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Abstract The number of individuals in a random sample with close relatives in the
sample is a quantity of interest when designing GenomeWide Association Studies and
other cohort based genetic, and non-genetic, studies. In this paper, we develop expres-
sions for the distribution and expectation of the number of p-th cousins in a sample
from a population of size N under two diploidWright–Fisher models.We also develop
simple asymptotic expressions for large values of N . For example, the expected pro-
portion of individuals with at least one p-th cousin in a sample of K individuals, for
a diploid dioecious Wright–Fisher model, is approximately 1 − e−(22p−1)K/N . Our
results show that a substantial fraction of individuals in the sample will have at least a
second cousin if the sampling fraction (K/N ) is on the order of 10−2. This confirms
that, for large cohort samples, relatedness among individuals cannot easily be ignored.
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1 Introduction

Asgenomic sequencing and genotyping techniques are becoming cheaper, the data sets
analysed in genomic studies are becoming larger. With an increase in the proportion
of individuals in the population sampled, we might also expect an increase in the
proportion of related individuals in the sample. For example, Moltke et al. (2015)
found in a sample of 2000 Inuit from Greenland that almost half of the sample had
one or more close relatives in the sample. The census population size for Greenland
Inuit is only about 60,000 individuals and the effective population size might be
substantially lower. Henn et al. (2012) found 5000 pairs of third-cousin and 30,000
pairs of fourth cousin relatives in a sample of 5000 self-reportedEuropeans,with nearly
every individual having a detected cryptic relationship. In Genome Wide Association
Studies (GWAS), related individuals are routinely removed from the sample, but other
strategies also exist for using relatedness as a covariate in the statistical analyses
(e.g., Visscher et al. 2008). These observations raise the following question: given a
particular effective population size, how many close relatives would we expect to find
in a sample? The answer to this question may help guide study designs and strategies
for addressing relatedness in population samples and improve design for GWAS. Of
particular interest is the number of individuals in the sample without relatives, i.e.
the number of individuals remaining in the sample if individuals with relatives are
removed.

Substantial progress has been made on understanding the structure of a pedigree
in a population. For example, Chang (1999) showed that the most recent common
ancestor of all present-day individuals is expected to have lived log2(N ) generations
in the past if N is the population size. A great deal of progress has also been made in
understanding the difference between genealogical processes in full diploid pedigree
models versus the approximating coalescent process (e.g.,Wakeley et al. 2012;Wilton
et al. 2016). However, the distribution and expectation of the number of individuals
with relatives in a random population sample is still unknown.

In this paper we will address this question by exploring two diploid and dioecious
Wright–Fisher models. We will use these models to derive distributions and expecta-
tions of the number of individuals that have, or do not have, siblings, first, second, etc.
cousins within a sample.

2 Dioecious Wright–Fisher model

The Wright–Fisher model (Fisher 1930; Wright 1931) describes the genealogy of a
population with constant effective population size N . The model assumes that gen-
erations do not overlap. Let G = {g1, g2, . . . , gN } and Ĝ = {ĝ1, ĝ2, . . . , ĝN } be two
successive generations with N individuals in each. Then for each individual ĝi from
Ĝ a parent g j is selected randomly and uniformly from G.

In our studywe consider a diploid populationwhere each individual has two parents,
one male and one female. Similarly to the original haploid Wright–Fisher model, the
dioecious Wright–Fisher model (see e.g. Nagylaki 1997; King et al. 2017) assumes
that generations do not overlap and, for each individual, the parents are chosen from
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the previous generation uniformly at random. The difference is that instead of a single
parent, in the dioecious case, each individual has two parents, onemale and one female,
which are drawn independently from the corresponding sets of males and females in
the preceding generation.Wewill refer to thismodel as the ‘non-monogamousWright–
Fisher model’ because wewill also consider amodel in which female andmale parents
formmonogamous pairs.Wewill refer to the lattermodel as the ‘monogamousWright–
Fisher model’. As we will assume exactly equal proportions of males and females, the
monogamous Wright–Fisher model is identical to the bi-parental monoecious model
in King et al. (2017).

For both the non-monogamous and monogamous models, we assume that there
are exactly N male and N female individuals. Each individual from generation Gi−1
(we enumerate generations backward in time starting from 0, i.e. G0 is the present
generation and G1 is the generation of parents of individuals from G0) is assigned to a
parent pair (one male and one female parent) from Gi . As we described above, under
the non-monogamous model, male and female parents are chosen independently from
each other for every individual. In the monogamous case, the parent pairs are fixed,
i.e. we assume each male and female is part of exactly one potential parent pair.

The two diploid models are similar to each other in that the marginal distribution
of the number of offspring of each individual is binomially distributed with mean 2.
However, they differ from each other in the correlation structure among parents. The
important difference between these two models is that the monogamous model does
not allow for half-siblings (we say that two individuals are half-siblings if they share
only one parent). On the other hand under the non-monogamous model, full siblings
(individuals which share both parents) have a very low probability of appearing.

We note that other dioecious versions of theWright–Fisher models could be consid-
ered with varying degree of promiscuity, but most would likely have distributions of
relatedness that are somewhat intermediate between these two models, as long as they
otherwise maintain Wright–Fisher dynamics. We also note that none of these models
probably accurately describe the behaviour of human populations, which likely have
a much higher variance in offspring number, variable population sizes, etc.

As mentioned above, individuals are siblings if they have the same parents. If indi-
viduals share only one parent, we call them half-siblings. We say that two individuals
are p-th cousins if there is at least one coalescence between their genealogies in gen-
eration Gp+1. Of course, the amount of shared genetic material would depend on the
number of shared ancestors in a certain generation. For two individuals, the number
of shared ancestors is given in the supplementary materials of King et al. (2017) (see
the discussion below). Notice, that two individuals can have different relations simul-
taneously. An example of such a situation is given in Fig. 1: the individuals related by
this genealogy are half-siblings and first-cousins at the same time.

Let S be a random sample of size K of individuals from the present-day generation
G0 of a population described by either a monogamous or non-monogamous Wright–
Fisher models. In this paper we derive the numberUT (notation for monogamous case)
or VT (notation for non-monogamous case) of individuals in S which do not have
(T − 1)-order cousins (T = 1 would stand for (half-)siblings, T = 2 for first cousins,
etc.) within S and have genealogy with no cycles. We will derive the probability
distribution ofU1 and V1 and expectations ofUT and VT for T ≥ 2 in terms of Stirling
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•
Individual 1

•
Individual 2

• • Shared father • Mother 2

• • • •
Shared grandparent

•

Fig. 1 The two offspring (Individual 1 and Individual 2) related by this genealogy are half-siblings and
first cousins at the same time. Notice that Individual 1 has a tree-like genealogy (no cycles, no inbreeding).
The second individual though has inbreeding in its genealogy

numbers of the second kind. Further we present a simple analytical approximation of
expectations of UT and VT . We derive this approximation as an exponential function
of the ratio of the sample size to the effective population size.

The condition that individual’s genealogy does not have cycles means that there is
no inbreeding in the history of the individual. Indeed, a cycle appears when twomating
individuals share an ancestor, hence they are related to each other. On the contrary, if
there is no inbreeding within T generations of ancestors of a certain individual, then
all the ancestors have different parents, hence in the Gk (k ≤ T ) there are exactly 2k

ancestors of the individual under consideration.
Notice that the requirement that there is no inbreeding is satisfied as long as 2T is

small compared to the effective population size N . In this paper we are particularly
interested in large populations. We will compute the fraction of individuals with sib-
lings (T = 1) or p-th cousins (T = p + 1) in a sample in the limit of the effective
population size N going to infinity. For fixed values of T and the sample size, K , the
number of siblings and cousins goes to zero in the limit of large N . However, for a
fixed ratio K/N , there is a positive expected number of siblings and offspring, but the
expected number of cycles in the genealogy is small compared to K . This observation
follows from the fact that the probability that two individuals share a parent is 1/N ,
which is a rare event for large N . Hence for large N all the ancestors of an individual
are unrelated with high probability. We will, therefore, approximate the number of
individuals who have siblings (or p-th cousins) by K − UT or K − VT depending
on the model. We notice that using this method we cannot characterise, for example,
the overlap between the set of individuals who have siblings and the set of individu-
als who have first-cousins, so we cannot provide an approximation of the number of
individuals who have at least some kind of relatives within several generations.

Every genealogy has the same probability under the model. Hence our problem is
equivalent to counting the number of possible genealogies with certain properties. To
enumerate different genealogies, wewill use the following approach. Firstly, we divide
a sample S into subsets of siblings (in case of non-monogamous model, we create two
independent partitions of the sample, one of partitions corresponding to shared fathers
and the other corresponding to shared mothers). Then we assume that individuals
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from the same subset have the same parent couple (in the case of the monogamous
model) or the same father or mother (in the case of the non-monogamous model), and
individuals from different subsets have different parents. This approach is the basis
for our analyses and leads us to the proof of formulas for expectations of UT and VT .

The combinatorial technique used to obtain exact formulas for expectations of UT

and VT is very similar to the technique used in King et al. (2017) (see supplementary
materials S1). In particular, we have to keep track of the number of ancestors at each
generation which is the question of interest of the section S1.1 of King et al. (2017).
Notice, that results in our paper and the result of S1.2 of King et al. (2017) complement
each other. We find the expected number of individuals in a sample which do not have
any relatives with respect to a certain generation, hence we know approximately the
number of individuals which share at least one ancestor in that generation with at least
one more individual from the given sample. However we cannot characterise finer
relatedness (e.g. the number of shared ancestors in a given generation,) as more than
one coalescence per generation between genealogies of two individuals is possible.
The pairwise analysis of individuals can be performed using King et al. (2017) results,
though it can be computationally challenging. The asymptotic behaviour derivation
for E(UT )/K and E(VT )/K (for fixed K/N ratio) is a completely new result to the
best of our knowledge.

We remind the reader that the Stirling number of the second kind S(n, k) is the
number of ways to partition a set of size n into k non-empty disjoint subsets. A
generalisation of this is the r -associated Stirling number of the second kind, Sr (n, k)

(Comtet 1974), which is the number of partitions of a set of size n into k non-empty
subsets of size at least r .We providemore detailed information on the Stirling numbers
of the second kind in the Appendix.

3 Probability distribution U1

We say that two individuals are siblings if they have the same parents. In this sectionwe
study the number of individuals U1 without siblings within a sample of a population.
We derive both the probability distribution and expectation of U1.

Theorem 1 Let U1 be a random variable representing the number of individuals in a
sample S of size K without siblings in S under monogamous dioecious Wright–Fisher
model. Then

• the probability distribution of U1 is

P(U1 = u) =
(K

u

) ∑� K−u
2 �

t=1 S2(K − u, t)
( N

u+t

)
(u + t)!

∑m
t=1 S(K , t)

(N
t

)
t ! ;

• the expectation of U1 is

E(U1) = K (1 − 1/N )K−1;
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Fig. 2 Illustration to the proof of Theorem 1. Each dot correspond to an individual. The bottom set of
points corresponds to the individuals in the sample S. This sample is divided in disjoint subsets (the set of
points in the middle): this partition corresponds to sets of siblings, or in other words individuals from each
subset will be assigned to the same couple of parents. The top row corresponds to the set of couples in the
parent generation. Subsets of siblings (from the middle row) are assigned to different couples of parents
(from the top row)

• if K/N = α

lim
N→∞

E(U1)

K
= e−α.

Proof We begin the proof by computing the number of possible partitions of S into u
subsets of size 1 and t subsets of size greater than or equal to 2. Each subset of such
a partition corresponds to the descendants in S of the same couple of parents from
G1. There are

(K
u

)
S2(K − u, t) such partitions (see Fig. 2). Here the first multiplier

corresponds to the number of choices of the first u individuals and the secondmultiplier
corresponds to the number of partitions of the remaining K − u individuals into t
disjoint subsets.

Now we need to assign u + t subsets to different couples of parents from G1. There
are

( N
u+t

)
possibilities for choosing couples that have descendants in S and (u + t)!

permutations which assign these particular couples to different subsets of the given
partitions of S.

Finally, summing over all possible values of t we get

P(U1 = u) =
(K

u

)∑� K−u
2 �

t=1 S2(K − u, t)
( N

u+t

)
(u + t)!

∑m
t=1 S(K , t)

(N
t

)
t ! ,

where �·� stands for the floor integer part.
The expression for expectation of U1 is much simpler. The probability π1 that an

individual I does not have any siblings in S is π1 = (1− 1/N )K−1, because all other
individuals from S\{I} can be assigned to any couple of parents except for the parents
of the individual I. By linearity, the expectation of U1 is

E(U1) = Kπ1 = K (1 − 1/N )K−1.
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To prove the last statement of the theorem it is enough to rewrite

E(U1)

K
= (1 − 1/N )−1

(
(1 − 1/N )N

)K/N = (1 − 1/N )−1
(
(1 − 1/N )N

)α

,

because K/N = α by definition. Now notice that

lim
N→∞(1 − 1/N )N = e−1.

Hence the last statement of the theorem is proved

lim
N→∞

E(U1)

K
= e−α.

�	

4 Expectation of U2

In this section we will provide an expression for expectation of the number U2 of
individuals in a sample which do not have first cousins in this sample. We will also
establish a limit for E(U2)/K in the case of a fixed ratio between K and N .

Theorem 2 Let U2 be a random variable representing the number of individuals in a
sample S of size K without first cousins in S under a monogamous dioecious Wright–
Fisher model. Then the expectation of U2 is

E(U2) = K

∑K
m=1 S(K , m)

(N
m

)
m!N (N − 1)(N − 2)2m−2

∑K
m=1 S(K , m)

(N
m

)
m!N 2m

.

Proof Similarly to the case of E(U1), we need to find the probability π2 for a single
individual not to have first cousins within S. Then the expectation E(U2) = Kπ2.
Denote individuals from GT which have descendants in S by ST .

Choose an individual s0 ∈ S, let p01 and p02 be parents of s0. If s0 does not have first
cousins, then p01 and p02 are assigned to different couples from G2 and those couples
do not have other descendants in S1.

Similarly to derivation of distribution of U1, we first partition S into m disjoint
subsets. We choose m couples from G1 and establish a one-to-one correspondence
between the subsets and the couples. There are N possibilities to choose a couple
of parents for p01, N − 1 choices for p02 and (N − 2) choices for all other 2m − 2
individuals from S1. Summing over m we get

E(U2) = K

∑K
m=1 S(K , m)

(N
m

)
m!N (N − 1)(N − 2)2m−2

∑K
m=1 S(K , m)

(N
m

)
m!N 2m

.

�	
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Our next goal is to find the limit of E(U2)/K for a fixed ratio of sample size to
the population size. We assume that K/N = α for some constant 0 ≤ α ≤ 1 and we
consider the limit of E(U2)/K for K → ∞.

Theorem 3 Let 0 ≤ α ≤ 1 and set K = αN. Then

lim
N→∞E(U2) = e−4α,

The following lemma states that the sum of the first βK terms of the series in the
formula for E(U2) is small for large values of K . This makes it possible to make
further approximations under the hypothesis that m = O(K ).

Lemma 1 Let K = αN for some 0 ≤ α ≤ 1 and set β = (2 ln 2)−1. Then

lim
N→∞

∑�βK �−1
m=1 S(K , m)

(N
m

)
m!N 2m

(
1 − 1

N

) (
1 − 2

N

)2m−2

∑K
m=1 S(K , m)

(N
m

)
m!N 2m

= 0.

Proof Denote

TK ,N (m) = S(K , m)

(
N

m

)
m!N 2m .

First, notice that

0 ≤ TK ,N (m)

(
1 − 1

N

)(
1 − 2

N

)2m−2

≤ TK ,N (m)

We will show that for β = (2 ln 2)−1 < 1/2

lim
N→∞

∑�βK �−1
m=1 TK ,N (m)

TK ,N (�βK �) = 0, (1)

which will immediately prove the statement of the Lemma.
Our goal is to prove that

TK ,N (m) � c1ec2m N 2m

for some constants c1, c2 and K large enough.
We begin by approximating the following ratio for m ≤ �βK �

TK ,N (m)

TK ,N (m + 1)
=

(
1 + O

( 1
K

))

(
1 + O

( 1
K

))

√
K − m

K (1 − G1)

K (1 − G2)

K − m − 1

Gm+1
2

(
K

m+1 − G2

)K−m−1

Gm
1

( K
m − G1

)K−m

(
K − m

e

)K−m (
e

K −m−1

)K−m−1 (K
m

)

( K
m+1

)
1

N −m

1

N 2 ,

(2)
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by applying approximation (11). Here G1 = G(K , m) and G2 = G(K , m + 1).
Notice that 0 < G1 < G2 < −W0(−2e−2) < 1/2. The following term is bounded

by a constant (we remind the reader that 0 < m ≤ βK < K/2)

√
1 − G2

1 − G1
≤ 1

√
2(1 + W0(−1/2e−1/2))

.

After simplification, all the factorials in the formula are of the form (const K )!,
hence they can be approximated uniformly in K by Stirling’s approximation

n! =
(
1 + O

(
1

n

)) √
2πn

(n

e

)n
.

For simplicity of notations we drop all terms 1+ O(1/K ) in (2). We also notice that

(
K − m

K − m − 1

)K−m−1

=
(
1 + 1

K − m − 1

)K−m−1

= e + O(1/K ).

So for K large enough the ratio (2) has the following approximation

TK ,N (m)

TK ,N (m + 1)
≈

√
K − m

K − m − 1

1 − G2

1 − G1

Gm+1
2

(
K

m+1 − G2

)K−m−1

Gm
1

( K
m − G1

)K−m

m + 1

N − m

1

N 2 .

The derivative of G(x)1/x (x − G(x))1−1/x (x ≥ 1) with respect to x is

H(x) = G(x)
1
x (x − G(x))

x−1
x (ln(x − G(x)) − ln G(x))

x2
. (3)

H(x) has one real root x = 2 ln 2 if x ≥ 1.The derivative H(x) is positive for
x > 2 ln 2, so G(x)1/x (x − G(x))1−1/x is an increasing function of x for x > 2 ln 2.
Hence as soon as K/m > 2 ln 2, or m < K/(2 ln 2), the following inequality holds

Gm+1
2

(
K

m+1 − G2

)K−m−1

Gm
1

( K
m − G1

)K−m
< 1.

Consequently, for sufficiently large K we obtain the following upper bound for (2)

TK ,N (m)

TK ,N (m + 1)
≤ 1

√
2(1 + W0(−1/2e−1/2))

β
1
α

− β

1

N 2 =: A

N 2

Hence, by recursion for m < �βK �

TK ,N (m) ≤
(

A

N 2

)�βK �−m

TK ,N (�βK �).
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Now we use the obtained inequality to prove limit (1)

lim
N→∞

∑�βK �−1
m=1 TK ,N (m)

TK ,N (�βK �) ≤ lim
N→∞

�βK �−1∑

m=1

(
A

N 2

)�βK �−m

= lim
N→∞

A

N 2

(1 − A/N 2)�βK �−1

1 − A/N 2 = 0, (4)

where the second equality holds by summing over the geometric progression. �	
Lemma 2 Let K = αN for some 0 ≤ α ≤ 1, set β = (2 ln 2)−1. Then for any m such
that �βK � ≤ m < K

TK ,N (m)

TK ,N (m + 1)
≤ O

(
1

K

)
.

Proof From the proof of Lemma 1, for K large enough and for β ≤ m/K ≤ 1

TK ,N (m)

TK ,N (m + 1)
≤ C

√
1 − G2

1 − G1

Gm+1
2

(
K

m+1 − G2

)K−m−1

Gm
1

( K
m − G1

)K−m

1

N 2 .

Notice that xex = −1/e+O((x −1)2) near x = −1. Hence 1−G(x) = O(|x −1|)
and x − G(x) = O(|x −1|) for x → 1. By definition, the Lambert W -function (Olver
2010) is the inverse function of xex . If x1 > −1 and x2 < −1 are two points in
the neighbourhood of −1 such that x1ex1 = x2ex2 , then |x1 − x2| = O(|x1 − 1|) =
O(|x2 − 1|). For x > 1, −xe−x ∈ [−1/e; 0]. The value of the main branch, W0(xex ),
is in the interval [−1, 0]. So −x and W0(−xe−x ) correspond to x1 and x2.

Hence

√
1 − G2

1 − G1
= 1 − K/(m + 1)

1 − K/m
= O(1).

Now we use mean value theorem to approximate

∣
∣∣∣∣
Gm+1

2

(
K

m + 1
− G2

)1− m+1
K − Gm

1

(
K

m
− G1

)1− m
K

∣
∣∣∣∣

≤
∣∣∣
∣

K

m
− K

m + 1

∣∣∣
∣ max[K/(m+1),K/m] |H(x)|, (5)

where H(x) is given by expression (3). Denote �x = |x − 1|, and notice that

Ĥ(x) := H(x)

ln(x − G(x)) − ln G(x)
= G(x)

1
x (x − G(x))

x−1
x

x2
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and ln G(x) are continuous near x = 1 and Ĥ(1) = 1, ln G(1) = 0. So for small �x

H(1 + �x) = O(ln�x),

and hence

max[K/(m+1),K/m] |H(x)| = |H(K/(m + 1))| = O(ln K )

which leads to the approximation of (5) with m = O(K )

∣∣∣∣∣
Gm+1

2

(
K

m + 1
− G2

)1− m+1
K − Gm

1

(
K

m
− G1

)1− m
K

∣∣∣∣∣

≤ K

m(m + 1)
|H(K/(m + 1))| � ln K

K

We use this estimate and the Taylor expansion of logarithm to get

Gm+1
2

(
K

m+1 − G2

)K−m−1

Gm
1

( K
m − G1

)K−m
�

(
1 + ln K

K

)K

≈ K .

Finally, we estimate the ratio TK ,N (m)/TK ,N (m + 1) for K large enough

TK ,N (m)

TK ,N (m + 1)
≤ C0

K

with some constant C0, which depend on α. �	
Now we are ready to prove the theorem.

Proof Firstly, notice that

1 ≥
(
1 − 2α

K

)2m

≥
(
1 − 2α

K

)2K

≥
(
1 − 2α

K

)4α K
2α ≥ e−4α,

and (1 − 1/N )(1 − 2/N )2 → 1 as N → ∞. Hence, the lower bound is valid for any
α and K

E2(α, K )

K
=

∑K
m=1 TK ,N (m)

(
1 − 1

N

) (
1 − 2

N

)2m−2

∑K
m=1 TK ,N (m)

≥
(
1 − 1

N

) (
1 − 2

N

)−2

e−4α,

where the right part trivially converges to e−4α with N → ∞ (we remind that K = αN
for some constant 0 ≤ α ≤ 1).

123



1290 V. Shchur, R. Nielsen

Now we prove that this bound is sharp by applying subsequently Lemmas 1 and 2

lim
N→∞

E2(α, K )

K
= lim

N→∞

∑K
m=1 TK ,N (m)

(
1 − 1

N

) (
1 − 2

N

)2m−2

∑K
m=1 TK ,N (m)

= lim
N→∞

∑K
m=�βK � TK ,N (m)

(
1 − 1

N

) (
1 − 2

N

)2m−2

∑K
m=�βK � TK ,N (m)

≤ lim
N→∞

∑K−1
m=�βK � TK ,N (m) + TK ,N (K )

(
1 − 1

N

) (
1 − 2

N

)2m−2

∑K−1
m=�βK � TK ,N (m) + TK ,N (K )

= e−4α,

because from Lemma 2 it follows

0 ≤ lim
N→∞

∑K−1
m=�βK � TK ,N (m)

TK ,N (K )
≤ lim

N→∞

∑K−1
m=�βK �

(
C0
K

)K−m
TK ,N (K )

TK ,N (K )

= lim
N→∞

C0

K

1 −
(

C0
K

)K

1 − C0
K

= 0.

�	

5 General case: expectation of Up for p ≥ 2

Similarly to the expectation ofU2, we can find the probability of the expected numbers
Up (p ≥ 2) of individuals which do not have (p − 1)-cousins and with pedigrees
without cycles.

Lemma 3 Let S be a set and S ′ ⊂ S be a subset of size |S ′| = k.The number of
partitions of a set S of size N into M disjoint subsets such that all elements of S ′ are
in different subsets is

Qk(N , M) =
k∑

t=0

(
k

t

)
S(N − k, M − t)

(
M − t

k − t

)
.

Proof Let S ′′ ⊂ S ′, S ′′ = {e1, e2, . . . , et }, such that each element, ei ∈ S ′′, makes
its own subset Pi = {ei } in the partition of S. If t = |S ′′| there are

(k
t

)
ways to

choose such a subset. Then, S\S ′ should be split into M − t non-empty subsets,
Pt+1, Pt+2, . . . , PM , to obtain a partition of S into exactly M subsets. There are
S(N − k, M − t) possible ways of doing that. Each of the k − t elements of S ′\S ′′ are
then added to distinct subsets among the remaining M − t subsets, Pi , i > t, which
can be done in

(M−t
k−t

)
ways.

Summing over all possible values of t we prove the statement. �	
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Remark 1 For k = 1, Lemma 3 turns into the well-known recursive formula for
Stirling numbers of the second kind.

The next theorem establishes the expression for the expectation of Up and its limit
for fixed K to N ratio in the general case. Due to the size of the formula we had to
introduce additional notations for readability.

Theorem 4 • For any natural p ≥ 1 the expectation of Up is

E(Up) = K

∑K
m1=1 R1

∑2m1
m2=2 R2 . . .

∑2m p−2

m p−1=2p−2 Rp−1N 2m p−1W (p)

∑K
m1=1 R′

1

∑2m1
m2=2 R′

2 . . .
∑2m p−2

m p−1=2p−2 R′
p−1N 2m p−1

, (6)

where by convention we assume 2m0 := K ,

R j = Q2 j−1(2m j−1, m j )

(
N

m j

)
m j !,

R′
j = S(2m j−1, m j )

(
N

m j

)
m j !

and

W (p) =
(
1 − 2p−1

N

)2m p−1−2p−1 2p−1∏

s=1

(
1 − s

N

)

• If K = αN (i = 1, 2, . . . , p), then

lim
N→∞

E(Up)

K
= lim

N→∞

(
1 − 2p−1α

K

)2p−1K

= e−(22p−2)α. (7)

Proof To prove the first statement, we apply repeatedly the same arguments as used
for Theorem 2: for each generation, we split the ancestors of the sample into subsets
of siblings while controlling that ancestors of the given individual are not in the same
subsets.

The proof of (7) is similar to the proof of Theorem 3. First we can show that we
can substitute summations over mi > βK for some constant β (see Lemma 1). Then
we use estimations for Qi that are similar to those obtained in Lemma 2. �	

6 Non-monogamous Wright–Fisher model

Similar results to those obtained for the monogamous case also hold for the
non-monogamous dioeciousWright–Fishermodel.However, in contrast to themonog-
amous case, the probability that two individuals are full siblings or full p-th cousins
(i.e. sharing two ancestors) is rather small. Most familial relationships would involve
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sharing only one common ancestor at a given generation, i.e. related individuals would
typically be half siblings or half p-th cousins.

Let Vp be a random variable representing the number of individuals in a sample S
of size K without half siblings or full siblings (p = 1) or half p-th cousins or full p-th
cousins (p ≥ 2) in S under the non-monogamous Wright–Fisher model. The next
theorem established the expression for the expectation of Vp and its limit for K → ∞
in the case of fixed ratio between K and the population sizes N .

Theorem 5 • For any natural p ≥ 1, the expectation of Vp is

E(Vp) = K

∑K
m1=1 P1

∑2m1
m2=2 P2 . . .

∑2m p−2

m p−1=2p−2 Pp−1N 2m p−1W 2(p)

∑K
m1=1 P ′

1

∑2m1
m2=2 P ′

2 . . .
∑2m p−2

m p−1=2p−2 P ′
p−1N 2m p−1

, (8)

where we assume m0 = K and

Pj :=
m j −2 j−1

∑

n=2 j−1

Q2 j−1(m j−1, n)Q2 j−1(m j−1, m j − n)

(
N

n

)(
N

m j − n

)
n!(m j − n)!,

P ′
j :=

m j −2 j−1
∑

n=2 j−1

S(m j−1, n)S(m j−1, m j − n)

(
N

n

)(
N

m j − n

)
n!(m j − n)!

and

W (p) =
(
1 − 2p−1

N

)m p−1−2p−1 2p−1−1∏

s=1

(
1 − s

N

)
.

• If population sizes K = αN, then

lim
N→∞

E(Vp)

K
= e−(22p−1)α.

The proof of the theorem is similar to the case of the monogamous model. The
function Pj counts the number of possibilities to have exactly m j parents (male plus
female)

In particular,

E(V1) = K (1 − 1/N )2(K−1).

Corollary 1 The qualitative behaviour of Ui and Vi is the same, more precisely

lim
N→∞

E(Vi )

K
=

(
lim

N→∞
E(Ui )

K

)2

.
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7 Numerical results

In this section we present numerical results for expectations of Up and Vp, p =
1, 2, 3. Every plot of Figs. 3 and 4 represents the behaviour of E(Up)/K or E(Vp)/K
for a particular p = 1, 2, 3. Those values are computed by formulas (6) or (8) for
different values of N (N = 20, 100, 200) as a function of the ratio K/N . We also add
corresponding limiting distribution to every plot to illustrate the convergence.

Because the effective population sizes are typically rather large (at least thousands
of individuals) we might expect a satisfactory approximation of E(Up) and E(Vp) by
its limiting distribution even for relatively small K/N ratios. One can also check that
in our proofs the errors in the estimates are of the order of 1/N , hence for the desired
ratio we can estimate the absolute error for smaller values of K , N numerically and
then increase N to get the desired precision.

8 Discussion

In this paper we analysed the expected values of the number of individuals with-
out siblings and p-th cousins in a large sample of a population. To do that we used
two extensions of Wright–Fisher model which keeps track of the two parents of an
individual.

The first extension corresponds to a monogamous population and the second to
a non-monogamous population. The two models represent two extremes in terms of
degree of promiscuity, and we might expect that in most other dioecious versions
of the Wright–Fisher model, with intermediate degrees of promiscuity, the number
of individuals without siblings or p-th cousins is somewhere in between those two
regimes - as long as the models otherwise maintain Wright–Fisher dynamics.

Under bothmodels we derived expressions for these expectations under the hypoth-
esis that the pedigrees have no cycles (except for the one appearing in full sibs). Notice
that this restriction is not too strong, because one can easily show that the chance that
an individual has a pedigree with a cycle is a second-order effect as soon as the number
of ancestors (≤ 2p) in a generation is much smaller than the effective population size
N .

The important result of the paper is the limiting distributions for E(Up)/K and
E(Vp)/K . It turns out that E(Up)/K and E(Vp)/K converge point-wise to e−cK/N

where the constant c is 22p−2 for Up and 22p−1 for Vp.
We notice that even when the sampling fraction is relative low, the proportion of

individuals in the sample with no close relatives can be small. For example, for the
non-monogamous model and a sampling faction of 5%, the proportion of individuals
with at least a second cousin is approx. 70% if the population size is at least N = 200.
For a sampling fraction of 2% the proportion in individuals with at least a second
cousin is close to 50% for reasonably large population sizes in case of random mating
population or almost 30% in case of monogamous population. For sampling fractions
on the order of 0.01 or larger, we expect a large proportion of individuals to have at
least one other individual in the sample to which they are closely related. This fact
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(A) p=1, individuals without siblings.

(B) p=2, individuals without first cousins.

(C) p=3, individuals without second cousins.

Fig. 3 E(Up)/K as a function of the K/N ratio for N = 50 (blue circle), 100 (orange triangle), 200 (green
square) and the corresponding limiting distribution (red star) (colour figure online)
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p=1, individuals without siblings and half siblings.

p=2, individuals without first-cousins and half first cousins.

p=3, individuals without second cousins and half second
cousins.

(A)

(B)

(C)

Fig. 4 E(Vp)/K as a function of the K/N ratio for N = 50 (blue circle), 100 (orange triangle), 200 (green
square) and the corresponding limiting distribution (red star) (colour figure online)

123



1296 V. Shchur, R. Nielsen

should be taken into account in all genetic, and non-genetic, epidemiological studies
working on large cohorts.

In the study of Danish population structure, Athanasiadis et al. (2016) discovered 3
pairs of first cousins and one pair of second cousins in a sample of just 406 individuals.
Based on their estimate of an effective population size of 500,000, we would expect to
find 1.32 individuals with first cousins under the monogamous model and 2.63 indi-
viduals with first cousins under the non-monogamous model. The empirical number
of 3 first-cousins in the sample is therefore not significantly different of the expected
number of 1.32 under the monogamous model assumption. It is also not statistically
significantly different from the expected number of 2.63 under the non-monogamous
model. The expected number of second cousins in the sample is 5.24 and 10.41 under
the monogamous and non-monogamous models, respectively. The inferred number
of 1 is much smaller than this, likely because it is difficult to infer second cousins
empirically. We would in general expect that the true number of second cousins is
larger than the true number of first cousins.

Notice, that the probability for two individuals to be p-th cousins is approximately
π̂p(N ) = cm(2p+1 − 1)2p/N , where cm is 1 for monogamous model and 2 for non-
monogamous model. Hence, the expected number of pairs of p-th cousins in a sample
of size K is approximately π̂p(N )K 2/2. Henn et al. (2012) found approximately
5000 pairs of third cousins and 30000 pairs of fourth cousins in a sample of only 5000
individuals with European ancestry, which would be expected for effective population
sizes of 2 · 105−3 · 105 under the monogamous model and twice that (4 · 105−6 ·
105) under the non-monogamous model. These numbers are roughly compatible with
estimates of effective population sizes obtained formodernEuropeanpopulations (e.g.,
Athanasiadis et al. 2016). We note that effective population size is a tricky concept for
a spatially distributed population such as European humans, but the breeding structure
observed in these samples suggest that the degree of relatedness in the sample is
compatible with population sizes on the order of 105 − 106.

Acknowledgements The work was supported by the UCOP Catalyst Award CA-16-376437.

9 Appendix: Stirling numbers of the second kind and their
generalisation

In this section we provide definitions and properties of Stirling numbers of the second
kind.

The Stirling number of a second kind S(n, k) is the number of ways to partition a
set of size n into k non-empty disjoint subsets. These numbers can be computed using
the recursion (Abramowitz and Stegun 1972)

S(n, k) = kS(n − 1, k) + S(n − 1, k − 1),

with S(0, 0) = S(n, 0) = S(0, n) = 0 for n > 0. Notice that S(n, n) = 1.
An r−associated Stirling number of the second kind, Sr (n, k) (Comtet 1974), is

the number of partitions of a set of size n into k non-empty subsets of size at least
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r . These numbers obey a recursion formula (Comtet 1974) similar to that for Stirling
numbers of second kind

Sr (n + 1, k) = kSr (n, k) +
(

n

r − 1

)
Sr (n − 1, k − 1)

with Sr (n, 0) = Sr (1, 1) = 0. In particular, for r = 2

S2(n + 1, k) = kS2(n, k) + nS2(n − 1, k − 1).

9.1 Uniformly valid approximation for S(n, k).

The following useful approximation of Stirling numbers of the second kind is estab-
lished by Temme (1993)

S(n, k) =
(
1 + O

(
1

n

)) √
t0

(1 + t0)(x0 − t0)
eAkn−k

(
n

k

)
, (9)

where t0 = n/k − 1, x0 �= 0 is the non-zero root of the equation

k

n
x = 1 − e−x , (10)

and

A = −n ln x0 + k ln(ex0 − 1) − kt0 + (n − k) ln t0.

The following form of this approximation is known

S(n, k) =
(
1 + O

(
1

n

))√
n − k

n(1 − G)

1

Gk ( n
k − G)n−k

(
n − k

e

)n−k (
n

k

)
, (11)

with G = −W0(−n/ke−n/k), where W0 is the main branch of Lambert W -function
(Olver 2010).

We did not find a reference for the formula (11) in the literature, so we provide
briefly the proof. Notice that−1/e < −n/ke−n/k < 0, hence G ∈ (0, 1). Let us show
that x0 = n/k − G is the non-zero root of equation (10)

1 − e−x0 = 1 − e− n
k e−W0(−n/ke−n/k) = 1 − e− n

k
W0(−n/ke−n/k)

−n/ke−n/k

= k

n

(n

k
+ W0(−n/ke−n/k)

)
= k

n
x0,

where the second equality is due to the Lambert function property e−W (x) = W (x)/x .

Substituting t0 and x0 in approximation (9) by their values and simplifying the formula,
one gets the needed result. Obviously,
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√
t0

(1 + t0)(x0 − t0)
=

√
n − k

n(1 − G)
.

Now consider eAkn−k

eAkn−k = (n/k − G)−n(en/k−G − 1)ke−k(n/k−1)(n/k − 1)n−kkn−k =

= (n/k − G)−n
(

e
n
k

−n/ke−n/k

W0(−n/ke−n/k)
− 1

)k (
n − k

e

)n−k

=

= (n/k − G)−n
(

n/k

G
− 1

)k (
n − k

e

)n−k

=

= (n/k − G)−n+k G−k
(

n − k

e

)n−k

,

which finished the proof of equivalence of approximations (9) and (11).
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