obtained using
the algorithm from Theorem 3.2. The formulas (4.2) and (4.3) were proved in
[25] using computer calculations, all other formulas from Theorem 4.1 were
proved analytically. We present an analytic proof of the formulas (4.2) and
(4.3).

Theorem 4.1. In the cases n = 1, 2, 3, 4, we have the following basis-free for-
mulas for the characteristic polynomial coefficients C(k) ∈ G0

p,q, k = 1, 2,
. . . , N :

n = 1, C(1) = U + Û , C(2) = −UÛ ;

n = 2, C(1) = U + ̂̃
U, C(2) = −U

̂̃
U ;

n = 3, C(1) = U + Û + Ũ + ̂̃
U,

C(2) = −(UŨ + UÛ + U
̂̃
U + Û

̂̃
U + Ũ

̂̃
U + Û Ũ),

C(3) = UÛŨ + UÛ
̂̃
U + UŨ

̂̃
U + Û Ũ

̂̃
U,

C(4) = −UÛŨ
̂̃
U ;

n = 4, C(1) = U + ̂̃
U + Û� + Ũ�, (4.1)

C(2) = −(U ̂̃
U + UÛ� + UŨ�
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+ ̂̃
UÛ� + ̂̃

UŨ� + (Û Ũ)�), (4.2)

C(3) = U
̂̃
UÛ� + U

̂̃
UŨ� + U(Û Ũ)� + ̂̃

U(Û Ũ)�, (4.3)

C(4) = −U
̂̃
U(Û Ũ)�. (4.4)

Proof. (of (4.2)) Our analytical proof of the formula (4.2) for C(2) in the case
n = 4 is in two steps. Step 1: we prove that the projection of the expression
(4.2) onto the subspace of grade 0 is equal to C(2) from (3.2). Step 2: we
prove that the expression (4.2) belongs to G0

p,q.
Step 1: Using (3.2), (4.1), and (2.2), we get

C(2) = 2〈U(U − C(1))〉0 = −2〈U( ̂̃
U + Û� + Ũ�)〉0

= −〈U ̂̃
U〉0 − 〈UÛ�〉0 − 〈UŨ�〉0 − 〈U ̂̃

U〉0 − 〈UÛ�〉0 − 〈UŨ�〉0.
Using the properties (2.10) and (2.12) for the operations ̂, ˜, and �,

we get

〈U ̂̃
U〉0 = 〈Û Ũ〉0 = 〈(Û Ũ)�〉0, 〈UÛ�〉0 = 〈 ̂̃

UŨ�〉0, 〈UŨ�〉0 = 〈 ̂̃
UÛ�〉0.

Finally, we obtain

C(2) = −〈U ̂̃
U + UÛ� + UŨ� + ̂̃

UÛ� + ̂̃
UŨ� + (Û Ũ)�〉0, (4.5)

which differs from (4.2) only by the scalar part operation.

Step 2: Using the properties (2.7), we conclude that the expression U
̂̃
U+

(Û Ũ)� does not change under the operations ̂̃ and �̂:

U
̂̃
U + (Û Ũ)� = (U ̂̃

U + (Û Ũ)�)
̂̃

= (U ̂̃
U + (Û Ũ)�)�̂. (4.6)

This means that the sum of the first and the last two terms of (4.2) belongs
to the subspace of grade 0:3

U
̂̃
U + (Û Ũ)� ∈ G0

p,q. (4.7)

For the other four terms of (4.2), using (2.17), we get 4

UÛ� + ̂̃
UŨ� + UŨ� + ̂̃

UÛ� = (U + ̂̃
U)(U + ̂̃

U)�̃

= 4(U0 + U3 + U4)(U0 − U3 − U4)
= 4(U2

0 − U2
3 − U2

4 − {U3, U4} − [U0, U3 + U4])
= 4(U2

0 − U2
3 − U2

4 ) ∈ G0
p,q, (4.8)

because U2
0 , U2

3 , U2
4 ∈ G0

p,q and {U3, U4} = 0 (see, for example, [21]). Summing
(4.7) and (4.8), we conclude that the expression (4.2) belongs to G0

p,q. �

3The commutator and anticommutator of two arbitrary elements U, V ∈ Gp,q are denoted

by [U, V ] = UV − V U and {U, V } = UV + V U respectively.
4We remind that we use the simplified notation Uk := 〈U〉k in this paper.
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Proof. (of (4.3)) The analytical proof of the formula (4.3) for C(3) is in two
steps.

Step 1: Using the properties (2.4), (2.10), and (2.12) for the operations
,̂ ,̃ and �, we get

〈U ̂̃
UÛ�〉0 = 〈U ̂̃

UŨ�〉0 = 〈U(Û Ũ)�〉0 = 〈 ̂̃
U(Û Ũ)�〉0. (4.9)

Using (3.2), (2.2), (4.1), (4.2), and (4.9), we get

U(2) = U(U − C(1)) = −(U ̂̃
U + UÛ� + UŨ�),

C(3) =
4
3
〈U(U(2) − C(2))〉0 =

4
3
〈U ̂̃

UÛ� + U
̂̃
UŨ� + U(Û Ũ)�〉0

= 〈U ̂̃
UÛ� + U

̂̃
UŨ� + U(Û Ũ)� + ̂̃

U(Û Ũ)�〉0, (4.10)

which differs from (4.3) only by the scalar part operation.
Step 2: Let us prove that the expression (4.3) belongs to G0

p,q. It can be
represented in the form

(Û Ũ)̂(U + ̂̃
U)�̂ + (U + ̂̃

U)(Û Ũ)� = ÂB̂� + BA�, (4.11)

where we use the notation A := Û Ũ and B := U + ̂̃
U . Using ̂̃

A = A and
(2.17), we get

A = A0 + A3 + A4, B = B0 + B3 + B4, where Ai, Bi ∈ Gi
p,q.

Therefore, the expression (4.11) is equal to

(A0 − A3 + A4)(B0 − B3 − B4) + (B0 + B3 + B4)(A0 + A3 − A4)
= {A0, B0} − [A0, B3] − [A0, B4] − [A3, B0] + {A3, B3} + {A3, B4}

+[A4, B0] − {A4, B3} + {A4, B4} = {A0, B0} + {A3, B3} + {A4, B4},

which belongs to G0
p,q because {Un−1, Vn} = 0 for even n and the expressions

{U0, V0}, {Un−1, Vn−1}, {Un, Vn} belong to G0
p,q (see, for example, [21]5).

Therefore the expression (4.3) belongs to G0
p,q. �

5. The Case n = 5

In this section, we present basis-free formulas for all characteristic polynomial
coefficients in the geometric algebras Gp,q, n = p + q = 5. The formula (5.8)
for C(8) = −Det(U) is presented in [25] and in some another form in [3]. The
formula for C(1) = Tr(U) is also presented in [25].

Theorem 5.1. In the case n = 5, we have the following basis-free formulas
for the characteristic polynomial coefficients C(k) ∈ G0

p,q, k = 1, 2, . . . , 8:

C(1) = U +
̂̃
U + Û + Ũ + Û� + Ũ� + U� +

̂̃
U

�
, (5.1)

C(2) = −(U
̂̃
U + UÛ + UŨ + UÛ� + UŨ� + UU� + U

̂̃
U

�
+ ÛŨ +

̂̃
UŨ

+
̂̃
UÛ +

̂̃
UŨ� +

̂̃
UÛ� + ÛÛ� +

̂̃
UU� + (ÛŨ)� + (ÛU)� + (Û

̂̃
U)�

5Alternatively, we can use the quaternion type classification of Clifford algebra elements
[23,26] to prove this.
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+Ũ
̂̃
U

�
+ ŨU� + ŨŨ� + ÛŨ� + (U

̂̃
U)� + (Ũ

̂̃
U)� + (ŨU)� + ÛU�

+Û
̂̃
U

�
+

̂̃
U

̂̃
U

�
+ ŨÛ�), (5.2)

C(3) = U
̂̃
UÛ + U

̂̃
UŨ + UÛŨ +

̂̃
UÛŨ + U

̂̃
UÛ� + U

̂̃
UŨ� + U

̂̃
UU� + UÛÛ�

+UÛŨ� + UÛU� + UÛ
̂̃
U

�
+ UŨÛ� +

̂̃
UÛÛ� +

̂̃
UÛŨ� + ÛŨÛ�

+ÛŨŨ� + ÛŨU� + ÛŨ
̂̃
U

�
+ UŨŨ� + UŨU� + UŨ

̂̃
U

�
+

̂̃
UÛU�

+
̂̃
UÛ

̂̃
U

�
+

̂̃
UŨÛ� +

̂̃
UŨŨ� +

̂̃
UŨU� +

̂̃
UŨ

̂̃
U

�
+ U

̂̃
U

̂̃
U

�
+ Û(ÛU)�

+U(ÛŨ)� + U(ÛU)� + U(Û
̂̃
U)� + U(ŨU)� + U(Ũ

̂̃
U)� + U(U

̂̃
U)�

+
̂̃
U(ÛŨ)� +

̂̃
U(ÛU)� +

̂̃
U(Û

̂̃
U)� +

̂̃
U(ŨU)� +

̂̃
U(Ũ

̂̃
U)� +

̂̃
U(U

̂̃
U)�

+Û(ÛŨ)� + Û(Û
̂̃
U)� + Û(ŨU)� + Û(Ũ

̂̃
U)� + Û(U

̂̃
U)� + Ũ(ÛŨ)�

+Ũ(ÛU)� + Ũ(Û
̂̃
U)� + Ũ(ŨU)� + Ũ(Ũ

̂̃
U)� + Ũ(U

̂̃
U)� + (ÛŨU)�

+(ÛŨ
̂̃
U)� + (ÛU

̂̃
U)� + (ŨU

̂̃
U)�, (5.3)

C(4) = −(U
̂̃
UÛŨ + U

̂̃
UÛÛ� + U

̂̃
UÛŨ� + U

̂̃
UÛU� + U

̂̃
UÛ

̂̃
U

�
+ U

̂̃
UŨÛ�

+U
̂̃
UŨŨ� + U

̂̃
UŨU� + U

̂̃
UŨ

̂̃
U

�
+ UÛŨÛ� + UÛŨŨ� + UÛŨU�

+
̂̃
UÛŨŨ� +

̂̃
UÛŨU� +

̂̃
UÛŨ

̂̃
U

�
+ UÛŨ

̂̃
U

�
+

̂̃
UÛ(ÛŨ)� +

̂̃
UÛ(ÛU)�

+U
̂̃
U(ŨU)� + U

̂̃
U(Ũ

̂̃
U)� + U

̂̃
U(U

̂̃
U)� + U

̂̃
U(ÛŨ)� + U

̂̃
U(ÛU)�

+U
̂̃
U(Û

̂̃
U)� + UÛ(ÛŨ)� + UÛ(ÛU)� + UÛ(Û

̂̃
U)� + UÛ(ŨU)�

+UÛ(Ũ
̂̃
U)� +

̂̃
UÛ(Û

̂̃
U)� + UÛ(U

̂̃
U)� + UŨ(ÛŨ)� + UŨ(ÛU)�

+UŨ(Û
̂̃
U)� + UŨ(ŨU)� + UŨ(Ũ

̂̃
U)� + UŨ(U

̂̃
U)� + U(ÛŨU)�

+U(ÛŨ
̂̃
U)� + U(ÛU

̂̃
U)� + U(ŨU

̂̃
U)� +

̂̃
UÛŨÛ� +

̂̃
UÛ(ŨU)�

+
̂̃
UÛ(Ũ

̂̃
U)� +

̂̃
UÛ(U

̂̃
U)� +

̂̃
UŨ(ÛŨ)� +

̂̃
UŨ(ÛU)� +

̂̃
UŨ(Û

̂̃
U)�

+
̂̃
UŨ(ŨU)� +

̂̃
UŨ(Ũ

̂̃
U)� +

̂̃
UŨ(U

̂̃
U)� +

̂̃
U(ÛŨU)� +

̂̃
U(ÛŨ

̂̃
U)�

+
̂̃
U(ÛU

̂̃
U)� +

̂̃
U(ŨU

̂̃
U)� + ÛŨ(ÛŨ)� + ÛŨ(ÛU)� + ÛŨ(Û

̂̃
U)�

+ÛŨ(ŨU)� + ÛŨ(Ũ
̂̃
U)� + ÛŨ(U

̂̃
U)� + Û(ÛŨU)� + Û(ÛŨ

̂̃
U)�

+Û(ÛU
̂̃
U)� + Û(ŨU

̂̃
U)� + Ũ(ÛŨU)� + Ũ(ÛŨ

̂̃
U)� + Ũ(ÛU

̂̃
U)�

+Ũ(ŨU
̂̃
U)� + (ÛŨU

̂̃
U)�), (5.4)

C(5) = U
̂̃
UÛŨÛ� + U

̂̃
UÛŨŨ� + U

̂̃
UÛŨU� + U

̂̃
UÛŨ

̂̃
U

�
+ U

̂̃
UÛ(ÛŨ)�

+U
̂̃
UÛ(ÛU)� + U

̂̃
UÛ(Û

̂̃
U)� + U

̂̃
UÛ(ŨU)� + U

̂̃
UÛ(Ũ

̂̃
U)� + U

̂̃
UÛ(U

̂̃
U)�

+U
̂̃
UŨ(ÛŨ)� + U

̂̃
UŨ(ÛU)� + U

̂̃
UŨ(Û

̂̃
U)� + U

̂̃
UŨ(ŨU)� + U

̂̃
UŨ(Ũ

̂̃
U)�

+U
̂̃
UŨ(U

̂̃
U)� + U

̂̃
U(ÛŨU)� + U

̂̃
U(ÛŨ

̂̃
U)� + U

̂̃
U(ÛU

̂̃
U)� + U

̂̃
U(ŨU

̂̃
U)�

+UÛŨ(ÛŨ)� + UÛŨ(ÛU)� + UÛŨ(Û
̂̃
U)� + UÛŨ(ŨU)� + UÛŨ(Ũ

̂̃
U)�

+UÛŨ(U
̂̃
U)� + UÛ(ÛŨU)� + UÛ(ÛŨ

̂̃
U)� + UÛ(ÛU

̂̃
U)� + UÛ(ŨU

̂̃
U)�

+UŨ(ÛŨU)� + UŨ(ÛŨ
̂̃
U)� + UŨ(ÛU

̂̃
U)� + UŨ(ŨU

̂̃
U)� + U(ÛŨU

̂̃
U)�

+
̂̃
UÛŨ(ÛŨ)� +

̂̃
UÛŨ(ÛU)� +

̂̃
UÛŨ(Û

̂̃
U)� +

̂̃
UÛŨ(ŨU)� +

̂̃
UÛŨ(Ũ

̂̃
U)�

+
̂̃
UÛŨ(U

̂̃
U)� +

̂̃
UÛ(ÛŨU)� +

̂̃
UÛ(ÛŨ

̂̃
U)� +

̂̃
UÛ(ÛU

̂̃
U)� +

̂̃
UÛ(ŨU

̂̃
U)�
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+
̂̃
UŨ(ÛŨU)� +

̂̃
UŨ(ÛŨ

̂̃
U)� +

̂̃
UŨ(ÛU

̂̃
U)� +

̂̃
UŨ(ŨU

̂̃
U)� +

̂̃
U(ÛŨU

̂̃
U)�

+ÛŨ(ÛŨU)� + ÛŨ(ÛŨ
̂̃
U)� + ÛŨ(ÛU

̂̃
U)� + ÛŨ(ŨU

̂̃
U)� + Û(ÛŨU

̂̃
U)�

+Ũ(ÛŨU
̂̃
U)�, (5.5)

C(6) = −(U
̂̃
UÛŨ(ÛŨ)� + U

̂̃
UÛŨ(ÛU)� + U

̂̃
UÛŨ(Û

̂̃
U)� + U

̂̃
UÛŨ(ŨU)�

+U
̂̃
UÛŨ(Ũ

̂̃
U)� + U

̂̃
UÛŨ(U

̂̃
U)� + U

̂̃
UÛ(ÛŨU)� + U

̂̃
UÛ(ÛŨ

̂̃
U)�

+U
̂̃
UÛ(ÛU

̂̃
U)� + U

̂̃
UÛ(ŨU

̂̃
U)� + U

̂̃
UŨ(ÛŨU)� + U

̂̃
UŨ(ÛŨ

̂̃
U)�

+U
̂̃
UŨ(ÛU

̂̃
U)� + U

̂̃
UŨ(ŨU

̂̃
U)� + U

̂̃
U(ÛŨU

̂̃
U)� + UÛŨ(ÛŨU)�

+UÛŨ(ÛŨ
̂̃
U)� + UÛŨ(ÛU

̂̃
U)� + UÛŨ(ŨU

̂̃
U)� + UÛ(ÛŨU

̂̃
U)�

+UŨ(ÛŨU
̂̃
U)� +

̂̃
UÛŨ(ÛŨU)� +

̂̃
UÛŨ(ÛŨ

̂̃
U)� +

̂̃
UÛŨ(ÛU

̂̃
U)�

+
̂̃
UÛŨ(ŨU

̂̃
U)� +

̂̃
UÛ(ÛŨU

̂̃
U)� +

̂̃
UŨ(ÛŨU

̂̃
U)� + ÛŨ(ÛŨU

̂̃
U)�), (5.6)

C(7) = U
̂̃
UÛŨ(ÛŨU)� + U

̂̃
UÛŨ(ÛŨ

̂̃
U)� + U

̂̃
UÛŨ(ÛU

̂̃
U)�

+U
̂̃
UÛŨ(ŨU

̂̃
U)� + U

̂̃
UÛ(ÛŨU

̂̃
U)� + U

̂̃
UŨ(ÛŨU

̂̃
U)�

+UÛŨ(ÛŨU
̂̃
U)� +

̂̃
UÛŨ(ÛŨU

̂̃
U)�, (5.7)

C(8) = −U
̂̃
UÛŨ(ÛŨU

̂̃
U)�. (5.8)

Proof. We verified the basis-free formulas (5.1)–(5.8) for C1, . . . , C8 using
Symbolic Geometric Algebra package for SymPy [27].

We also present an analytical proof of the basis-free formula (5.2) for
C(2).

Step 1: Let us denote

d1 := U
̂̃
U + Û Ũ + (Û Ũ)� + (U ̂̃

U)�,

d2 := UÛ + ̂̃
UŨ + (ÛU)� + (Ũ ̂̃

U)�,

d3 := UŨ + ̂̃
UÛ + (Û ̂̃

U)� + (ŨU)�,

d4 := UÛ� + ̂̃
UŨ� + Ũ

̂̃
U

�
+ ÛU�,

d5 := UŨ� + ̂̃
UÛ� + ŨU� + Û

̂̃
U

�
,

d6 := UU� + Û Û� + Ũ Ũ� + ̂̃
U

̂̃
U

�
,

d7 := U
̂̃
U

�
+ ̂̂

UU� + Û Ũ� + Ũ Û�. (5.9)

Using the properties (2.10) and (2.12), we can prove that the projections
onto the subspace of the grade 0 of all terms in each of the 7 expressions (5.9)
are equal to each other. For example,

1
4
〈d1〉0 = 〈U ̂̃

U〉0 = 〈Û Ũ〉0 = 〈(Û Ũ)�〉0 = 〈(U ̂̃
U)�〉0.

Using (3.2), (2.2), (5.1), and (5.9), we get

C(2) = 4〈U(U − C(1))〉0 = −4〈U( ̂̃
U + Û + Ũ + Û� + Ũ� + U� + ̂̃

U
�

)〉0
= −〈d1 + d2 + d3 + d4 + d5 + d6 + d7〉0,
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which differs from (5.2) only by the scalar part operation.

Step 2: It follows from (2.19), (2.20), and d̃3 = d̂3

�
= d3 that d1 ∈ G0

p,q,
d2, d3 ∈ G0

p,q ⊕ G5
p,q. However, using (2.3) and 〈UV 〉n = 〈V U〉n for odd n, we

can prove that d2 and d3 belong to G0
p,q:

〈d2〉5 = 〈UÛ + ̂̃
UŨ − ÛU − Ũ

̂̃
U〉5 = 〈UÛ + ̂̃

UŨ − UÛ − ̂̃
UŨ〉5 = 0,

〈d3〉5 = 〈UŨ + ̂̃
UÛ − Û

̂̃
U − ŨU〉5 = 〈UŨ + ̂̃

UÛ − ̂̃
UÛ − UŨ〉5 = 0.

Using (2.21), we get that the following sum can be represented in the
form

d4 + d5 + d6 + d7 = (U + Û + Ũ + ̂̃
U)(U + Û + Ũ + ̂̃

U)�

= 16(U0 + U4)(U0 − U4) = 16(U2
0 − U2

4 ) ∈ G0
p,q,

because U2
0 , U2

4 ∈ G0
p,q. Therefore the expression (5.2) belongs to G0

p,q. �

6. Formulas for the Characteristic Polynomial Coefficients in
the Special Cases

In this section, we present the basis-free formulas for the characteristic poly-
nomial coefficients in the cases with some specific conditions on the element.
In particular, we obtain the basis-free formulas for vectors and basis elements
in the case of arbitrary n, and rotors in the cases n ≤ 5.

We remind that N := 2[n+1
2 ], where square brackets mean taking the

integer part.

Lemma 6.1. For U = ue, u ∈ R, where e is the identity element of Gp,q, we
have

C(i) = (−1)i+1

(
N

i

)
U i, i = 1, . . . , N, (6.1)

where we denote the binomial coefficient by
(
n
k

)
= n!

k!(n−k)! .

Proof. Using Definition 3.1, we get

ϕU (λ) = Det(λe − ue) = Det((λ − u)e)

= (λ − u)NDet(e) =
N∑

i=0

(
N

i

)
(−u)iλN−i. (6.2)

Comparing (6.2) with (3.1), we obtain (6.1). �

Lemma 6.2. The elements U(k) and the characteristic polynomial coefficients
C(k) from Theorem 3.2 could be expressed in the following way:

U(k) = Uk −
k−1∑

i=1

C(i)U
k−i, k = 1, 2, . . . , N, (6.3)

C(k) =
N

k
〈Uk〉0 − N

k

k−1∑

i=1

C(i)〈Uk−i〉0, k = 1, 2, . . . , N. (6.4)
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Proof. Using the recursive formula for U(k) (3.2) k times, we obtain (6.3).
Combining the formula for C(k) (3.2) and (6.3), we obtain (6.4). �

Theorem 6.3. Let us have an element U ∈ Gp,q and some k ∈ {1, 2, . . . , N
2 }

such that

〈U2s−1〉0 = 0, s = 1, 2, . . . , k. (6.5)

Then the characteristic polynomial coefficients with odd indices of the element
U are equal to 0:

C(2s−1) = 0, s = 1, 2, . . . , k. (6.6)

Proof. The proof is by induction on s. First let us check the base case s = 1.
Using (3.2) and (6.5), we get

C(1) = N〈U(1)〉0 = N〈U〉0 = 0.

For the inductive step, assume that for some k ∈ {1, 2, . . . , N
2 − 1} the fol-

lowing holds

C(2s−1) = 0, s = 1, 2, . . . , k. (6.7)

Now let us show that (6.7) holds for s = k + 1. Using Lemma 6.2, we
obtain

C(2k+1) =
N

2k + 1
〈U2k+1〉0 − N

2k + 1

2k∑

i=1

C(i)〈U2k+1−i〉0. (6.8)

By the induction hypothesis (6.7), the expression (6.8) could be simpli-
fied as follows

C(2k+1) =
N

2k + 1
〈U2k+1〉0 − N

2k + 1

k∑

j=1

C(2j)〈U2k+1−2j〉0.

Using (6.5) and the fact that 2k+1 and 2k+1−2j are odd for all k and
j, we get C(2k+1) = 0. This concludes the induction step and the proof. �

Theorem 6.4. Let us have an element U ∈ Gp,q such that

〈U〉0 = 0, U2 ∈ G0
p,q. (6.9)

Then the following formulas hold

C(2s−1) = 0, s = 1, 2, . . . ,
N

2
, (6.10)

C(2s) = (−1)s−1

(N
2

s

)
U2s, s = 1, 2, . . . ,

N

2
. (6.11)

Proof. It follows from (6.9) that

〈U2s−1〉0 = 0, U2s ∈ G0
p,q, s = 1, 2, . . . ,

N

2
. (6.12)

Hence using Theorem 6.3, we get (6.10).
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The proof of (6.11) is by induction on s. First we need to prove some
auxiliary identities and statements. Using (6.3), we get

U(2s) = U2s −
2s−1∑

i=1

C(i)U
2s−i, s = 1, 2, . . . ,

N

2
. (6.13)

Using (6.10), we obtain the following simplification of (6.13):

U(2s) = U2s −
s∑

j=1

C(2j)U
2s−2j .

Using (6.12) and the fact that 2s and 2s − 2j are even for all s and j, we
finally get

U(2s) ∈ G0
p,q. (6.14)

Using (3.2) and (6.14), we get

C(2s) =
N

2s
〈U(2s)〉0 =

N

2s
U(2s). (6.15)

Using the recursive formulas (3.2) two times, (6.10), and (6.15), we
obtain

C(2s) =
N

2s
U(2s) =

N

2s
U(U(2s−1) − C(2s−1)) =

N

2s
UU(2s−1)

=
N

2s
U2(U(2s−2) − C(2s−2)). (6.16)

Using (6.15), we finally get the following recursive identity

C(2s) =
N

2s
U2

(2s − 2
N

C(2s−2) − C(2s−2)

)

=
N

2s
U2

(2s − 2 − N

N

)
C(2s−2) =

2s − 2 − N

2s
C(2s−2)U

2. (6.17)

Now let us proceed to the actual proof of (6.11) by induction on s. First
let us check the base case s = 1. The base case follows from (6.16):

C(2) =
N

2
U2 =

(N
2

1

)
U2.

For the inductive step, assume that for some k ∈ {1, 2, . . . , N
2 − 1}

C(2s) = (−1)s−1

(N
2

s

)
U2s, s = 1, 2, . . . , k. (6.18)

Now let us show that (6.18) holds for s = k + 1. Using the formula (6.17),
the inductive hypothesis (6.18), and the identity

(
n
k

)
= n−k+1

k

(
n

k−1

)
, we get

C(2k+2) =
k − N

2

k + 1
C(2k)U

2 =
k − N

2

k + 1
(−1)k−1

(N
2

k

)
U2kU2

= (−1)k
N
2 − (k + 1) + 1

k + 1

( N
2

(k + 1) − 1

)
U2kU2 = (−1)k

( N
2

k + 1

)
U2k+2,

which concludes the induction step and the proof. �
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Example. For elements U ∈ Gp,q that satisfy the conditions of Theorem 6.4,
we have

n = 1, 2, C(1) = 0, C(2) = U2;

n = 3, 4, C(1) = C(3) = 0, C(2) = 2U2, C(4) = −U4;
n = 5, 6, C(1) = C(3) = C(5) = C(7) = 0,

C(2) = 4U2, C(4) = −6U4, C(6) = 4U6, C(8) = −U8;
n = 7, 8, C(1) = C(3) = C(5) = C(7) = C(9) = C(11) = C(13) = C(15) = 0,

C(2) = 8U2, C(4) = −28U4, C(6) = 56U6, C(8) = −70U8,

C(10) = 56U10, C(12) = −28U12, C(14) = 8U14, C(16) = −U16.

Example. Let us consider an element of the following form

U = uea1...ak
, u ∈ R,

where ea1...ak
is an basis element from (2.1) except the identity element e.

The element U satisfies the conditions of Theorem 6.4. Thus the formulas
(6.10) and (6.11) are valid for the element U .

Example. An element of grade 1 (a vector)

U =
n∑

i=1

uiei ∈ G1
p,q, ui ∈ R,

satisfies the conditions of Theorem 6.4. Thus the formulas (6.10) and (6.11)
are valid for the vector U .

Example. Let us consider the following element

U = e1 + e5 + e15 ∈ G5,0.

For this element, we have

〈U〉0 = 0, U2 = e, (6.19)

meaning the element U satisfies the conditions of Theorem 6.4. Using Theo-
rem 6.4, we get

C(1) = C(3) = C(5) = C(7) = 0,

C(2) = 4, C(4) = −6, C(6) = 4, C(8) = −1.

Example. Let us consider the following element

U = e1 + e2 + e45 ∈ G5,0, N = 8.

For this element, we have

U2 ∈ G0
p,q ⊕ G3

p,q, U2 /∈ G0
p,q, 〈U2s−1〉0 = 0, s = 1, 2, 3, 4,(6.20)

meaning the element U satisfies the conditions of Theorem 6.3, but does
not satisfy the conditions of Theorem 6.4. Using Theorem 6.3, we get

C(1) = C(3) = C(5) = C(7) = 0.

Using the recursive formulas from Theorem 3.2, we verified that C(2) = 4,
which is not equal to 4U2. This means that the condition on k in Theorem
6.3 is significant.
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Example. Let us consider the following element

U = e3 + e12 + e15 + e45 + e234 ∈ G5,0, N = 8

For this element, we have

〈U〉0 = 〈U3〉0 = 0, 〈U5〉0 �= 0,

meaning the element U satisfies the conditions of Theorem 6.3 for k = 2,
which is less than N

2 = 4. Using Theorem 6.3, we get

C(1) = C(3) = 0.

Using the recursive formulas from Theorem 3.2, we verified that C(5) = −64 �=
0. This means that the condition on k in Theorem 6.3 is significant.

Let us consider the following well-known spin groups [8,13,19]

Spin+(p, q) = {U ∈ Gp,q | Û = U, ŨU = e, UG1
p,qU

−1 ⊂ G1
p,q}.

(6.21)

The elements of these groups are often called rotors. Spin groups have
a wide range of applications in physics, computer science, and engineering.
In the following theorem, we present basis-free formulas for characteristic
polynomial coefficients of rotors in the cases n ≤ 5.

Theorem 6.5. For an arbitrary element U ∈ Spin+(p, q), we have the follow-
ing basis-free formulas for the characteristic polynomial coefficients C(k) ∈
G0

p,q, k = 1, 2, . . . , N . In the case n = 1, we have

C(1) = 2U, C(2) = −e.

In the case n = 2, we have

C(1) = U + Ũ , C(2) = −e.

In the case n = 3, we have

C(1) = C(3) = 2(U + Ũ), C(2) = −(4e + U2 + Ũ2), C(4) = −e.

In the case n = 4, we have

C(1) = C(3) = U + Ũ + U� + Ũ�,

C(2) = −(2e + UU� + UŨ� + ŨU� + Ũ Ũ�),
C(4) = −e.

In the case n = 5, we have

C(1) = C(7) = 2(U + Ũ + U� + Ũ�),

C(2) = C(6) = −(8e + U2 + Ũ2 + (U2)� + (Ũ2)� + 4(UU� + UŨ�

+ŨU� + Ũ Ũ�)),

C(3) = C(5) = 10(U + Ũ + U� + Ũ�) + 2(U2U� + U2Ũ� + Ũ2U�

+Ũ2Ũ� + U(U2)� + U(Ũ2)� + Ũ(U2)� + Ũ(Ũ2)�),

C(4) = −(18e + 8(UU� + UŨ� + ŨU� + Ũ Ũ�) + 4((U2)�

+(Ũ2)� + U2 + Ũ2) + U2(U2)� + U2(Ũ2)� + Ũ2(U2)�
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+Ũ2(Ũ2)�),
C(8) = −e.

Proof. The formulas follow straightforward from Theorem 4.1, Theorem 5.1
and the conditions Û = U and ŨU = e from the definition of the spin
group (6.21). �

Note that similarly we can obtain the basis-free formulas for the char-
acteristic polynomial coefficients for an arbitrary element U ∈ Spin+(p, q) in
the case n = p + q = 6 by simplification the basis-free formulas from Sect. 8
and Appendix A and using the conditions Û = U and ŨU = e from the
definition of the spin group (6.21). We do not present these formulas in this
paper because of their cumbersomeness.

7. The General Form of the Obtained Formulas for the
Characteristic Polynomial Coefficients

In this section, we introduce a method to obtain a general form of the basis-
free formulas for all characteristic polynomial coefficients in the cases n ≤ 5.
The essence of the method is illustrated by the following simple example.

Example. Using (4.4) and (3.4) for n = 4, we get

Det(U) = U
̂̃
U(Û Ũ)� ∈ Gp,q, U ∈ Gp,q.

By enumerating every occurrence of the element U from left to right in the
basis-free formula Det(U), we get the following multi-variable function

F(x1, x2, x3, x4) = x1
̂̃x2(x̂3x̃4)� ∈ Gp,q, xi ∈ Gp,q, i = 1, 2, 3, 4.

(7.1)

In the case n = 4, all the characteristic polynomial coefficients C(1),
C(2), C(3), C(4) could be expressed using (7.1) as follows

C(1) = F(U, e, e, e) + F(e, U, e, e) + F(e, e, U, e) + F(e, e, e, U)
C(2) = −(F(U,U, e, e) + F(U, e, U, e) + F(U, e, e, U) + F(e, U, U, e)

+F(e, U, e, U) + F(e, e, U, U))
C(3) = F(e, U, U, U) + F(U, e, U, U) + F(U,U, e, U) + F(U,U,U, e)
C(4) = −F(U,U,U, U).

Therefore one could rewrite the formulas for the characteristic polyno-
mial coefficients in the following general form

C(k) = (−1)k+1
∑

Xj∈X(k)

F(Xj), k = 1, 2, 3, 4,

where X(k) is the set of all possible tuples with k elements U and 4 − k
identity elements e.

Using similar method, we obtain the general form of the basis-free for-
mulas for all characteristic polynomial coefficients for the cases n ≤ 5 in the
following theorem.
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Theorem 7.1. In the cases n ≤ 5, the basis-free formulas for the characteristic
polynomial coefficients C(k) ∈ Gp,q, k = 1, 2, . . . , N have the following form

C(k) = (−1)k+1
∑

Xj∈X(k)

F(Xj), k = 1, 2, . . . , N, (7.2)

where F is defined as follows

n = 1, F(x1, x2) = x1x̂2 ∈ Gp,q, x1, x2 ∈ Gp,q;

n = 2, F(x1, x2) = x1
̂̃x2 ∈ Gp,q, x1, x2 ∈ Gp,q;

n = 3, F(x1, x2, x3, x4) = x1x̂2x̃3
̂̃x4 ∈ Gp,q, x1, x2, x3, x4 ∈ Gp,q;

n = 4, F(x1, x2, x3, x4) = x1
̂̃x2(x̂3x̃4)� ∈ Gp,q, x1, x2, x3, x4 ∈ Gp,q;

n = 5, F(x1, x2, . . . , x8) = x1
̂̃x2x̂3x̃4(x̂5x̃6x7

̂̃x8)� ∈ Gp,q,

x1, x2, . . . , x8 ∈ Gp,q,

and X(k) is the set of all possible tuples with k elements U and N −k identity
elements e:

X(k) =

{
(x1, x2, . . . , xN ) |xi ∈ {e, U},

N∑

i=1

xi = kU + (N − k)e

}
.

Proof. The proof is by direct calculation. The presented formulas (7.2) coin-
cide with the formulas from Theorems 4.1 and 5.1. �

Note that the basis-free formulas for the characteristic polynomial coeffi-
cients from Theorems 4.1 and 5.1 look like elementary symmetric polynomials
(if we ignore the operation �) in the variables U , Û , Ũ , etc. The general form
of these formulas presented in Theorem 7.1 illustrates this property.

Remark 7.2. One of the anonymous reviewers noted that all C(k) coefficients
for k < N can be computed recursively6 by differentiating negative determi-
nant −Det(λe − U) with respect to λ and equating λ to zero:

D(N)(λ) := −Det(λe − U), U ∈ Gp,q, λ ∈ R,

D(k−1)(λ) :=
1

N − (k − 1)
∂D(k)(λ)

∂λ
, k = N, . . . , 1,

C(k) = D(k)(0),

which is a straightforward method to obtain coefficients for any polynomial.
Note that this method gives the same result as the method proposed at the
beginning of this section.

8. The Case n = 6

In this section, we present basis-free formulas for all characteristic polynomial
coefficients C(k), k = 1, 2, . . . , 8 in the geometric algebras Gp,q, n = p+ q = 6.
To obtain the result, we generalize the method from the previous section and

6Note that alternatively one could get directly D(k)(λ) = 1
(N−k)!

∂N−kD(N)(λ)

∂λN−k .
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apply it to the case n = 6. We construct the general form of the formulas
using the known basis-free formula for the determinant Det.

The formula

C(8) = −Det(U)

= −1
3
UŨÛ

̂̃
U(Û ̂̃

UUŨ)� − 2
3
UŨ((Û ̂̃

U)�((Û ̂̃
U)�(UŨ)�)�)�,

(8.1)

is presented in this form in [25] and in some another form in [3]. The formula

C(1) = Tr(U) = U + Ũ + Û + ̂̃
U + Ũ� + ̂̃

U
�

+ U� + Ũ� (8.2)

is also presented in [25]. The formulas for the characteristic polynomial coef-
ficients C(2), C(3), . . ., C(7) are presented for the first time in this paper.

In the case n = 6, the basis-free formulas for the characteristic polyno-
mial coefficients C(k) ∈ Gp,q, k = 1, 2, . . . 8 have the following form

C(k) = (−1)k+1
∑

Xj∈X(k)

F(Xj), k = 1, 2, . . . , 8, (8.3)

where F is the function on 8 variables

F(x1, x2, . . . , x8) =
1
3
x1x̃2x̂3

̂̃x4(x̂5
̂̃x6x7x̃8)�

+
2
3
x1x̃2((x̂3

̂̃x4)�((x̂5
̂̃x6)�(x7x̃8)�)�)� ∈ Gp,q,

x1, x2, . . . , x8 ∈ Gp,q,

X(k) is the set of all possible tuples with k elements U and 8−k identity
elements e:

X(k) =

{
(x1, x2, . . . , x8) |xi ∈ {e, U},

8∑

i=1

xi = kU + (8 − k)e

}
.

Using numerical Geometric Algebra package for Python [11], we checked
that the formulas (8.3) give valid results for geometric algebra elements with
random integer coefficients.

Example. Using (8.3), we get

C(8) = −
∑

Xj∈X(8)

F(Xj) = −Det(U),

which coincides with (8.1). Here X(8) is the set of the only possible tuple
with eight elements U :

X(8) =
{

(U,U,U, U, U, U, U, U)
}

.

Example. Using (8.3), we get

C(1) =
∑

Xj∈X(1)

F(Xj) = Tr(U),
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which coincides with (8.2). Here X(1) is the set of all possible tuples with
seven identity elements e and one element U :

X(1) =

⎧
⎪⎪⎨

⎪⎪⎩

(U, e, e, e, e, e, e, e), (e, U, e, e, e, e, e, e),
(e, e, U, e, e, e, e, e), (e, e, e, U, e, e, e, e),
(e, e, e, e, U, e, e, e), (e, e, e, e, e, U, e, e),
(e, e, e, e, e, e, U, e), (e, e, e, e, e, e, e, U)

⎫
⎪⎪⎬

⎪⎪⎭
.

Example. Using (8.3), we get

C(2) = −
∑

Xj∈X(2)

F(Xj) = −((UU� + UŨ + (Û ̂̃
U)� + Ũ

̂̃
U + Û

̂̃
U

+UÛ� + Ũ Û� + U
̂̃
U + Ũ Ũ� + (UŨ)� + UÛ + Ũ

̂̃
U

�
+ Ũ Û + UŨ�

+U
̂̃
U

�
+ ŨU�) +

1
3
(( ̂̃

UŨ)� + ( ̂̃
UU)� + (Û Ũ)� + (ÛU)� + ̂̃

UŨ�

+ ̂̃
UU� + ̂̃

U
̂̃
U

�
+ ̂̃

UÛ� + Û Ũ� + ÛU� + Û
̂̃
U

�
+ Û Û�) +

2
3
( ̂̃
U

�
Ũ�

+ ̂̃
U

�
U� + Û�Ũ� + Û�U� + ( ̂̃

U
�

Ũ)� + ( ̂̃
U

�
U)� + ( ̂̃

U
� ̂̃

U)�

+( ̂̃
U

�
Û)� + (Û�Ũ)� + (Û�U)� + (Û� ̂̃

U)� + (Û�Û)�)),

where X(2) is the set of all possible tuples with six identity elements e and
two elements U .

Example. Using (8.3), we get

C(7) =
∑

Xj∈X(7)

F(Xj) =
1
3
(Ũ Û

̂̃
U(Û ̂̃

UUŨ)� + UÛ
̂̃
U(Û ̂̃

UUŨ)�

+UŨ
̂̃
U(Û ̂̃

UUŨ)� + UŨÛ(Û ̂̃
UUŨ)� + UŨÛ

̂̃
U( ̂̃

UUŨ)�

+UŨÛ
̂̃
U(ÛUŨ)� + UŨÛ

̂̃
U(Û ̂̃

UŨ)� + UŨÛ
̂̃
U(Û ̂̃

UU)�)

+
2
3
(Ũ((Û ̂̃

U)�((Û ̂̃
U)�(UŨ)�)�)� + U((Û ̂̃

U)�((Û ̂̃
U)�(UŨ)�)�)�

+UŨ( ̂̃
U

�
((Û ̂̃

U)�(UŨ)�)�)� + UŨ(Û�((Û ̂̃
U)�(UŨ)�)�)�

+UŨ((Û ̂̃
U)�( ̂̃

U
�

(UŨ)�)�)� + UŨ((Û ̂̃
U)�(Û�(UŨ)�)�)�

+UŨ((Û ̂̃
U)�((Û ̂̃

U)�Ũ�)�)� + UŨ((Û ̂̃
U)�((Û ̂̃

U)�U�)�)�),

where X(7) is the set of all possible tuples with one identity element e and
seven elements U .

We present basis-free formulas for the remaining characteristic polyno-
mial coefficients C(3), C(4), C(5), C(6) in Appendix A because of their cum-
bersomeness.
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9. Conclusions

In this paper, for the first time we present the basis-free formulas for all
characteristic polynomial coefficients in geometric algebras Gp,q in the cases
n = p + q = 5, 6. These results generalize the results of the paper [25] for the
cases n ≤ 4. The formulas involve only the operations of geometric product,
summation, and operations of conjugation. We actively use the �-conjugation
in our considerations. Several new properties of the operation � and other
operations of conjugation in geometric algebra are presented. Using symbolic
computation, we verified that the presented basis-free formulas for the char-
acteristic polynomial coefficients in the cases n ≤ 5 are equivalent to the
known recursive formulas (3.2). Using numerical Geometric Algebra package
for Python [11], we checked that the presented basis-free formulas for the
characteristic polynomial coefficients in the cases n = 6 give valid results
for geometric algebra elements with random integer coefficients. We present
an analytical proof of the basis-free formulas for C(2) and C(3) in the case
n = 4 and the basis-free formula for C(2) in the case n = 5. The proof of the
equivalence of the proposed basis-free formulas to the recursive ones turned
out to be rather nontrivial.

We provide important special cases of the basis-free formulas. For ele-
ments of grade 1 (vectors) and the basis elements, we found the basis-free for-
mulas for all characteristic polynomial coefficients in the case of arbitrary n.
For elements of group Spin(p, q), p+ q = n ≤ 5, we present the basis-free for-
mulas in Theorem 6.5. Using specific examples, we show the significance of the
theorem conditions and the difference between Theorem 6.3 and Theorem 6.4.

We introduce the method of obtaining the general form of the pre-
sented basis-free formulas for the characteristic polynomial coefficients using
the basis-free formula for Det (determinant) in the cases n ≤ 6. Using this
method, we solve the dimensions n = 5 and n = 6. The applicability of the
method to the higher dimensions is a subject for further research.

Different (recursive and explicit) formulas can be used for different pur-
poses. The recursive formulas are interesting from theoretical and computa-
tional points of view. We actively use the recursive formulas in our analytical
proofs. The explicit basis-free formulas for the characteristic polynomial co-
efficients in the cases n ≤ 6 look like elementary symmetric polynomials (if
we ignore the operation �) in the variables U , Û , Ũ , etc. (see the details
in Sects. 7 and 8). This observation is interesting from a theoretical point
of view. The presented explicit formulas for characteristic polynomial coef-
ficients allow us to obtain the simplified explicit formulas for some special
cases, in particular, for elements of spin groups (see Sect. 6).

The geometric algebras of vector spaces of dimensions n = 4, 5, and
6 are important for different applications in physics (the space-time alge-
bra G1,3 [8,13,17], the conformal space-time algebras G4,2 and G2,4 [7,8]),
in computer science and engineering (the conformal geometric algebra G4,1

[4,5,10,14,18]), in computer vision and computer graphics (the geometric
algebra G3,3 of projective geometry [9,16]). In particular, the characteristic
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polynomial coefficients are used to solve the Sylvester and Lyapunov equa-
tions in geometric algebra [22,24]. The presented basis-free formulas for char-
acteristic polynomial coefficients can also be used in symbolic computation
using different software [2,11,20,27].
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Appendix A: Basis-Free Formulas in the Case n = 6

In the case n = 6, we have the following basis-free formulas for the character-
istic polynomial coefficients C(3), C(4), C(5), C(6) ∈ Gp,q. The remaining char-
acteristic polynomial coefficients C(1), C(2), C(7), C(8) ∈ Gp,q are presented in
Sect. 8.

C(3) = (Ũ(Û
̂̃
U)� + UŨ

̂̃
U

�
+ UŨ

̂̃
U + U(Û

̂̃
U)� + UŨÛ� + UÛ

̂̃
U + UŨŨ� + UŨU�

+UŨÛ + Ũ(UŨ)� + U(UŨ)� + ŨÛ
̂̃
U) +

1

3
((

̂̃
UUŨ)� + (ÛUŨ)� + (Û

̂̃
UŨ)�

+(Û
̂̃
UU)� +

̂̃
U(UŨ)� +

̂̃
U(

̂̃
UŨ)� +

̂̃
U(

̂̃
UU)� +

̂̃
U(ÛŨ)� +

̂̃
U(ÛU)� +

̂̃
U(Û

̂̃
U)�

+Û(UŨ)� + Û(
̂̃
UŨ)� + Û(

̂̃
UU)� + Û(ÛŨ)� + Û(ÛU)� + Û(Û

̂̃
U)� + Û

̂̃
UŨ�

+Û
̂̃
UU� + Û

̂̃
U

̂̃
U

�
+ Û

̂̃
UÛ� + Ũ(

̂̃
UŨ)� + Ũ(

̂̃
UU)� + Ũ(ÛŨ)� + Ũ(ÛU)�

+Ũ
̂̃
UŨ� + Ũ

̂̃
UU� + Ũ

̂̃
U

̂̃
U

�
+ Ũ

̂̃
UÛ� + ŨÛŨ� + ŨÛU� + ŨÛ

̂̃
U

�

+ŨÛÛ� + U(
̂̃
UŨ)� + U(

̂̃
UU)� + U(ÛŨ)� + U(ÛU)� + U

̂̃
UŨ� + U

̂̃
UU�

+U
̂̃
U

̂̃
U

�
+ U

̂̃
UÛ� + UÛŨ� + UÛU� + UÛ

̂̃
U

�
+ UÛÛ�) +

2

3
(
̂̃
U

�
(UŨ)�

+Û�(UŨ)� + (Û
̂̃
U)�Ũ� + (Û

̂̃
U)�U� + (

̂̃
U

�
UŨ)� + (

̂̃
U

�
(
̂̃
U

�
Ũ�)�)�



   57 Page 22 of 27 K. Abdulkhaev, D. Shirokov Adv. Appl. Clifford Algebras

+(
̂̃
U

�
(
̂̃
U

�
U�)�)� + (

̂̃
U

�
(Û�Ũ�)�)� + (

̂̃
U

�
(Û�U�)�)� + (

̂̃
U

�
Û

̂̃
U)�

+(Û�UŨ)� + (Û�(
̂̃
U

�
Ũ�)�)� + (Û�(

̂̃
U

�
U�)�)� + (Û�(Û�Ũ�)�)�

+(Û�(Û�U�)�)� + (Û�Û
̂̃
U)� + ((Û

̂̃
U)�Ũ)� + ((Û

̂̃
U)�U)� + ((Û

̂̃
U)� ̂̃

U)�

+((Û
̂̃
U)�Û)� + Ũ

̂̃
U

�
Ũ� + Ũ

̂̃
U

�
U� + ŨÛ�Ũ� + ŨÛ�U� + Ũ(

̂̃
U

�
Ũ)�

+Ũ(
̂̃
U

�
U)� + Ũ(

̂̃
U

� ̂̃
U)� + Ũ(

̂̃
U

�
Û)� + Ũ(Û�Ũ)� + Ũ(Û�U)� + Ũ(Û� ̂̃

U)�

+Ũ(Û�Û)� + U
̂̃
U

�
Ũ� + U

̂̃
U

�
U� + UÛ�Ũ� + UÛ�U� + U(

̂̃
U

�
Ũ)�

+U(
̂̃
U

�
U)� + U(

̂̃
U

� ̂̃
U)� + U(

̂̃
U

�
Û)� + U(Û�Ũ)� + U(Û�U)� + U(Û� ̂̃

U)�

+U(Û�Û)�),

C(4) = −((UŨÛ
̂̃
U + UŨ(Û

̂̃
U)� + UŨ(UŨ)�) +

1

3
((Û

̂̃
UUŨ)� +

̂̃
U(

̂̃
UUŨ)�

+
̂̃
U(ÛUŨ)� +

̂̃
U(Û

̂̃
UŨ)� +

̂̃
U(Û

̂̃
UU)� + Û(

̂̃
UUŨ)� + Û(ÛUŨ)�

+Û(Û
̂̃
UŨ)� + Û(Û

̂̃
UU)� + Û

̂̃
U(UŨ)� + Û

̂̃
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̂̃
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̂̃
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̂̃
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+Û
̂̃
U(Û Ũ)� + Û
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+Ũ(Û
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+Ũ
̂̃
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U)� + Ũ Û(UŨ)� + Ũ Û(
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+Ũ Û(
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̂̃
UÛ� + UŨ(
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U)�Ũ�)�)� + (

̂̃
U

�
((Û
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Ũ�)�)� + ((Û
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(Û�Ũ�)�)� + Ũ(
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̂̃
U)�U)�

+U((Û
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̂̃
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̂̃
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U(ÛUŨ)� + U

̂̃
U(Û
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UŨ)�

+UÛ(Û
̂̃
UU)� + UÛ
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̂̃
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̂̃
U

�
((Û
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̂̃
U)� + U(Û
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̂̃
U

�
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Ũ�)�)� + UŨ(Û�(
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UUŨ)� + UÛ
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̂̃
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U(ÛŨ)� + UŨÛ
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U)�(UŨ)�)�)� + U((Û
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(UŨ)�)�)� + UŨ(
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+UŨ(
̂̃
U

�
((Û
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̂̃
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