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INTRODUCTION

In [1], a new formulation of the hyperbolic singular value decomposition for an arbitrary real (or com-
plex) matrix using matrices from the pseudo-orthogonal group  (or the pseudo-unitary group

, respectively) was proposed. The previous versions of the hyperbolic singular value decomposition
worked in the general case only with the use of hyperexchange matrices, which do not form a group (see
[2–4] and the discussion of them in [1]). In this paper, we apply the hyperbolic singular value decompo-
sition in the new formulation for studying the Yang–Mills equations with the SU(2) gauge symmetry and
the Yang–Mills–Proca equations in the pseudo-Euclidean space  of arbitrary dimension and signa-
ture.

The Yang–Mills equations were proposed by Yang and Mills in 1954 [5] as a mathematical generaliza-
tion of the Maxwell equations to the non-Abelian case. Later (in 1960–1970) a theory was proposed in
which these equations describe electroweak interactions in the case of the Lie group  and
strong interactions in the case of the Lie group . The Maxwell equations describing electromagnetic
interactions are a special case of the Yang–Mills equations for the Abelian Lie group . In this paper,
we restrict ourselves to considering the case of the Lie group . Pay attention to the classical works
on some known classes of particular solutions to the Yang–Mills equations [6–11] and review [12].

In one of my previous works [13] an explicit form of all constant solutions to the Yang–Mills equations
with the  gauge symmetry and an arbitrary current in the Eucledean space  of an arbitrary finite
dimension was obtained using the ordinary singular value decomposition.

In this paper, we obtain an explicit form of all constant solutions to the Yang–Mills–Proca equations
in the case of the Lie group  in an arbitrary pseudo-Euclidean space  (or in the Euclidean
space ) using the hyperbolic singular value decomposition, which is a generalization of the ordinary
singular value decomposition. Nonconstant solutions to the Yang–Mills–Proca equations are considered
as perturbation theory series with constant solutions taken as the zero approximation.
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1008 SHIROKOV
1. YANG–MILLS–PROCA EQUATIONS
Let  and  be nonnegative integers and  be a natural number. Consider the pseudo-Euclid-

ean space  (or, as a special case, the Euclidean space  for  and ) with the Cartesian coor-
dinates , . The metric in  is specified by the diagonal matrix

(1.1)

The partial derivatives are denoted by . We assume that all functions of  considered
below are sufficiently smooth.

Let  be a semi-simple Lie group and  be a real Lie algebra of the Lie group . The Lie algebra  is
a real vector space of dimension  with the basis . The multiplication of elements of  is defined
by the Lie bracket , which satisfies the Jacoby identity. The multiplication of the basis ele-
ments is defined using the real structure constants  ( ) of the Lie algebra :

(1.2)
We assume that the elements of the Lie algebra  and the Lie group  are represented by square matrices
of the corresponding size. The Lie bracket is defined by the commutator , where the
multiplication on the right-hand side is matrix multiplication.

Denote by  the set of tensor fields in the (pseudo)Euclidean space  of the type  and of rank
 with values in the Lie algebra .

Consider the following equations in the pseudo-Euclidean space :

(1.3)

(1.4)

where , , , and  is a real (coupling) constant. These equations are
called the Yang–Mills equations (system of Yang–Mills equations). Usually, it is assumed that  and 

are unknowns, and  is a given vector with values in the Lie algebra . Equations (1.3), (1.4) determine
the Yang–Mills field , where  is the potential and  is the strength of the Yang–Mills field. The

vector  is called the non-Abelian current (in the case of the Abelian group , the vector  is called cur-
rent).

Note that the Yang–Mills equations (1.4) can be obtained in the conventional way on the basis of the
variational principle. Consider the action  for the Lagrangian

(1.5)

where  are the components of the curvature 2-form with respect to the connection , i.e., they are
coupled by definition by Eqs. (1.3). By varying the action, we obtain Eqs. (1.4) with a zero current
( ). The current  in Eqs (1.4) appears when terms related to other (e.g., scalar or spinor) fields are
added to Lagrangian (1.5).

The components of the skew-symmetric tensor field  determined by Eq. (1.3) can be substituted into
the second equation in (1.4) to obtain a single second-order equation for the covector potential of the
Yang–Mills field

(1.6)

Consider Eqs. (1.3) and (1.4) from another viewpoint. Let  be an arbitrary covector with values

in  that smoothly depends on . Denote by  the expression

(1.7)
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HYPERBOLIC SINGULAR VALUE DECOMPOSITION 1009
and denote by  the expression

It is easy to verify that

(1.8)

This identity is called the non-Abelian conservation law (in the case of the Abelian Lie group , we have
the ordinary conservation law ; i.e., the divergence of the vector  is zero). Therefore, the non-
Abelian conservation law (1.8) is a consequence of the Yang–Mills equations (1.3), (1.4).

Consider the tensor fields , , and  that satisfy the Yang–Mills equations (1.3), (1.4). Take a sca-
lar field with values in the Lie group , and consider the transformed tensor fields

(1.9)

These tensor fields satisfy the same Yang–Mills equations

i.e., Eqs. (1.3), (1.4) are invariant under transformations (1.9). Transformation (1.9) is called the gauge
transformation (or gauge symmetry), and the Lie group  is called the gauge group of the Yang–Mills
equations (1.3), (1.4).

2. THE CASE OF THE LIE GROUP SU(2)
Below in this paper, we will consider the particular case of the Lie group SU(2) that is important for

describing weak interactions. Theorem 1 about the symmetry of SU(2) Yang–Mills equations substan-
tially uses the two-sheet cover of the orthogonal group SO(3) by the spin group . Thus,
the methods proposed in this paper do not directly apply to another (important from the physical view-
point) case of the Lie group SU(3).

We consider the special unitary group

(2.1)

and the corresponding Lie algebra of anti-Hermitian matrices with zero trace

(2.2)

Here and below, the identity matrix of appropriate size is denoted by I. It is known that the Pauli matrices
 ( )

(2.3)

satisfy the relations

where  is the completely antisymmetric identity tensor (Levi–Civita symbol) and . As a
basis of the Lie algebra , we may take

(2.4)
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1010 SHIROKOV
For the basis elements, we have

(2.5)

i.e., the structure constants of the Lie algebra  in this case are the Levi–Civita symbols.
Let us write the decomposition of the Yang–Mills potential and current in the basis of the Lie algebra

:

(2.6)

Here and below, the Latin subscripts run through the values  (since the dimension of the Lie
group  is three) and the Greek superscripts run through the values  (since the dimen-

sion of the pseudo-Euclidean space  is ).
After substitution (2.6), the left-hand side of the Yang–Mills equations (1.6) takes the form

Finally, Eqs. (1.6) take the form

(2.7)

System (2.7) is a system of  equations ( , ) for  functions  and  functions .

It is convenient of interpret (2.7) as a system of equations for the elements of two matrices  and
 of size . Below, we will often assume that the matrix of current  is given or depends on the

unknown potential matrix  in a certain given way (e.g., in the case of the Yang–Mills–Proca equations,
we have ).

Theorem 1. The system of equations (2.7) is invariant under the transformations

(2.8)

and the transformation

(2.9)

where

Proof. The invariance of the first type holds due to the invariance of the Yang–Mills equations under
pseudo-orthogonal changes of coordinates of the space . More precisely, consider a change of coor-
dinates , where  The quantities  and  in Eqs. (1.6) are tensor
quantities; i.e., they are transformed by the rule

Therefore, Eqs. (2.7) are invariant under transformation (2.8).
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HYPERBOLIC SINGULAR VALUE DECOMPOSITION 1011
The system of Yang–Mills equations is invariant under the gauge transformations (1.9). The quantities
of interest are transformed by the rules

By the theorem about the two-sheet cover of the group SO(3) by the spin group , we have

(2.10)

For each matrix , there exist exactly two matrices  related by formula (2.10) (e.g.,
see [14–16]).

For the transformed current, we obtain

For the potential, the transformation also contains the term with the spin connection . We
may use the expression for this quantity found in [17, 18]

to obtain

where we used the fact that , i.e.,

Therefore, Eqs. (2.7) are invariant under transformation (2.9). Theorem 1 is thus proved.
If we combine two transformations in Theorem 1, then we obtain invariance under the transformation

(2.11)
Multiplication of a matrix by a pseudo-orthogonal matrix on the left and by an orthogonal matrix on the
right makes it possible to transform the first matrix to the canonical form with a large number of zeros.
To this end, we use the new formulation of the hyperbolic singular value decomposition proposed in [1].

3. HYPERBOLIC SINGULAR VALUE DECOMPOSITION
Recall the formulation of the hyperbolic singular value decomposition of an arbitrary real matrix pro-

posed in [1]. This theorem generalizes the results obtained in [2–4], where the pseudo-orthogonal matri-
ces were replaced by hyperexchange matrices, which do not form a group. Here and below, we denote by

 the zero blocks of matrices of appropriate size.
Theorem 2 (hyperbolic singular value decomposition, see [1]). Fix a matrix (1.1). For an arbitrary real

matrix , there exist matrices  and  such that

(3.1)

where the first block of  has  rows, the second block has  rows,  and  are diagonal matrices of appro-
priate sizes  and , respectively, with positive unambiguously defined diagonal elements (up to a permuta-
tion), and  is the identity matrix of size .

Moreover, by choosing , it is possible to exchange the columns of . By choosing , one can exchange
rows in each block but not between blocks. Therefore, we can always arrange the diagonal elements of the matri-
ces  and  in decreasing order.
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1012 SHIROKOV
We have

where  is the number of positive eigenvalues of the matrix  and  is the number of negative eigenvalues
of .

The matrix  (3.1) is called the canonical form of the matrix , and the elements of the diagonal blocks
 and  are called hyperbolic singular values. Below, we assume that the elements of each of these blocks

are arranged in decreasing order.

In [1], an algorithm for calculating the matrices , , and  was described. The hyperbolic singular
values are square roots of the absolute values of the eigenvalues of matrix . The columns of the
matrix  are the eigenvectors of the matrix . The columns of the matrix  are the eigenvectors of the
matrix  (in the case ) and the eigenvectors and generalized eigenvectors of the matrix  (in
the case ). The matrices  and  are not unique.

Note that the standard singular value decomposition is a special case of the hyperbolic singular
value decomposition. In the case  and , the parameter  is always zero:

. In this particular case, we obtain the classical singular value decomposi-
tion theorem. The singular value decomposition was first independently discovered by Beltrami [19] in
1873 and by Jordan [20, 21] in 1874. Below, we give the modern formulation of this theorem, which can
be found, e.g., in [22, 23].

Theorem 3 (singular value decomposition). For an arbitrary real matrix , there exist
orthogonal matrices  and  such that

where

The numbers  are called singular values; they are square roots of the eigenvalues of the matrix

. The columns of the matrix  are called right singular vectors, and they are eigenvectors of the matrix
; the columns of  are called left singular vectors, and they are eigenvectors of the matrix .

In the general case, by considering the system of Yang–Mills equations (2.7) and choosing appropriate
matrices  and  in transformation (2.11), we can locally (in a neighborhood of the
point ) transform the matrix of current  to the canonical form described in Theorem 2 (in the
case of the Euclidean space, it is described in Theorem 3). In Theorems 2 and 3, we take as  and  the
matrices  and  appearing in transformation (2.11), respectively. Note that we can
always choose the matrix  from the special orthogonal group . If the matrix  in Theorems 2 and
3 has the determinant equal to , then, we may simultaneously change the sign of all columns in the
matrices  and , and then their determinant becomes equal to . Then, the matrix  is not necessarily
canonical because transformation (2.11) includes the matrix , which depends on the matrix .

Let us discuss the particular case of the system of Yang–Mills–Proca equations (1.6) for constant
(independent of ) solutions. In this case, system (1.6) takes the form

(3.2)

Equations (2.7) take the form
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HYPERBOLIC SINGULAR VALUE DECOMPOSITION 1013
Consider (global) transformations that are similar to the gauge transformations (1.9) but with a matrix
 that is independent of :

(3.4)

In transformations (2.9) and (2.11), we obtain , and they become global symmetries. Using the
global symmetry

(3.5)

we can reduce the matrices  and  to the canonical form simultaneously. This fact is proved in [13],
which also gives the general solution to the system of Yang–Mills equations for the constant solutions (3.3)
in the case of the Euclidean space  and arbitrary current  using the ordinary singular expansion. In the
case of a pseudo-Euclidean space, a similar problem can be solved using the hyperbolic singular value
decomposition; this will be done in a later paper.

Note that the case of zero current for constant solutions to the Yang–Mills equations was studied in
[24, 25]. Plane wave solutions to the  Yang–Mills equations in an arbitrary pseudo-Euclidean space
are discussed in [26]; they are reduced to the problem about the constant solutions described in the current
paper. Some special cases of the Yang–Mills equations in the formalism of Clifford algebras and Atiyah–
Kahler algebras related to constant solutions are discussed in [17, 27, 28].

In this paper, we find all constant solutions to the system of  Yang–Mills–Proca equations,
which can be interpreted as the system of Yang–Mills equations with the current depending on potential.

4. SOLUTIONS TO  YANG–MILLS–PROCA EQUATIONS
The Proca equations were proposed in [29] in 1936 as a generalization of the Maxwell equations. They

differ from the Maxwell equations by the inclusion of the term with mass squared. It is assumed that the
Proca equations describe massive particles with spin 1. The Yang–Mills–Proca equations are a natural
analog of the Proca equations in the non-Abelian case; i.e., they are simultaneously a generalization of
the Yang–Mills and Proca equations, and they are considered, e.g, in [30, 31].

The system of Yang–Mills–Proca equations in the pseudo-Euclidean space  (or, in particular, in the
Euclidean space ) has the form

(4.1)

(4.2)

These equations differ from the Yang–Mills equations (1.3), (1.4) by the term  with the mass .
We have , , , and . If the mass is zero , then Eqs. (4.1), (4.2)

coincide with the Yang–Mills equations (1.3), (1.4) with the zero current . Below, we consider the
case .

The Lagrangian of the Yang–Mills–Proca field is

(4.3)

where the components  have form (4.1). By varying the action , we obtain Eqs. (4.2).

For the potential , we obtain from Eqs. (4.1), (4.2) the generalized gauge condition

(4.4)

Note that this condition is an analog of the non-Abelian conservation law (1.8) for the Yang–Mills equa-
tions (1.3), (1.4). The Yang–Mills–Proca equations (4.1), (4.2) can be interpreted as the Yang–Mills
equations with the current  depending on the potential. By substituting 
into (1.8), we obtain (4.4).
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1014 SHIROKOV
Substitute (4.1) into (4.2) to obtain

(4.5)

which, taking into account (4.4), can be written as

(4.6)

Note that the system of equations (4.1), (4.2) is not gauge invariant under transformations (1.9) (as well as
the Proca equations [29], which are a generalization of the Maxwell equations, are not gauge invariant).
However, the system of Yang–Mills–Proca equations (4.1), (4.2) is invariant under the global (indepen-
dent of ) transformation

(4.7)

While finding constant solutions to the Yang–Mills–Proca equations, we obtain the system of equations

(4.8)

which can be interpreted as the system of Yang–Mills equations for constant solutions with the current
 depending on the potential .

Next, we consider the case of the Lie group  and the corresponding (real) Lie algebra
. Fix basis (2.4) of the Lie algebra , and write the system of equations (4.6) as

(4.9)

The system of equations (4.8) for the constant solutions takes the form

(4.10)

The system of equations (4.10) is invariant under the transformation

(4.11)

where the orthogonal matrix  is related to the matrix  in the global transfor-
mation (4.7) as the two-sheet cover

The matrix  corresponds to the change of coordinates  of the space 
(similarly to how it was for the Yang–Mills equations in Theorem 1).

After finding all solutions to system (4.10), we can calculate the components of strength

(4.12)

and the invariant :

(4.13)

Let us formulate and prove a theorem about all solutions to system (4.10), i.e., about all constant solutions
of the system of Yang–Mills–Proca equations in the case of the Lie group .
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Theorem 4. Any solution  to the system of Yang–Mills–Proca equations (4.10) in the pseudo-

Euclidean space  (or in the Euclidean space ) can be reduced, by choosing matrices  and
 in symmetry (4.11), to the solution of one of the following forms:

(1) in the cases , , :

(4.14)

i.е.,

with the following nonzero strength components:

(4.15)

and invariant

(4.16)

(2) in the cases , , :

(4.17)

i.e.,

with the following nonzero strength components:

(4.18)
and invariant

(4.19)

(3) in the cases , , :

(4.20)

Proof. We use the invariance of Eqs. (4.10) under transformations (4.11) and the hyperbolic singular
value decomposition (Theorem 2). Note that we can always choose the matrix  from the special orthog-
onal group . If the determinant of this matrix is , then we can simultaneously change the sign of
all columns in  and  to make the determinant equal to .
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Let the elements of the matrix  satisfy the system of equations (4.10) in the pseudo-Euclidean space
 (or in the Euclidean space ). Then, there exist matrices  and  (or ,

respectively) such that the matrix  has the canonical form

System (4.10) takes a new form with the unknowns—hyperbolic singular values of the matrix  (elements
of the diagonal blocks  and ). Next, we should consider various cases of the canonical form of the
matrix  depending on the values of the parameters , , and  and solve the corresponding systems of
equations. The elements of each diagonal block  and  are assumed to be positive and arranged in
decreasing order. In total, there are 20 different cases of values of the parameters ( , , ) of the matrix :

In the first case ( , , ), only nonzero diagonal terms remain in system (4.10); therefore,
, , and the product of two Levi–Chivita symbols gives . Then, we obtain the

following system of equations, in which the positive elements of the diagonal block  arranged in decreas-
ing order are denoted by , , and , respectively:

(4.21)

This system has the only solution

(4.22)

In the second, third, and fourth cases, we obtain, respectively, the following systems each of which has no
solutions:

In the fifth case ( , , ), we obtain the system for two diagonal elements  and  of the
block 

(4.23)

with the general solution

(4.24)
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tions:
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In the eighth and ninth cases, we have the following system for the only nonzero element  of the
matrix A, which has no solutions:

(4.25)

In the tenth case , we have the trivial solution  for any .
In cases 11–13, we obtain, respectively, the systems

which have no solutions. In the remaining cases 14–20 the resulting systems are also inconsistent.
For the three types of solutions, we calculate the strength components using (4.12) and the invariant
 using (4.13). This completes the proof of the theorem.

5. NONCONSTANT SOLUTIONS TO THE  YANG–MILLS–PROCA EQUATIONS 
IN THE FORM OF A PERTURBATION THEORY SERIES

In Theorem 4, we obtained an explicit form of all constant solutions to the  Yang–Mills–Proca
equations (4.1), (4.2) in an arbitrary pseudo-Euclidean (or Euclidean) space . The constant solutions
to the equations thus obtained allow us to construct nonconstant solutions to the Yang–Mills–Proca
equations in the form of a perturbation theory series. More precisely, expand the solution to Eqs. (4.1),
(4.2) in a small parameter 

(5.1)

where the zero-order approximations  are the constant (independent of ) solutions to the
Yang–Mills–Proca equations (4.1), (4.2). Substitute (5.1) into Eqs. (4.6) to obtain the equation

where  are differential expressions depending on  for each . Since  are constant
solutions to Eqs. (4.6), it is easy to verify that

Next, we obtain a system of linear partial differential equations  with constant coefficients

(depending on ) for finding . After the solutions  to this system have been found, we substitute

them and the solutions  into the system . This gives a system of linear partial differential equa-

tions with variable coefficients (which depend on ) for finding . Next, we substitute these solu-

tions into , and so on. By continuing this process, we find  for all , and thus find
nonconstant solutions to the Yang–Mills–Proca equations in the form of series (5.1).

This algorithm for finding nonconstant solutions reduces the solutions of the nonlinear (cubic) Yang–
Miils–Proca equations to solving systems of linear partial differential equations.

Now, we discuss the system for the first-order approximation  in more detail. To derive an

explicit form of this system, we set  with . We can choose
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matrices  and  in symmetry (4.11) such that the matrix composed of  is diagonal
(see Theorem 4). This gives the system of  linear partial differential equations

(5.2)

for the unknown functions  with known constant coefficients  depending on the

parameter . These coefficient  are the elements of one of the diagonal matrices (4.14), (4.17) or

the completely zero matrix (4.20), depending on the type of constant solutions.

In the case of the zero matrix, we have , and obtain the following system for the first-order solu-
tion:

(5.3)

Note that Eqs. (5.3) are the Klein–Gordon–Fock equations for each component .
In the case of solution (4.14), we can substitute into system (5.2) the expressions

In the case of solution (4.17) we can substitute into system (5.2) the expressions

The resulting systems of equations for the unknown functions  can be investigated using known numer-
ical methods and methods of the theory of linear partial differential equations.

CONCLUSIONS
In this paper, we showed how methods of computational mathematics (singular value decomposition

and hyperbolic singular value decomposition) can be used for studying the Yang–Mills and Yang–Mills–
Proca equations in the case of the Lie group , which is important for describing electroweak inter-
actions. An explicit form of all constant solutions to the system of Yang–Mills–Proca equations in the
case of the Lie group  is obtained and these solutions are classified. Nonconstant solutions to the
Yang–Mills–Proca equations are considered as series of the perturbation theory. It would be interesting
to further study the first-order approximation linear systems of equations. The results can be useful for
describing physical vacuum [32–34].

Note that the methods considered in this paper cannot be directly applied to the case of the Lie group
, which is important for describing strong interactions, since we substantially use the two-sheet

cover of the orthogonal group  by the spin group . The extension of the proposed methods to
the case of the Lie group  is an interesting topic of further research.
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