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Abstract—Genomic data is a rich source of information about population history. In particular,
for actively recombining species the time to the last common ancestor (LCA) between two chro-
mosomes might be different in different chromosome loci. Estimating local LCA time is important
for many problems: it can be used to infer genes under selection, or to infer effective population
size changes. The current state-of-the art method PSMC to infer local LCA time and effective
population size is based on a Hidden Markov Model. In this work we propose a new deep learning
framework for local LCA time inference at the full genome scale. We demonstrate that our method
is accurate in both local LCA time and, as a consequence, at the LCA time distribution which in
turn translates into effective population size trajectory. In future our approach can be generalised for
complex population scenarios.
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1. INTRODUCTION

Population genetics is a recent interdisciplinary research area which relies on mathematical and
computational methods to infer population demography and structure through time from genomic data.
Whole-genome sequencing data are rich in such information. But due to the genome length and the
complexity of underlying processes, these data are challenging to be analysed.

Demographic inference, which assumes an estimation of the population size changes through time,
is one of the key problems in population genetics. For example, it was shown [1] that all the non-African
populations underwent through a similar bottleneck between approximately 30kya (20 thousand years
ago) and 100kya. African populations do not show signals of such a bottleneck. This fact supports the
hypothesis of an African origin of modern human population.

The state-of-the-art methods for demographic inference used for mammals and some other animals,
are based on a Hidden Markov Model (HMM). Such an HMM decodes genetic variants along a genome
under Sequential Markovian Coalascent (SMC) [2, 3]. SMC is a population model which approximates
coalescent with recombination [4]. Under coalescent with recombination, a genealogy of a set of
chromosomes is a directed acyclic graph with an additional data structure reflecting spacial structure
along these chromosomes. Limiting this genealogy to a single genetic site, results in a tree. These
trees might change between adjacent genetic sites because of ancestral recombinations. Under SMC
approximation, genealogical trees change along a genome following a Markovian process. Transitions
between trees are caused by chromosomal recombinations. Under HMM, these genealogical trees
are hidden states, and genetic variants are emissions. Different methods rely on this idea including
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PSMC [1], diCal [5], MSMC [6], SMC++ [7], ASMC [8], MSMC-im [9], ngsPSMC (unpublished).
These methods differ in the structure of input data (a single diploid genome for PSMC, multiple phased
genomes for MSMC, a single diploid sample with allele frequencies of genetic variants for SMC++,
sparse genotype data for ASMC, genotype likelihoods for a single diploid genome for ngsPSMC).

Deep learning is also used in population genetics for studying demographic, population and evo-
lutionary parameters, though these methods are not widely used. A detailed review of deep learning
methods in population genetics is provided in [10], so we discuss only few important examples here.
Mondal et al. [11] used deep learning to generate a genomic summary statistics for Approximate
Bayesian Computation (ABC) [12], to study archaic introgression in Asia and Oceania. In [13] deep
learning is used to jointly infer demography and natural selection. In [14] exchangeable neural networks
and on-the-fly simulations were used to infer recombination hotspots. A first method to infer a detailed
population history with deep learning is proposed in [15] and proves that neural network based approach
could be a powerful tool in population genetics. Though more efforts should be done in the field to explore
the advantages and limitations of deep learning to be used for real data analyses. In this work we suggest
a new deep learning framework to predict LCA times along a diploid genome at a whole genome scale,
similarly to PSMC [1].

There are two important challenges in population genetics for deep learning applications. Firstly,
it is a length of a genome. For example, a human genome is around 3.2 billion nucleotides, which is
by several orders of magnitude longer than any text in natural language processing (NLP) problems.
Secondly, it is the absence of labeled real data. This challenge is solved through simulating training
datasets, benefiting from efficient simulators available in the field.

Some other complications in genome wide inference are the variable genome size, sequencing errors
(and other potential sources of errors such as post-mortem damage in ancient DNA), missing data, low
depth sequencing (which leads to the errors in variant calling), and some others. While our approach
addresses the first complication, all other aspects are currently off the scope of this paper.

Our framework is implemented as a modular package. It is aimed to become a helpful tool for
population geneticists who are not experts in neural networks to allow a fast prototyping of their own
DL-based methods. The code can be found at https://github.com/Genomics-HSE/deepgen.

2. MODELS AND METHODS
2.1. Basic Biological Notations

In this paper, we use the following biological terms. Genome is the genetic material of an organism
which consists of multiple DNA molecules (formally, a string over an alphabet of four letters, nucleotides,
’A’, ’T’, ’C’ and ’G’). Each such DNA molecule is called a chromosome. Within a species, genomes of
all individuals can be aligned relatively to each other. The differences between genomes relatively to
such an alignment are called genetic variants and arise due to ancestral mutations, some of which might
appear hundreds of thousands generations ago. A position in this alignment is called a site. A site with
a genetic variant is a variable site (in fact, there are many types of genetic variability but we consider
only the most common Single Nucleotide Polymorphism, shortly SNP). Genomes of diploid organisms,
such as humans, normally contain two sets of chromosomes, called haplotype from each of two parents.

All the analysis in this paper is based on the distribution of pairwise differences between two
haplotypes along the genome. So, this data can be encoded as a binary sequence with 0 referring to
identical nucleotides at the site, homozygous site, and 1 referring to a genetic variant between these
two haplotypes, heterozygous site.

Effective population size is one of the key quantities in population genetics [16]. It can be defined
as a population size of Wright–Fisher population [17] with the same genetic diversity. Another informal
interpretation of this quantity is the number of individuals in a population which potentially can have
offsprings. This interpretation underlines an important differences between effective population size and
the census size (the total number of individuals in a population).

For the Wright–Fisher model [17], effective population size uniquely defines the distribution of the
time to the last common ancestor (LCA). As it is shown in [1], this distribution can be estimated from
a single diploid genome in case of a recombining organism. Due to recombinations, every chromosome
is a mosaic of DNA tracts coming from different ancestors. So, the time to the last common ancestor
between two haplotypes varies along the genome. Tracts with deep ancestry would be short and at
the same time have relatively many pairwise differences which are due to ancestral mutations. On the
opposite, tracts with recent ancestry tend to be longer and have a small amount of heterozygous sites.
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2.2. Method Overview

As we explained above, the input data for our method is a binary sequence encoding pairwise
differences between two haplotypes with 0 for homozygous sites and 1 for heterozygous sites. The
target is the time to the local last common ancestor along each chromosome. We state this problem
as classification approach. The time axis is divided into multiple time intervals. Similarly to PSMC, the
length of these time intervals increases exponentially while going deeper in the past. More precisely, we
first choose some Tmax—the last non-infinite end-point of the time axis partition. Then we choose the
number K of time intervals in the partition, and we set end-points Tk

Tk = α(ek log(1+10Tmax)/K − 1).

Because there is a very small chance for two lineages to coalesce within the first few time intervals,
we merge the first 4 time intervals into a single one.

In all the following results we use the following parameter values Tmax ≈ 95000 generations, K = 32,
α = 550.

2.3. Training Dataset

In the absence of labeled real data with known time to the last common ancestor, we generate a
training dataset through simulations similar to [13]. Mutation and recombination rates were fixed with
human-like values of mutation rate μ = 1.25 × 10−8 and recombination rate ρ = 1.6× 10−9 [9, 15].

We present results for two training datasets. The first dataset (labeled “dataset 1”) consists of
chromosomes sampled from a demography with a fixed constant effective population size of 1 (in the
coalescent units of 2N0).

The second dataset (labeled “dataset 2”) consists of randomly drawn demographies. The time axis
was split into 13 time intervals, with the effective population size being 1 at the last time interval, and for
the rest of 12 time intervals effective population sizes were randomly drawn. A bottleneck was allowed
during the 4th, 5th, and 6th time intervals. The code for generating the trajectories is available at the
GitHub repository associated with the project.

2.4. Data Preparation

The dataset consists of learning pairs, with the first element of a pair encoding a diploid genome, and
the second element represents labels (local LCA times). A genome is encoded with 0’s (homozygous
sites) and 1’s (heterozygous sites). In order to reduce the size of each example (in particular, due to GPU
memory limitations), we split chromosomes into segments of 30 million base pairs. Further, nucleotides
are binned into 100bp non-overlapping windows. If all positions within a window are homozygous, the
window is encoded by 0, otherwise, it is encoded by 1. The same procedure is used in PSMC [1] analysis.
As a result, we use sequences being 30000 bin long for training.

2.5. Architecture

Recurrent neural networks proved to be a powerful approach for sequence data analysis. Our model
uses 4 layers of bidirectional GRU network [18]. Bidirectional networks allow to combine information
both from left and right from each position on a sequence with non-shareable set of weighs for each of
the two (left-to-right and right-to-left) RNNs. Input of each layer of GRU network is an output of the
previous layer, and it also processes these inputs in a bidirectional manner. The last building block of NN
are fully-connected layers which make a final label prediction for a locus. Resulting model is represented
schematically on Fig. 1.
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Fig. 1. Neural network architecture. xt are genome positions (or bins) being in homozygous (0) or heterozygous (1)
states. hl

t is a hidden vector with a relevant information about current locus, FF are fully connected layers and yt is a
final prediction of the model (a vector of probabilities that local LCA is in a certain time interval).
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Fig. 2. The time of LCA along a chromosome. The heatmaps show the probabilities of LCA time being at a time
interval along a chromosome. Left panel demonstrates the LCA time inferred from a chromosome representing a
constant size population by the neural network trained on a constant size dataset. Right panel represents LCA time
along a chromosome from a population with a bottleneck, the neural network was trained on a dataset with random
demographies. Red line represents the true underlying LCA times (known from simulations).

3. RESULTS

As explained in the Methods section, we trained our deep learning model on two different training
datasets. We applied these neural networks to two diploid genomes: the first genome (labeled “const”)
is drawn from a demographic scenario with constants effective population size; the second genome
(labeled “bottleneck”) is drawn from a demographic scenario with a human out-of-Africa like bottleneck
(represented in ms [19] syntax as -eN 0.0 3.0 -eN 0.025 0.2 -eN 0.175 1.5 -eN 3 3 -eN 10.0
3).

We present the results of the local LCA time prediction of a model trained on dataset 1 on a “const”
chromosome (Fig. 2, left panel), and a model trained on dataset 2 on a “bottleneck” chromosome.
Heatmap represents the probabilities of each LCA time class for each genomic position. Qualitative
assessment shows that in both cases our neural network captures the LCA time rather well.

Further on, we calculated the cumulative distribution of LCA time (sum over all genomic positions)
from simulated genomes, and from the neural network prediction. We investigated prediction of the
dataset 1 and dataset 2 models both on “const” and “bottleneck” genomes. The results are represented
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Fig. 3. The cumulative distributions of LCA times calculated from the simulated genome (“simulated”), estimated by
model trained on dataset 1 (“model 1”), and by model trained on dataset 2 (“model 2”).
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Fig. 4. Effective population size estimated as the inverse of coalescent rates calculated from the simulated genome
(“simulated”), estimated by model trained on dataset 1 (“model 1”), and by model trained on dataset 2 (“model 2”).
The effective population size of the simulated demographic scenario is also shown (“population scenario”).

on Fig. 3. Model trained on dataset 1 performs well on the “const” genome, and model trained on
dataset 2 performs well on the “bottleneck” genome. Predictions of dataset 1 model on the “bottleneck”
genome and of dataset 2 model on the “const” genome are less precise. While in the first case this is
not surprising (the demographic scenario is fixed, and only the chromosomes are randomly drawn from
it), it is less explainable in the second case (where demographic scenarios are randomly chosen). These
examples show that the prediction might be sensitive to the training dataset, and a further research is
needed to understand how to generate an optimal training dataset. In fact, there are three potential
sources of signal for the neural network. The first one is the density of heterozygotes in a genomic
region: the larger is the LCA time, the more heterozygotes present in a region. Secondly, longer regions
correspond to shorter LCA times. Third source of information is the patterns of transitions between
different LCA times. In terms of a Hidden Markov Model, the first point is determined by emission
matrix, while the second and the third are determined by transition matrix. Moreover, they contain
information about additional population structure which will be a subject of our future work.

Cumulative LCA time distribution determines the effective population size which is represented at
Fig. 4.

We also present confusion matrices (Fig. 5). These matrices represent the probabilities to predict
class X given that the true class isY . For the recent times there is a bias in both models to underestimate
the LCA time. For other classes both models are rather precise which is supported by the diagonal shape
of the confusion matrices.
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Fig. 5. Confusion matrices for models trained on dataset 1 (left) and dataset 2 (right). Each line corresponds to a
probability for a model to predict class X given that the true class is Y.

3.1. Code

The code is available at GitHub repository https://github.com/Genomics-HSE/deegen.
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