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The quantitative quasi-isometry problem consists in evaluating how close two metric 
spaces can be at various scales, a problem stated in the Shchur’s PhD thesis [29]. Specif-
ically, let E, F be two metric spaces. Consider a ball of radius R in the first space E
and take a (λ, c)-quasi-isometric embedding of this ball in F . We are interested in the 
behaviour of the infimum of the sum λ + c of quasi-isometry constants as a function of 
R. We call this quantity a quasi-isometric distortion growth.

Our approach is related to the quasi-isometry rigidity and classification problems (see 
[10], p. 101, and [29], p. 24, for the detailed surveys), but we consider the quasi-isometry 
classification from the quantitative point of view. Indeed, as soon as two spaces are known 
to be not quasi-isometric, it would be desirable to give a quantitative measurement of 
this fact. For this purpose, we suggest studying quasi-isometric embeddings of balls of 
varying radius from one space into the other.

One of the first appearances of quasi-isometries is the proof of the famous Mostow’s 
theorem [20] which claims that every isomorphism of two lattices Γ, Γ′ ⊂ Isom(Hn) is 
induced by an isometry of Hn. In the course of the proof Mostow established that two 
quasi-isometric rank 1 symmetric Riemannian spaces of negative curvature are homoth-
etic. This theorem was followed by generalisations of P. Pansu [21] (case of rank one) 
and B. Kleiner and B. Leeb [19] (higher ranks) which allow proceeding towards a quasi-
isometry classification of some important classes of metric space (for example, irreducible 
thick Euclidean Tits buildings).

Interesting and profound results were achieved for the quasi-isometric classification 
of 3-manifolds. M. Kapovich and B. Leeb [18] pose the question of whether the funda-
mental groups of all (closed) graph manifolds are quasi-isometric. Their result reduces 
this problem to the case of non-positively curved manifolds. Further, J.A. Behrstock and 
W.D. Neumann [2] proved that the fundamental groups of any two closed irreducible 
non-geometric graph-manifolds are quasi-isometric. They develop their study by classi-
fying the quasi-isometry types of fundamental groups of graph-manifolds with boundary 
in terms of certain finite two-coloured graphs. They extend their study in [3] by describ-
ing the quasi-isometric classification of fundamental groups of irreducible non-geometric 
3-manifolds which do not have “too many” arithmetic hyperbolic geometric components.

There are many results in the case of solvable groups. In particular, P. Pansu [22]
proved that if two finitely-generated nilpotent groups are quasi-isometric, then the asso-
ciated graded Lie groups are isomorphic. Also Y. Shalom [27] proved that quasi-isometric 
finitely generated nilpotent groups have the same Betti numbers.

Furthermore, A. Eskin, D. Fisher and K. Whyte launched a huge study of quasi-
isometries of Lie groups of the form Rm

�M R
n; the work is still in progress. The current 

result states that for m = 1 and for two diagonalisable matrices with no eigenvalues 
on the unit circle, the corresponding Lie groups are quasi-isometric if and only if there 
exists α ∈ R such that Mα and M ′ have the same absolute Jordan form. Parts and 
special cases of this theorem can be found in a series of papers by A. Eskin, D. Fisher, 
K. Whyte [11–13], T. Dymarz [9] and I. Peng [25,26].
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Our problem is reminiscent of the Ramsey-type theory,2 which generally states that 
a large proportion of a given metric space can be embedded with small distortion into 
some well-structured family of metric spaces. The metric Ramsey-type embeddings of 
finite metric spaces into finite dimensional normed spaces was studied in [1]. The main 
result of the mentioned paper is that for every ε > 0, any n-point metric space has a 
subset of size n1−ε which embeds into Hilbert space with distortion 

(
log(1/ε)

ε

)
. Notice 

that every space can be discretised with a (1, 1)-quasi-isometry, hence it is possible to 
pass to a study of finite metric spaces. It suggests another potential direction of the 
quantitative study of quasi-isometries. Proposition 2.4 is an example of such type of 
results: we build a quasi-isometry from a ball in a tree into a 

√
R-dense subset of a ball 

in H2 with quasi-isometry distortion growth 
√
R.

1.1. Basic definitions

In this part we will give the definitions of the main objects in our study: quasi-isometry, 
quasi-isometric embedding and quasi-isometric distortion growth.

Definition 1.1. Two metric spaces X and Y are said to be roughly quasi-isometric if there 
exists a pair of maps f : X → Y , g : Y → X and two constants λ > 0 and c ≥ 0 such 
that

• |f(x) − f(y)| ≤ λ|x − y| + c for every x, y ∈ X,
• |g(x′) − g(y′)| ≤ λ|x′ − y′| + c for every x′, y′ ∈ Y ,
• |g(f(x)) − x| ≤ c for every x ∈ X,
• |f(g(x′)) − x′| ≤ c for every x′ ∈ Y .

The word rough is often omitted.

The first two conditions mean that f and g are nearly Lipschitz if one is looking from 
afar, or at large scales. The additive constant c allows ignoring the local geometry of 
spaces. The two latter conditions provide that f and g are nearly inverse of each other. 
It is easy to check that the composition of two quasi-isometries is also a quasi-isometry. 
So, quasi-isometries provide an equivalence relation on the class of metric spaces.

Remark 1.1. Definition 1.1 is invariant under taking inverse maps.

Definition 1.2. A map f : E → F between metric spaces is a rough (λ1, c1, λ2, c2)-quasi-
isometric embedding if for any two points x, y of E

1
λ2

(|x− y|E − c2) ≤ |f(x) − f(y)|F ≤ λ1|x− y|E + c1.

2 We are thankful to the reviewer for pointing out paper [1] to us.
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This definition includes quasi-isometries (with λ1 = λ2 and c1 = c2), but it does not 
require the existence of a nearly inverse map. The introduction of four constants instead 
of two allows tracing the role of each inequality in this definition, which leads to a better 
understanding of quantitative issues. It is easy to see that if the space E is continuous, 
then its image in F is c1-connected. It means that, for every two points z1, z2 ∈ f(E), 
there exists a chain of points z̃1 = z1, ̃z2, . . . , ̃zn = z2, such that z̃i ∈ f(E) for 1 ≤ i ≤ n

and d(zi, zi+1) ≤ c1 for any i < n.
The following definition formalises the quantitative problem (see [29], pp. 17–24, for 

the explanation of such a choice).

Definition 1.3. Let X, Y be metric spaces, x0, y0 their base points respectively. The 
quasi-isometric distortion growth is the function

DG(X,x0, Y, y0)(R) = inf{d|∃f : BX(x0, R) → Y a (λf , cf )-quasi-isometric embedding

such that f(x0) = y0 and d = λf + cf}.

We will study the growth of DG as a function of R.
In this paper, we usually speak about quasi-isometric embeddings of balls in one space 

into another space. But some constructions of quasi-isometries (for example, Proposi-
tions 2.3 and 2.4) will provide quasi-isometries between balls in two spaces. Of course 
such constructions are limited to a narrower class of maps, but still lead to interesting 
results and answer some quantitative questions.

1.2. First examples

Let us start the discussion with some relatively basic, but important properties of 
metric spaces and quasi-isometries. They should be borne in mind when studying the 
quantitative quasi-isometry problem. For example, volume considerations show that any 
space with polynomial volume growth deviates linearly from any space of exponential 
volume growth (see Proposition 2.1).

Note, that since one may always take λ = 1 and c = R, the deviation between any 
two spaces is at most linear.

Connectedness considerations provide a lower bound of 
√
R for embeddings of Eu-

clidean or hyperbolic balls into trees. In the hyperbolic case, this bound is sharp (see 
Proposition 2.3). Probably, in the family of Gromov hyperbolic metric spaces, deviations 
should be of the order 

√
R. Indeed, we show (see Proposition 2.4) that given two hyper-

bolic metric spaces that are thick enough, one can map a 
√
R-dense subset of an R-ball 

of the first space into the second one with 
√
R distortion. However, we have been unable 

to extend such embeddings to the full R-ball while preserving the same distortion.
There seems to be a rather subtle obstruction for constructing such an extension. For 

instance, we show in Theorem 7.1 that mapping a tree into hyperbolic space requires 
linear distortion. The proof is based on the notion of separation, cf. [4,5,16].
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1.3. Main result

Our main result is another step towards capturing such obstructions. We consider 
a class of negatively curved locally homogeneous Riemannian manifolds which are not 
simply connected, but nevertheless hyperbolic. We prove a sharp linear lower bound on 
the distortion of embeddings which are homotopy equivalences.

Let Tn denote the n-dimensional torus. Given positive numbers μ1 ≤ · · · ≤ μn, 
denote Zμ = T

n × R, where the product space is equipped with the Riemannian metric 
dt2+

∑
i e

2μitdx2
i . The universal cover of Zμ is a Riemannian homogeneous space. Zμ is a 

hyperbolic metric space. Its ideal boundary is a product of circles, and each of them has a 
metric which is a power of the usual metric. Thus Zμ can be viewed as a hyperbolic cone 
over this fractal torus. Essentially, our theorem states that the quasi-isometric distortion 
growth function between such spaces is linear if one requires maps to be isomorphic on 
fundamental groups.

Theorem 1.1. (For a detailed quantitative statement, see Theorem 6.2.) For R large 
enough, every (λ, c)-quasi-isometric embedding Θ of an R-ball of Zμ into Zμ′ (up to 
replacing the spaces with connected 2-sheeted coverings) which is a homotopy equivalence 
satisfying

λ + c ≥ const
(∑

μi

μn
−

∑
μ′
n

μ′
n

)
R.

Conversely, there exist homotopy equivalences with linearly growing distortion,

λ + c ≤ const max |μi − μ′
i|R,

from an R-ball of Zμ into Zμ′ . This is a special case of a more general result which we 
describe next.

Further, a distance in a hyperbolic metric space can be approximated by the visual 
distance on the ideal boundary (Lemma 8.3). Using this approximation we find quasi-
isometry constants for the restriction on balls of a map Θ between X and Y , where the 
map Θ is a kind of radial extension of a homeomorphism θ between ideal boundaries. 
For the detailed and more technical statement of the following theorem, see Theorem 8.1
in Section 8.

Theorem 1.2. Let X, Y be hyperbolic metric spaces. Let θ : ∂X → ∂Y be a homeomor-
phism on their boundaries. We define the following function for R > 0,

K(R) = sup
{∣∣∣∣log dy0(θ(ξ1), θ(ξ2))

dx0(ξ1, ξ2)

∣∣∣∣ |dx0(ξ1, ξ2) ≥ e−R ∨ dy0(θ(ξ1), θ(ξ2)) ≥ e−R

}
.

Here dx0 , dy0 denote visual metrics on ideal boundaries. Then there exists a (K(R),
K(R))-quasi-isometry between BX(x0, R) and BY (y0, R).
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For spaces Zμ, we show that K(R) = R · maxi |μi/μ
′
i − 1|. We also give an example 

of a pair of non-quasi-isometric negatively curved locally homogeneous manifolds and 
a homeomorphism θ between their ideal boundaries with K(R) � logR. This result 
shows that sublinear (possibly logarithmic) distortion growths also occur in the world of 
hyperbolic metric spaces.

1.4. Stability of Poincaré inequalities and proof of Theorem 1.1

The proof of Theorem 1.1 involves several results which could have an independent 
interest and more applications. In particular, we study the transport of Poincaré inequali-
ties by quasi-isometries. For this purpose, kernels are introduced to regularise transported 
functions. Kernels allow transporting functions from Y to X, while controlling quanti-
tatively their Poincaré constants.

One of the first studies of such type of problem was made by M. Kanai in [17]. In this 
work the stability of isoperimetric inequalities under quasi-isometries is discussed in the 
case of Riemannian manifolds. Consider a bounded domain Ω ⊂ X with a sufficiently 
smooth boundary, so that ∂Ω is measured. The m-dimensional isoperimetric constant 
Im(X) of a space X is the infimum over all such domains of the ratio of an area of a 
boundary ∂Ω to the volume of Ω to the power (m − 1)/m

Im(X) = inf
Ω⊂X

Area(∂Ω)
(Vol(Ω))(m−1)/m .

Let X and X ′ be two quasi-isometric spaces with the Ricci curvature bounded from below 
by −(dimX−1) ·const and −(dimX ′−1) ·const respectively with some positive constant. 
Then for m > max{dimX, dimX ′} the isoperimetric constants are either strictly positive 
or vanish together.

In [7] the stability of Poincaré and Sobolev type inequalities for weighted graphs are 
studied. Further, R. Tessera used kernels to define a coarse Laplacian at a scale h in 
[30]. This allows defining a coarse Sobolev inequality which ignores local geometry of 
Riemannian manifolds. The important result of this work is that if X and X ′ are two 
quasi-isometric spaces satisfying the locally doubling property (the volume of a ball is 
controlled from above by the volume of a ball with a halted radius), and if X satisfies 
a Sobolev inequality at scale h, then X ′ also satisfies a Sobolev inequality at scale h′. 
Moreover, h′ depends only on h and quasi-isometry constants.

In our approach we are also interested in the stability of Poincaré inequalities under 
quasi-isometries. But, we would like to transport them by quasi-isometries while control-
ling the dependencies of Poincaré constants on the quasi-isometry constants and initial 
kernel’s constants. This approach entirely agrees with our quantitative study.

Now let us give more details on the proof of the theorem itself. It has several steps. 
Firstly, we introduce non-trivial double-covering spaces Z̃ and Z̃ ′ of Z = Zμ and Z ′ =
Zμ′ . The quasi-isometric embedding Θ lifts to a (λ1, 2c1)-coarse Lipschitz map. Now 
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consider the test-function eπixn on Z̃ ′ which depends only on one coordinate xn. It 
varies very slowly outside a ball, so the absolute value of the transported and regularised
function v on Z̃ stays close to 1. Lemmas 4.3 and 4.4 control how the lower bound of 
Poincaré constant changes under transport. It helps to get a lower bound for the Poincaré 
constant of Z̃ in terms of {μi}, {μ′

i} and the constants of quasi-isometric embedding. At 
the same time Theorem 5.1 provides an upper bound for the Poincaré constant of Z̃. The 
combination of these results leads to a lower bound for the homotopy distortion growth 
for Z and Z ′.

1.5. Paper structure

The results are organised in the following way.

• In Section 2, we discuss some basic arguments: volume consideration and rough 
connectedness lead to first bounds on quasi-isometric distortion growth.

• In Section 3, we give definitions of kernels and generalised Poincaré inequality asso-
ciated with kernels. Further we discuss the idea of the proof of Theorem 1.1 which 
relies on the transport of Poincaré inequalities by quasi-isometries.

• In Section 4, we study the transport of Poincaré inequalities by quasi-isometries in 
a quantitative way.

• In Section 5, we give an upper bound for the Poincaré constant of balls in spaces of 
the form X̃ = R+ × R

n with metric dt2 +
∑

i e
2μitdx2

i quotiented by Zn.
• In Section 6, we prove Theorem 1.1.
• In Section 7, we prove a linear lower bound of a quasi-isometry distortion growth 

for a hyperbolic space Hn, n ≥ 3 and a regular tree based on the notion of coarse 
separation.

• In Section 8, we give an approximation of distance in Gromov hyperbolic spaces 
using visual distance on its ideal boundary. Using this result we construct a map 
induced by a boundary homeomorphism which provides a non-trivial upper bound 
on quasi-isometry distortion growth.

• In Section 9, we apply the results of the previous section to several examples. In the 
case of unipotent locally homogeneous spaces, we obtain logarithmic quasi-isometry 
distortion growth.

• In Appendix A, we discuss the hypothesis of Theorem 6.2 that the quasi-isometric 
embeddings under consideration are a homotopy equivalence. We will show that if 
dim(Z) ≥ 3, one may believe that the assumption that Θ is isomorphic on fundamen-
tal groups is not that restrictive. Yet this result is not effective, so it is not valuable 
for our study.

2. General discussion

Here we provide basic arguments which provide lower bounds on quasi-isometry con-
stants.
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2.1. Comparison of volumes

To begin with, let us show that the comparison of volumes in the domain and in the 
range plays an important role.

An image of a ball by quasi-isometry is not necessarily a measurable set. Though, 
for the sake of simplicity we will speak about volumes of such sets in the proof of the 
following theorem. Here a volume can be considered as the infimum of volumes of sets 
of 1-balls covering the corresponding image.

Consider a space X with an exponential volume growth (for example, hyperbolic 
plane H2) and a space Y with a polynomial volume growth (for example, Euclidean 
space Rn), then constants of quasi-isometric embedding of X into Y grow linearly in R: 
λR + cR = Ω(R) due to the limitations provided by the additive constant cR.

Proposition 2.1. Let X be a space with exponential volume growth and Y be a space 
with polynomial volume growth. Then for any (λ, c)-quasi-isometric embedding of a ball 
BX(R) into Y , the additive constant c grows linearly in R, or

c ≥ const ·R.

For the sake of simplicity, in the proof, assume that the volume of a ball BX(R) in X
is eR and the volume of a ball BY (R) in Y is Rα.

Proof. Let BX(R) be a ball in X, f : BX(R) → Y be a (λ, c)-quasi-isometric embedding. 
Then the diameter of the image f(BX(R)) is ≤ 2λR + c. Consider a maximal set S of 
points in BX(R) such that pairwise distances between these points are at least 2c. The 
cardinality of S can be estimated as follows: #(S) ∼ Vol(BX(R)/Vol(BX(2c))). For any 
two points s1, s2 ∈ S the distance between their images is at least c/λ. Hence, the volume 
of f(BX(R)) is at least #(S) × Vol(BY (c/λ)).

So, on the one hand Vol(f(BX(R))) ≤ Vol(BY (2λR + c)) and on the other hand 
Vol(f(BX(R))) ≥ Vol(BY (c/λ))Vol(BX(R)/Vol(BX(2c)). We get

(c/λ)αeR−2c ≤ (2λR + c)α.

For R big enough, this inequality can be satisfied only if exponential term disappears, 
that is c = R/2. �
Remark 2.1. The same argument yields lower bounds on quasi-isometry constants be-
tween balls of the same radius in spaces of different exponential growths. This does not 
prevent such spaces from being quasi-isometric. For instance, P. Papasoglu [24] shows 
that two regular trees of degrees at least 4 are always quasi-isometric. The quasi-isometry 
provided in [24] does not preserve the distance to a fixed point.
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2.2. Connectedness

Another property which can detect a difference in the coarse geometry of two spaces 
is connectedness. For example, if one cuts a ball from a tree then it will fall into several 
components, but cutting a ball from a hyperbolic plane still give only one connected 
component. First, we define coarse connectivity.

Definition 2.1. A map f : X → Y between two metric spaces is called c-connected if 
for any point x ∈ X and any real number δ > 0 there exists ε > 0 such that if a point 
x′ ∈ X satisfies d(x, x′) < ε then d(f(x), f(x′)) < c + δ.

Definition 2.2. A metric space X is called c-connected if for any two open sets U, V ⊂ X

such that X = U ∪ V , the intersection of a c-neighbourhood of U and V is not empty: 
(U + c) ∩ V = ∅.

This definition is evidently equivalent to the following.

Definition 2.3. A metric space X is c-connected if for any two points x, x′ ∈ X there 
exists a c-connected map f : [0, 1] → X such that f(0) = x and f(1) = x′.

We are ready to illustrate our idea how connectedness can be used for obtaining 
quantitative results on quasi-isometries. In the following proposition one can take, for 
example, hyperbolic plane as the space X.

Proposition 2.2. Let X be a geodesic metric space. Suppose that for any points x, y and 
any positive real numbers R and R′ ≤ R/2 the set Bx(R) \ By(R′) is connected and 
non-empty. Let Y be a tree, let f : Bx(R) → Y be a (λ1, λ2, c1, c2)-quasi-isometric 
embedding. Then R ≤ 12λ2c1 + 4c2.

Proof. We are going to prove that there exist three points x1, x2 and x such that x1, x2 ∈
Bx(R) and the distance d(x1, x2) is at least R. Consider a ball of radius 2R centred in x1. 
By hypothesis, the set Bx1(2R) \Bx1(R) is non-empty, hence there exists a point x2 such 
that 2R > d(x1, x2) ≥ R. The space X is geodesic, hence now we can take the midpoint 
of x1x2 as x.

Denote yi = f(xi) for i = 1, 2.
For any point y of a geodesic (y1, y2) ⊂ Y there exists a point z ∈ Bx(R) such that 

d(f(z), y) ≤ c1. This follows from the fact that the image of (x1, x2) is c1-connected by 
the definition of a quasi-isometric embedding and every c1-connected path between y1
and y2 includes the geodesic (y1, y2) in its c1-neighbourhood.

Now consider a chain of points {x̃i} connecting x1, x2 and such that d(x̃i, ̃xi+1) <
c1/λ1. Hence, in the image d(f(x̃i), f(x̃i+1)) < 2c1 and so there exists i such that 
d(f(x̃i), y) ≤ 2c1. Notice that Y \ By(2c1) has several (4c1 − 2)-connected components 
and the distance between these components is at least 4c1.
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Suppose that a point z is rather far from both x1 and x2: d(z, xi) > 4λ2c1 + c2, 
i = 1, 2. Suppose also that R > 2(4λ2c1 + c2) (if not there is nothing to prove). In 
the set Bx(R) \ Bz(4λ2c1 + c2), also find a c1/λ1-chain. Hence, there exists a point 
z′ /∈ Bz(4λ2c1 + c2) of this path such that d(f(z′), y) ≤ 2c1. Hence, d(f(z), f(z′)) ≤ 4c1
and by property of quasi-isometry d(z, z′) ≤ 4λ2c1+c2, so z′ ∈ Bz(4λ2c1+c2). This leads 
to a contradiction with the hypothesis of the proposition. Hence, for any y ∈ (y1, y2)
there exists z′ ∈ Bx1(4λ2c1 + c2) ∪Bx2(4λ2c1 + c2) such that d(f(z′), y) ≤ 2c1.

Consider two points y′, y′′ on the geodesic (y1, y2) which are close enough to each 
other (more precisely d(y′, y′′) ≤ c2/λ2) and such that respective points z′ and z′′ (which 
minimise distances to y′ and y′′, that is d(y′, f(z′)) ≤ 2c1 and d(y′′, f(z′′)) ≤ 2c1) lie 
in different balls z′ ∈ Bx1(4λ2c1 + c2) and z′′ ∈ Bx2(4λ2c1 + c2). So, on the one hand 
d(z′, z′′) ≥ R−8λ2c1−2c2 and on the other hand, by triangle inequality d(f(z′), f(z′′)) ≤
c2/λ2 + 4c1. Hence R − 8λ2c1 − 2c2 ≤ λ2(c2/λ2 + 4c1) + c2 = 4λ2c1 + 2c2. So we get 
R ≤ 12λ2c1 + 4c2. �

Proposition 2.2 implies that any quasi-isometric embedding of an R-ball in hyperbolic 
plane into a tree has a distortion of at least 

√
R. We wonder whether this conclusion is 

sharp. A partial answer is given by Proposition 2.3. In this proposition we construct an 
example of a (

√
R, 

√
R, 

√
R, 

√
R)-quasi-isometry of an R-ball in a geodesic metric space 

X to a 
√
R-ball in a tree, up to taking a 

√
R-dense subset. The essential point here is 

that we consider trees of variable degree which depends on R.

Proposition 2.3. Let X be a geodesic metric space. For any R > 0 there exists a 
√
R-dense 

subset S(R) ⊂ BX(R), a tree T (R) and a (
√
R, 

√
R, 

√
R, 

√
R)-quasi-isometric embedding 

fR : S(R) → T (R).

Proof. Consider a ball BX(R, z0) centred at z0. Let us construct a discrete set of points 
S(R) generation by generation in the following way. The 0-generation is the origin z0. For 
each k we pick a maximal 

√
R-separated subset in the sphere of radius k

√
R. The resulting 

set S(R) is 
√
R-separated. It is also 3

√
R-dense. Indeed, any point in B((k + 1)

√
R) is √

R-close to some point of the sphere of radius k
√
R, in which the k-th generation is 

2
√
R-dense, by maximality. In particular, every point of the (k + 1)th-generation is at 

distance ≤ 3
√
R from at least one point of the kth-generation. This provides us with 

a tree T (R) with vertex set S(R): we connect each point of the (k + 1)th-generation 
to the closest point of kth-generation (if the choice is not unique, choose the ancestor 
arbitrarily). Finally, set the lengths of all edges of the constructed tree T (R) equal to 1. 
The diameter of T (R) is ∼

√
R.

Now we sketch the proof that the induced map f is a (
√
R, 

√
R, 

√
R, 

√
R)-quasi-

isometry. The right-hand quasi-isometric inequality d(f(x), f(y)) ≤ O(
√
R)d(x, y) is 

automatically verified because the diameter of T (R) is O(
√
R). Conversely, given points 

x, y ∈ S(R), z0, f(x) and f(y) form a tripod with median point u. The distance 
d(f(x), f(y)) is achieved by an arc from f(x) to u followed by an arc from u to f(y)
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in the tree. The descending arcs from f(x) to u (resp. from f(y) to u) consist of 
jumps in S(R) from generation to generation, each of distance at most 3

√
R. There-

fore d(x, y) ≤ 3
√
Rd(f(x), f(y)). �

Similarly to the previous proposition, we can construct a (
√
R, 

√
R, 

√
R, 

√
R )-quasi-

isometry between a ball BT (R) of radius R in a regular tree T of degree d ≥ 2 and a √
R-dense subset in a ball BH2(k ln d, z0) in H2.

Proposition 2.4. For any R > 0, there exist a 
√
R-dense subset SR of a ball BH2(R) in the 

hyperbolic plane H2 and a (
√
R, 

√
R, 

√
R, 

√
R )-quasi-isometry fR : BT (R) → BH2(R).

Proof. Firstly, let us construct the set SR and the quasi-isometry fR. Next, we will prove 
that it is indeed a (

√
R, 

√
R, 

√
R, 

√
R )-quasi-isometry. Consider kth generation Gk of 

vertices in BT (that is, points at distance k from the base point), there are (d + 1)dk−1

points in it. Consider a circle centred in z0 of radius Rk (its exact value will be calculated 
soon) and take a subset Sk of this circle consisting of (d + 1)dk points, such that the 
distance between them is at least 

√
Rk. So we have the following relation (up to some 

multiplicative constants) which appears from the consideration of volumes

Vol(ball of radius
√

Rk)(d + 1)dk = Vol(circle of radius Rk).

For big Rk the following relation holds approximately

e
√
Rk(d + 1)dk = eRk .

Set R0 = 0. Then it follows that Rk ≈ k ln d. The points from Gk are mapped to Sk

naturally. Now we need to add edges between points of successive sets Sk. Connect 
points of Sk to the nearest points from Sk−1. If there are two possibilities, we choose one 
arbitrary.

Let us show that this is a (
√
R, 

√
R, 

√
R, 

√
R )-quasi-isometry. First of all, for any 

two points t1, t2 ∈ S, the distance between their images is at least 
√
R. We always have 

d(t1, t2) ≤ R ≤
√
Rd(fR(t1), fR(t2)) +

√
R and this inequality is checked automatically. 

Now, let u0 = t1, u1, . . . , un−1, un = t2 be a geodesic path between t1 and t2. Notice that 
d(ui, ui+1) = 1 ≥ d(f(ui), f(ui+1))/

√
R for i = 0, 1, . . . , n − 1. Then

d(t1, t2) =
n−1∑
i=0

d(ti, ti+1) ≥
n−1∑
i=0

d(f(ui), f(ui+1))/
√
R ≥

d(f(t1), f(t2))/
√
R ≥

(
d(f(t1), f(t2)) −

√
R
)
/
√
R,

which finishes the proof. �
We have just presented a quasi-isometry from a ball in a tree to a ball in a discrete 

subset of a ball in a hyperbolic plane H2. But we do not know if we can extend this 
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quasi-isometry to the whole ball BH2(R). The first idea is to do a projection of BH2(R)
on a discrete subset, but this projection is a (1, 1, 

√
R, 

√
R )-quasi-isometry itself, hence 

the resulting map is an (R, R, R, R )-quasi-isometry. So, the sharp bound on the quasi-
isometric distortion growth between a tree and H2 is still an open problem.

3. Poincaré inequalities and quasi-isometries

We start this section with a definition of a quasi-isometric numerical invariant p �=0, 
which will be involved in the sharp lower bound for quasi-isometric distortion growth 
for a certain family of metric spaces (Theorem 1.1). Then we proceed with a definition 
of Poincaré inequality, as well as of its generalisation based on the use of kernels. Fi-
nally, we discuss how Poincaré inequalities and the invariant p �=0 appear in the proof of 
Theorem 1.1.

3.1. The critical exponent p �=0 for Lp-cohomology

Lp-cohomology groups provide invariants for quasi-isometries. The continuous first 
Lp-cohomology group of a hyperbolic metric space X is

LpH1
cont(X) :=

{
[f ] ∈ LpH1(X)|f extends continuously to X ∪ ∂X

}
,

where X ∪ ∂X is Gromov’s compactification of X. Following results of Pierre Pansu 
[23], and Marc Bourdon and Bruce Kleiner [6], define the following quasi-isometrical 
numerical invariant of X

p �=0(X) = inf
{
p ≥ 1|LpH1

cont(X) = 0
}
.

If p �=0 achieves different values for two spaces X and Y , then X and Y are not 
quasi-isometric. We expect that the difference |p �=0(X) −p �=0(Y )| also bounds from below 
the quasi-isometrical distortion growth. We are able to prove this only for a family of 
examples, and under certain restrictions on maps.

Let Zμ and Zμ′ be two variants of the space Tn × (−∞, ∞) with metrics dt2 +∑
e2μitdx2

i and dt2 +
∑

e2μ′
itdx2

i respectively. One of the main results of this paper is 
a sharp lower bound for the quasi-isometrical distortion growth between Zμ and Zμ′ , of 
the form

const (p �=0(Zμ′) − p �=0(Zμ))R.

3.2. Definition of Poincaré constants

Constants in Poincaré inequalities are the quantitative incarnation of Lp-cohomology. 
On Riemannian manifolds, Poincaré inequality is defined as follows.

Definition 3.1. Let X be a Riemannian manifold. We say that X satisfies Poincaré 
inequality if there exists a real number C, such that for any real valued function f on X, 
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there exists a real number mf , such that

‖f −mf‖p ≤ C ‖∇f‖p.

The best constant C, denoted by Cp(X), is called Poincaré constant of X.

We are not satisfied by this definition as we want to work with a wider class of metric 
spaces. The generalisation of Poincaré inequality involves semi-norms induced by kernels 
(see Definitions 3.2, 3.4). For a kernel ψ on X, define a semi-norm Np,ψ(f), which is an 
analogue of the Lp-norm of the gradient on a Riemannian manifold.

Let us recall what are kernels on geodesic metric spaces.

Definition 3.2. Let X be a geodesic space, dx a Radon measure on X. A kernel ψ is a 
measurable non-negative function on X ×X such that

• ψ is bounded, ψ ≤ Sψ;
• for every x ∈ X

∫
X
ψ(x, x′)dx′ = 1;

• the support of ψ is concentrated near the diagonal: there exist constants εψ > 0, 
τψ > 0 and Rψ < ∞ such that ψ(x, y) > τψ if d(x, y) ≤ εψ; ψ(x, y) = 0 if 
d(x, y) > Rψ.

Rψ is called the width, εψ – the radius of positivity, Sψ – the supremum and τψ – the 
margin of ψ.

Definition 3.3. A cocycle on Y is a measurable map a : Y × Y → R, such that for every 
y1, y2, y3 in Y ,

a(y1, y2) = a(y1, y3) + a(y2, y3).

A convolution of a cocycle with a kernel is defined by

a ∗ φ(x, x′) =
∫

Y×Y

a(y, y′)φ(x, y)φ(x′, y′) dy dy′.

Definition 3.4. Let ψ be a kernel and a a cocycle on X. The semi-norm Np,ψ is defined 
by

Np,ψ(a) =

⎛
⎝ ∫
X×X

|a(x1, x2)|pψ(x1, x2) dx1 dx2

⎞
⎠

1/p

.

For a measurable function f on X,

Np,ψ(f) =

⎛
⎝ ∫
X×X

|f(x1) − f(x2)|pψ(x1, x2) dx1 dx2

⎞
⎠

1/p

.
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Definition 3.5. Poincaré inequality associated with a kernel ψ is

‖f −mf‖p ≤ Cp(X,ψ)Np,ψ(f).

3.3. Scheme of proof of Theorem 1.1

Let us explain how Poincaré inequalities will be used in the proof of a lower bound 
on distortion given by Theorem 1.1.

For the family of spaces Zμ, it is known that p �=0(Zμ) =
∑

μi

max μi
(unpublished result of 

P. Pansu, [23]). In Theorem 6.2 it is proved that

• if p > p �=0(Zμ), then the Poincaré constant for a ball of radius R satisfies

Cp(BZμ(R)) ≥ const · (Vol B(R))1/p;

• if p ≤ p �=0(Zμ), then

Cp(BZμ(R)) = o
(
(Vol B(R))1/p

)
.

Next, we show that under transport by a (λ, c)-quasi-isometry, Cp is multiplied by at 
most e(λ+c)/a for some positive constant a. Transport under quasi-isometric embeddings 
is more delicate, this is why our arguments work only for a family of examples. For these 
examples, we are able to get a lower bound. Roughly speaking, it states the following.

Assume that p �=0(Zμ′) < p < p �=0(Zμ). If there exists a (λ, c)-quasi-isometric embed-
ding BZμ(R) → Zμ′ , which induces an isomorphism on fundamental groups, then

Cp(BZμ(R)) ≥ const · e−(λ+c)/aCp(BZμ′ (R)).

This yields

λ + c ≥ a(log(Cp(BZμ′ (R))) − log(Cp(BZμ(R)))

∼ (p �=0(Zμ′) − p �=0(Zμ))R,

which is the announced lower bound on quasi-isometric distortion growth.

4. Regularisation and quasi-isometries

In this section we study how Poincaré inequalities are transformed under quasi-
isometries. For this purpose kernels are used, which helps to regularise transported 
functions.
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4.1. Kernels

Firstly, define a convolution of kernels and functions, which is the principal operation 
in our study.

Definition 4.1. A convolution of two kernels is

ψ1 ∗ ψ2 =
∫
X

ψ1(x, z)ψ2(z, y) dz.

A convolution of a kernel and a function is

g ∗ ψ(x) =
∫
X

g(z)ψ(x, z) dz.

It is easy to check that a convolution of two kernels is also a kernel.
Now we are ready to present several results on properties of kernels. The next lemma 

proves that there exists a kernel with a radius of positivity as large as wanted.

Lemma 4.1. There exists a constant cτ (which depends on the local geometry of the space 
X), such that for any ε > 0 there exists τ = cτe

−ε and a kernel ψ on X ×X, such that 
for any two points x1, x2 with d(x1, x2) < ε, we have ψ(x1, x2) > τ . In other words, for 
any given radius of positivity ε there exists a kernel with a margin controlled from below 
by cτe−ε.

Proof. Let us start from kernel

ψ′(x, x′) = Vol(B(x, 1))−11{d(x,x′)≤1}

with radius of positivity ε′ = 1 and margin τ ′ = v(1)−1, where, for r > 0, v(r) denotes 
the infimum of volumes of balls of radius r in X. It follows from the proof of Lemma 1.2 
in [22] that the m-th convolution ψ′ ∗m has radius of positivity ε′m ≥ m(ε′/2) = m/2
and margin τ ′m ≥ τ ′mv(1

2 )m−1. Denote v(1
2 )m−1 by cτ which finishes the proof. �

The following two facts are known, see [22].

Lemma 4.2. Let X be a geodesic metric space such that the infimum inf{Vol B(x, r)|x ∈
X} of volume of balls of radius r is positive. Semi-norms Np,ψ are pairwise equivalent. 
More precisely, let ψ1 and ψ2 be two kernels on X. Then

Nψ2 ≤ ĈNψ1 ,

where

Ĉ = supψ1 supψ2

cτ

Rψ2

εψ1
(2e)R

ψ2/εψ1
.
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Lemma 4.3. Let the space X be a Riemannian manifold and have the following properties

• its injectivity radius is bounded below,
• its Ricci curvature is bounded from below.

Then the volumes of balls are bounded from below (Croke inequality [8]) and from above 
(Bishop inequality).

1) For any function g define a cocycle u(x, y) = g(x) − g(y). Then for any p and any 
kernel ψ′ with bounded derivatives there exists a kernel ψ1, such that the Lp-norm of 
∇(g ∗ψ′) (we regularise g) is bounded from above by a ψ1-seminorm of the corresponding 
cocycle u

‖∇(g ∗ ψ′)‖p ≤ Np,ψ1(u)

with the kernel ψ1 defined as follows

ψ1 = sup∇ψ′ supψ′

Vol(B(z′, Rψ′))1{d(z,z′)≤Rψ′}.

2) Conversely, there also exists a kernel ψ2 such that

Np,ψ2(u) ≤ C‖∇g‖p,

where C depends only on dimension. Here the kernel ψ2 can be taken as

ψ2(x, y) = max{1,Θ(x, y)−1}1{d(x,y)≤R},

where Θ(x, y) is the density of the volume element in polar coordinates with origin at x

Θ(x, y)−1dy = drdθ

and R > 0 can be chosen arbitrarily.

For the kernel ψ2, in the third hypothesis in kernel definition we suggest to set Rψ2 = 1. 
Then ψ2 is bounded by 1 and the width of its support is also 1. For reader’s convenience, 
we include the proof of the first statement of the last lemma, following [22].

Proof. Denote by α the cocycle u ∗ ψ′. Then for any y,

∇(u ∗ ψ′)(x) = ∂α(x, y)
∂x

=
∫

(g(z′) − g(z)) dxψ′(z, x)ψ′(z′, y) dz dz′.

Choose y = x. Then we obtain

|∇(g ∗ ψ′(x))| ≤ sup∇ψ′ supψ

∫
ψ ψ

|g(z′) − g(z)| dz dz′.

B(x,R )×B(x,R )
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Now applying Hölder inequality, the needed statement is fulfilled with the kernel

ψ1 = sup∇ψ′ supψ′

Vol(B(z′, Rψ′))1{d(z,z′)≤Rψ′}. �
This lemma gives an idea how to generalise Poincaré inequalities for the case of ar-

bitrary metric spaces. Of course, such a Poincaré inequality depends on the choice of a 
kernel ψ. Let f be an Lp-function on X, ψ a kernel on X. The Poincaré inequalities for 
f associated to ψ with constants cf and Cp(f) are

‖f − cf‖p ≤ Cp(f)‖Np,ψ(u)‖.

The Poincaré constant Cp(X, ψ) is a constant, such that for any Lp-function f Poincaré 
inequality is checked with Cp(f) = Cp(X, ψ). It follows from Lemma 4.2 that the exis-
tence of Poincaré constant does not depend on the choice of a kernel.

4.2. Transporting functions by quasi-isometries

Let X, Y be two metric spaces, let f : X → Y and f ′ : Y → X be (K, c)-quasi-
isometries between them, such that for any x ∈ X, d(x, f ′ ◦ f(x)) ≤ c and vice versa 
(that is, they are inverse in the quasi-isometrical sense). Let g be a measurable function 
on Y . We want to find a way to transport and to regularise g by our quasi-isometry to 
obtain a similar measurable function on X. A function on X corresponding to g is

h(x) =
∫
Y

g(z)ψ(f(x), z) dz.

This integral exists for all x because ψ is measurable by the second variable by definition. 
Still we want h to be also measurable. For that, it will be sufficient if f is measurable 
too.

Proposition 4.1. Let f be a (λ1, λ2, c1, c2)-quasi-isometric embedding between metric 
spaces X and Y . Then there exists a measurable (λ1, λ2, 3c1, c2+2c1/λ1)-quasi-isometric 
embedding g at distance 2c1 from f .

Proof. Take a measurable partition P of X with a mesh c1/λ1. For each set A ∈ P , 
choose a base point xA. Set g be constant on A

g|A = f(xA).

Take any two points x, x′ ∈ X. Assume x ∈ A and x′ ∈ A′ where A, A′ ∈ P . Then

d(g(x), g(x′)) = d(f(xA), f(xA′)) ≤ λ1d(xA, x
′
A) + c1

≤ λ1(d(x, x′) + d(x, xA) + d(x′, xA′)) + c1 ≤ λ1d(x, x′) + 3c1.

In the same way we prove the right-hand inequality. �
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Proposition 4.1 gives the idea that one can always pass to measurable quasi-isometries 
without significant loss in constants. From now, we will consider only measurable quasi-
isometries.

4.3. Transporting cocycles

Definition 4.2. Let a be a cocycle on Y , f : X → Y be a quasi-isometric embedding and 
φ be a kernel on Y . The transporting convolution of a with φ by f is the cocycle defined 
on X by

a ∗t φ(f)(x, x′) =
∫

Y×Y

a(y, y′)φ(f(x), y)φ(f(x′), y′) dy dy′.

Lemma 4.4. Let X, Y be two metric space. Suppose also that X has a bounded geometry 
(that is for any R > 0 the supremum of volume of balls of radius R in X is bounded). 
Let φ be a kernel on Y , let a be a cocycle on Y and let ψ be a kernel on X. Let also f be 
a (λ1, λ2, c1, c2)-quasi-isometric embedding. Then there exists a kernel ψ̃ on Y such that

Nψ(a ∗t φ(f)) ≤ CNψ̃(a),

where

C ≤
(
cYτ

)−1
eR

ψ′

supψ
(
supφ supVol BX(2λ2R

φ + c2)
)2

.

Proof. By definition,

(Nψ(a ∗t φ(f)))p =
∫

X×X

|a ∗t φ(x, x′)|pψ(x, x′)dxdx′ =

=
∫

X×X

∣∣∣∣∣∣
∫

Y×Y

a(y, y′)φ(f(x), y)φ(f(x′), y′)dydy′
∣∣∣∣∣∣
p

ψ(x, x′)dxdx′

applying Hölder inequality

≤
∫

X×X

∫
Y×Y

|a(y, y′)p|φ(f(x), y)φ(f(x′), y′)dydy′ψ(x, x′)dxdx′

denoting ψ′(y, y′) =
∫
X×X

φ(f(x), y)φ(f(x′), y′)ψ(x, x′)dxdx′

=
∫

Y×Y

|a(y, y′)|pψ′(y, y′)dydy′.

We need to show that ψ′ is dominated by some kernel ψ̃.
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Firstly, let us prove that ψ′(y, y′) = 0 if d(y, y′) > Rψ′ for some Rψ′ = 2Rφ +λRψ +c. 
If d(x, x′) > Rψ then by the definition of kernels ψ(x, x′) = 0. Otherwise, suppose 
that d(x, x′) < Rψ. If d(y, y′) > Rψ′ , then by triangle inequality either φ(f(x), y) or 
φ(f(x′), y′) vanishes:

d(f(x), f(x′)) ≤ λd(x, x′) + c ≤ λRψ + c.

Hence, if, for example, d(f(x), y) ≤ Rφ, then d(f(x′), y′) ≥ Rψ′ − d(f(x), f(x′)) −
d(f(x), y) > Rφ which leads to φ(f(x′), y′) = 0.

ψ′(y, y′) is estimated from above in the following way. Write

ψ′(y, y′) ≤ supψ

∫
X×X

φ(f(x), y)φ(f(x′), y′)dxdx′

and then integrate 
∫
X
φ(f(x), y)dx and 

∫
X
φ(f(x′), y′)dx′.

For any y ∈ Y , if d(f(x), y) > Rφ then φ(f(x), y) = 0. Hence, the diameter of 
the set of points Xy ∈ X, such that for any x ∈ Xy, d(f(x), y) ≤ Rφ, is at most 
λ22Rφ + c2. Hence, 

∫
X
φ(f(x), y)dx ≤

(
supx∈X Vol BX(x, 2λ2R

φ + c2)
)
supY×Y φ, that 

is supx∈X Vol BX(x, 2λ2R
φ+c2) stands for the supremum of volumes of all balls of radius 

2λ2R
ψ + c2 in X. So we come to the following upper-bound for ψ′(y, y′)

ψ′(y, y′) ≤ supψ
(
supφ supVol BX(2λ2R

φ + c2)
)2

.

Lemma 4.1 helps to construct a kernel ψ̃, such that its radius of positivity is at least 
Rψ′ and at the same time we control its margin from below. ψ̃(y, y′) ≥ τ = cYτ e

−Rψ′

whenever the distance between y, y′ does not exceed Rψ′ . Hence,

ψ′(y, y′) ≤ τ−1ψ̃(y, y′) supψ
(
supφ supVol BX(2λ2R

φ + c2)
)2

.

So, we obtain

C ≤
(
cYτ

)−1
eR

ψ′

supψ
(
supφ supVol BX(2λ2R

φ + c2)
)2

. �
5. Poincaré inequality for exponential metric

We will give an upper bound for the Poincaré constant in a ball of radius R in the 
space with the metric dt2 +

∑
i e

2μitdx2
i .

Theorem 5.1. Let X̃ = R+ ×R
n with the metric dt2 +

∑
i e

2μitdx2
i . Let X = X̃/Γ where 

Γ is a lattice of translations in the factor Rn. Then the Poincaré constant for a ball B(R)
in X is

Cp(μ) ≤ p + (A(μ))1/pCp(Tn)eμnR,

μ
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where μ =
∑

μi, A(μ) is a constant depending only on μ, Cp(Tn) is a Poincaré constant 
for a torus Tn.

Let us fix the direction θ = (x1, . . . , xn).

5.1. Poincaré inequality in a fixed direction

Lemma 5.1. Let X̃ = R+ × R
n with the metric dt2 +

∑
i e

2μitdx2
i . Let X = X̃/Γ where 

Γ is a lattice of translations in the factor Rn. Let R ∈ R
+ ∪ {∞}. Then for any fixed 

direction θ = (x1, . . . , xn)

⎛
⎝ R∫

a

|f(t) − cθ|peμtdt

⎞
⎠

1/p

≤ p

μ

⎛
⎝ R∫

a

|f ′(t)|peμtdt

⎞
⎠

1/p

,

where cθ = f(R, θ) or cθ = limR→∞ f(R, θ).

Proof. Let f be a function, such that its partial derivative ∂f/∂t is in Lp(eμtdt, [0, +∞))
where p > 1. By Hölder inequality we get

+∞∫
0

∣∣∣∣∂f∂t
∣∣∣∣ dt ≤

⎛
⎝ +∞∫

0

∣∣∣∣∂f∂t
∣∣∣∣
p

eμtdt

⎞
⎠

1/p ⎛
⎝ +∞∫

0

e−(μt/p)(p/(p−1))

⎞
⎠

1−1/p

< +∞.

Hence, for every fixed direction θ there exists a limit limt→∞ f(t, θ).
If R = ∞, we prove that |f(t) − cθ|peμt → 0 as t → ∞. Apply the Newton–Leibniz 

theorem and then Hölder inequality to |f(t) − cθ|. We have

|f(t) − cθ| =

∣∣∣∣∣∣
∞∫
t

∂f

∂s
ds

∣∣∣∣∣∣ ≤
∞∫
t

∣∣∣∣∂f∂s
∣∣∣∣ ds ≤ (5.1)

≤

⎛
⎝ ∞∫

t

∣∣∣∣∂f∂s
∣∣∣∣
p

eμudu

⎞
⎠

1/p ⎛
⎝ ∞∫

t

e−μs/(p−1)ds

⎞
⎠

1−1/p

.

Calculate the last integral

∞∫
t

e−μs/(p−1)ds = −p− 1
μ

e−
μs
p−1 |∞t = p− 1

μ
e−

μt
p−1 .

With the notation D0 =
(

p−1
)p−1

,
μ
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|f(t) − cθ|p ≤ D0e
−μt

+∞∫
t

∣∣∣∣∂f∂s
∣∣∣∣
p

eμsds.

Hence

|f(t) − cθ|peμt ≤ D0

+∞∫
t

∣∣∣∣∂f∂s
∣∣∣∣
p

eμsds → 0

as t → +∞.
Now integrate by parts

R∫
a

|f(t) − cθ|peμtdt =
[
|f(t) − cθ|p

eμt

μ

]R
a

−
R∫

a

f ′(t)p|f(t) − cθ|p−1 e
μt

μ
dt. (5.2)

As cθ = f(R)

R∫
a

|f(t) − cθ|peμtdt = −|f(a) − cθ|p
eμa

μ
− p

R∫
a

f ′(t)|f(t) − cθ|p−1 e
μt

μ
dt.

Notice that the integral at the left is positive. On the right hand side, the first term is 
negative (for this reason we will drop it soon). Hence, the second term should be positive. 
By Hölder inequality,

R∫
a

(−f ′(t))|f(t) − cθ|p−1 e
μt

μ
dt ≤

⎛
⎝ R∫

a

|f ′(t)|p e
μt

μ
dt

⎞
⎠

1/p ⎛
⎝ R∫

a

|f(t) − cθ|p
eμt

μ
dt

⎞
⎠

(p−1)/p

.

(5.3)

Introduce the following notations

X =
R∫

a

|f(t) − cθ|peμtdt, Y =
R∫

a

|f ′(t)|peμtdt.

Using these notations we return to Eq. (5.2). Drop the term −|f(a) −cθ|peμa/μ and then 
apply Eq. (5.3)

X ≤ p

μ
Y 1/pX(p−1)/p.

So, we get immediately that

X1/p ≤ p

μ
Y 1/p

which proves Poincaré inequality in a fixed direction. �
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5.2. Poincaré inequality for exponential metric

We are ready to finish the proof of Theorem 5.1. Introduce the following notations 
f̃r(t, θ) = f(r, θ) (the function is considered as a function of two variables), fr(θ) = f(r, θ)
(the function is considered as a function of one variable).

We have already proved that for any θ ∈ T
n,

R∫
0

|f(t, θ) − f(R, θ)|peμtdt ≤
(
p

μ

)p
R∫

0

∣∣∣∣∂f∂t
∣∣∣∣
p

eμtdt.

Integrate over θ and introduce the volume element for X̃, dVol = drdθe
∑

μir. We get
∫

B(R)

|f − fR|pdVol ≤
(
p

μ

)p ∫
B(R)

|∇f |pdVol.

Denote the Euclidean gradient by ∇e. By the form of the metric one can see that 
e2μit|dx2

i | = 1. Hence, ‖∇efr‖ ≤ eμnt|∇f |. Now notice that

R∫
R−1

‖∇efr‖pLp(Tn)e
μtdt ≥ e

∑
μi(R−1)

R∫
R−1

‖∇efr‖pLp(Tn)dt.

So, we write

e
∑

μi(R−1)
R∫

R−1

‖∇efr‖pLp(Tn)dt ≤ epμnR

∫
B(R)\B(R−1)

|∇f |pdVol. (5.4)

Fixing r ∈ [R−1, R], write Poincaré inequality on the torus for the function fr(θ). There 
exists a number cr, such that

∫
Tn

|fr(θ) − cr|pdθ ≤ (Cp(Tn))p
∫
Tn

|∇efr(θ)|pdθ,

where Cp(Tn) is a Poincaré constant for Tn. Next consider the function fr(θ) as a function 
on the ball B(R) which does not depend on t. Integrate this inequality over t,

∫
B(R)

|fr(θ) − cr|pdVol ≤ (Cp(Tn))p
R∫

0

∫
Tn

|∇efr(θ)|pdθe
∑

μitdt

≤ e
∑

μiR∑
μi

(Cp(Tn))p
∫

|∇efr(θ)|pdθ.

Tn
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Integrate over r from R− 1 to R and exploit inequality (5.4). It gives

R∫
R−1

⎛
⎜⎝ ∫
B(R)

|fr(θ) − cr|pdVol

⎞
⎟⎠ dr ≤ A(μ)(Cp(Tn))pepμnR

∫
B(R)\B(R−1)

|∇f |pdVol,

where A(μ) is a constant which depends only on μi, i = 1, . . . , n. Now apply Hölder 
inequality again,

R∫
R−1

‖fr − cr‖Lp(B(R))dr ≤

⎛
⎜⎝

R∫
R−1

∫
B(R)

|fr − cr|pdVol dr

⎞
⎟⎠

1/p

≤

⎛
⎜⎝A(μ)(Cp(Tn))pepμnR

∫
B(R)\B(R−1)

|∇f |pdVol

⎞
⎟⎠

1/p

≤ (A(μ))1/p Cp(Tn)eμnR‖∇f‖Lp(B(R))

Set c =
∫ R

R−1 crdr. In the following chain of inequalities we will first apply triangle 
inequality and then we will use the fact that the norm of the integral is less than or 
equal to the integral of the norm (briefly ‖ 

∫
fdr‖ =

∫
‖f‖dr).

‖f − c‖Lp(B(R)) =

∥∥∥∥∥∥
R∫

R−1

(f − cr)dr

∥∥∥∥∥∥
Lp(B(R))

≤

∥∥∥∥∥∥
R∫

R−1

(f − fr)dr

∥∥∥∥∥∥
Lp(B(R))

+

∥∥∥∥∥∥
R∫

R−1

(fr − cr)dr

∥∥∥∥∥∥
Lp(B(R))

≤
R∫

R−1

(
‖f − fr‖Lp(B(R)) + ‖fr − cr‖Lp(B(R))

)
dr

≤ p

μ
‖∇f‖Lp(B(R)) + (A(μ))1/p Cp(Tn)eμnR‖∇f‖Lp(B(R)).

6. Lower bound on Poincaré constant

In this section we state in details and prove Theorem 1.1, this detailed version is given 
as Theorem 6.2. Theorem 6.1 plays an important role in that proof.

Let us start with the brief discussion of the class of considered spaces.
Let Zμ denote Tn × R equipped with metrics dt2 +

∑
e2μitdx2

i , where we suppose 
μ1 ≤ μ2 ≤ . . . ≤ μn. Let O, O′ = (0, . . . , 0) be base points of Z and Z ′ respectively. 
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Notice that the “width” of Tn × (−∞, 0] is finite, so it is at a finite distance from a 
ray (−∞, 0]. So from now on, we focus our attention on the part of BZ(O, R) where 
t ≥ 0. Indeed, we want to consider quasi-isometric embeddings of balls Tn × [−R, R]. 
The volume of Tn × (−∞, 0] is finite, whereas the volume of Tn × [0, R] is exponential 
in R. Hence, only a negligible part of Tn × [−R, R] can be sent to the negative part 
T
n × (−∞, 0] (compare to Subsection 2.1).
Consider a ball BZ(O, R) in Z = Zμ and its quasi-isometric embedding in Z ′ = Zμ′ . 

We are going to give a lower bound for the sum of quasi-isometric constants λ + c as 
a function of R, using our results on transported Poincaré inequalities. Notice that our 
method does not apply to a general quasi-isometric embedding. We will consider only 
quasi-isometric embeddings which are homotopy equivalences.

Here is some motivation for studying these spaces Zμ. Following U. Hamenstädt [14]
and X. Xie [31,28], there is a family of hyperbolic spaces whose quasi-isometric classifi-
cation is known, these are spaces with transitive Lie groups of isometries. In this family 
(classified by E. Heintze [15]), the easiest spaces are Xμ. Their Lp cohomologies are also 
known (P. Pansu [22]). These spaces are still rather difficult because their Lp cohomology 
vanishes for a delicate global reason, which is hard to make quantitative, on balls. For-
tunately, their quotients Zμ by Zn are easier to treat. One can also consider the spaces 
Zμ as hyperbolic spaces with ideal boundaries being products of circles supplied with 
power of the standard metric.

6.1. Statement of theorems

Theorem 6.1. Let Z, Z ′ be two locally homogeneous hyperbolic metric spaces with met-
rics dt2 +

∑
e2μitdx2

i and dt2 +
∑

e2μ′
itdx2

i respectively, 0 < μ1 ≤ μ2 ≤ . . . ≤ μn

and 0 < μ′
1 ≤ μ′

2 ≤ . . . ≤ μ′
n. Assume also that 

∑
μi/μn >

∑
μ′
i/μ

′
n. Denote 

a = max{μi, μ′
i, i = 1, 2, . . . , n} and b = min{μi, μ′

i, i = 1, 2, . . . , n}. Then there ex-
ists a constant G0(a, b), such that the following holds. Let Θ : BZ(R) → Z ′ be a 
continuous (λ1, λ2, c1, c2)-quasi-isometric embedding, inducing an isomorphism on fun-
damental groups. Suppose that Θ sends base point to base point, Θ(O) = O′ and that 
R ≥ 8(λ1 + c1) + (λ2 + c2) + 1. If p >

∑
μ′
i/μ

′
n, up to replacing Z with a connected 

2-sheeted covering, the Poincaré constant Cp(μ) for a ball of radius R in the space Z is 
bounded from below by

Cp(μ)

≥ (G0(a, b))1/p (λ1 + c1)−3/p−2/p2
e−(9/p+3/p2)(λ1+c1)e(

∑
μi/p)R

(
p−

∑
μ′
i/μ

′
n

)1/p
.

This theorem is not symmetric, it can be applied only in one direction: it does not 
give any lower bound to the quasi-isometric embeddings of Zμ into Zμ′ and of Zμ′ into 
Zμ at the same time.
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As it has already been mentioned, we are able to treat the quantitative problem 
only for quasi-isometric embeddings which are homotopy equivalences. So, let us modify 
Definition 1.3 in the following way.

Definition 6.1. Let X, Y be metric spaces, x0, y0 their base points respectively. The 
homotopy quasi-isometric distortion growth is the function

DhG(X,x0, Y, y0)(R)

= inf{d|∃f : BX(x0, R) → Y a (λf , cf )-quasi-isometric embedding,

such that f(x0) = y0 and f is a homotopy equivalence, d = λf + cf}.

Theorem 6.2. Let Z, Z ′ be two locally homogeneous hyperbolic metric spaces with met-
rics dt2 +

∑
e2μitdx2

i and dt2 +
∑

e2μ′
itdx2

i respectively, 0 < μ1 ≤ μ2 ≤ . . . ≤ μn

and 0 < μ′
1 ≤ μ′

2 ≤ . . . ≤ μ′
n. Assume also that 

∑
μi/μn >

∑
μ′
i/μ

′
n. Denote 

a = max{μi, μ′
i, i = 1, 2, . . . , n} and b = min{μi, μ′

i, i = 1, 2, . . . , n}. Then there exist 
constants G1(a, b) and G2(a, b) such that the following holds. The homotopy distortion 
growth (see Definition 6.1) for quasi-isometrical embedding of BZ(R) into Z ′ is bounded 
from below by

DhG(R) ≥ min
{
G1

(∑
μi

μn
−

∑
μ′
i

μ′
n

)
R−G2,

1
8R

}
.

Theorem 6.1 plays an important role in the proof of Theorem 6.2. Before proving these 
two theorems, let us discuss the double cover of the family of spaces under consideration 
and provide some preliminary lemmas.

6.2. Lifting to a double covering space

Let us introduce a double covering of Z ′. Let Z̃ ′ = R
n−1/Zn−1×R/2Z × [0, +∞) with 

the metric defined by the same formula as for Z ′: dt2 +
∑

e2μitdx2
i . Consider the map 

Z̃ ′ → Z ′ defined by

(x1, x2, . . . , xn, t) �→ (x1, x2, . . . , xn mod 1, t).

So we identify (x1, x2, . . . , xn, t) and (x1, x2, . . . , xn + 1, t) in Z̃ ′. Consider a complex 
function u(x1, x2, . . . , xn, t) = eπixn on Z̃ ′.

Composition of u with the deck transformation ι′ : Z̃ ′ → Z̃ ′

ι′ : (x1, x2, . . . , xn, t) �→ (x1, x2, . . . , xn + 1, t)

gives u ◦ ι′ = −u.
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By assumption, Θ : Z → Z ′ is a continuous map inducing an isomorphism on funda-
mental groups, and Z̃ ′ is a covering space of Z ′. It is necessary to show that there exists 
a non-trivial covering space Z̃ → Z such that the following diagram commutes.

Z̃
Θ̃−→ Z̃ ′

πZ ↓ ↓πZ′

Z
Θ−→ Z ′

Define

Z̃ =
{
(z, z̃′)|z ∈ Z, z̃′ ∈ π−1

Z′ (Θ(z))
}
,

that is Z̃ ⊂ Z × Z̃ ′. Let [γ′] be a loop in Z ′ which does not lift to a loop in Z̃ ′. By 
hypothesis, there exists a loop γ in Z such that Θ(γ) is homotopic to γ′. Then γ does 
not lift to a loop in Z̃. There exists an isometry ι of order 2 on Z̃ such that Θ̃◦ ι = ι′ ◦ Θ̃.

6.3. Lifting of Θ

Here we will prove that in the constructed double coverings Θ lifts to a map satisfying 
the right-hand inequality in the definition of quasi-isometry with constants λ1 and 2c1. 
We start with two preliminary lemmas concerning distances in two-fold coverings.

Lemma 6.1. Let Z = Zμ be a locally homogeneous space. There is an effective constant 
c0(μ) with the following effect. Let z be a point in Z in the region where t ≥ c0. Let 
c = t(z). Every loop of length less than c based at z is null-homotopic.

Proof. Let πs : Z → T
n × {s} ⊂ Z denote projection onto the first factor Tn. This is a 

homotopy equivalence. Note that πs is length decreasing on {(t, x) ∈ Z ; t ≥ s}. More-
over, on Tn×{t}, πs decreases length by eμ1(s−t) at least. Let γ be a non-null-homotopic
geodesic loop at z. Assume that its length is ≤ 2c. Then γ ⊂ {(t, x) ∈ Z ; t ≥ c

2}, 
therefore

length(π c
2
(γ)) ≤ c,

thus

length(π0(γ)) ≤ c e−μ1
c
2 .

Since π0(γ) is not null-homotopic, its length is at least 1, and this shows that

c ≥ eμ1
c
2 .

This can happen only for c ≤ c0(μ1). �
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Lemma 6.2. Let z1, z2 be two points in Z such that d(O′, Θ(z1)) > c1 or d(O′, Θ(z2)) > c1
and d(z1, z2) ≤ c1/λ1. Then d(Θ̃(z̃1), Θ̃(z̃2)) = d(Θ(z1), Θ(z2)).

Proof. Let z̃1 ∈ Z̃ be such that d(Õ, ̃z1) > c1. Set

W = {z̃2 ∈ Z̃|, d(z̃1, z̃2) ≤ c1},
U = {z̃2 ∈ W |d(Θ̃(z̃1), Θ̃(z̃2)) = d(Θ(z1),Θ(z2))} ⊂ W,

V = {z̃2 ∈ W |d(Θ̃(z̃1), ι′ ◦ Θ̃(z̃2)) = d(Θ(z1),Θ(z2))} ⊂ W.

By construction, W = U ∪ V . Let us show that the intersection of U and V is empty

U ∩ V = {z̃2 ∈ W |d(Θ̃(z̃1), ι′ ◦ Θ̃(z̃2)) = d(Θ̃(z̃1), Θ̃(z̃2))}.

If z̃2 ∈ U ∩ V , then the geodesic segments connecting Θ̃(z̃1) with Θ̃(z̃2) and Θ̃(z̃1) with 
ι′ ◦ Θ̃(z̃2) induce a loop γ in Z ′ of length 2d(Θ(z1), Θ(z2)) ≤ 2 (λ1(c1/λ1) + c1) = 4c1
which is not homotopic to 0. According to Lemma 6.1, this is incompatible with the 
assumption that d(O′, Θ(z1)) > c1. Hence, U ∩ V is empty. Since U is non-empty (it 
contains at least z̃1) and closed in W , V is closed in W and W is connected, we conclude 
that U = W , which finishes the proof. �
Lemma 6.3. A (λ1, λ2, c1, c2)-quasi-isometric embedding Θ : Z → Z ′ lifts to a “quasi-
Lipschitz” map Θ̃ : Z̃ → Z̃ ′, that is, for any two points z̃1, ̃z2 ∈ Z̃,

d(Θ̃(z̃1), Θ̃(z̃2)) ≤ λ1d(z̃1, z̃2) + 2c1.

Proof. Let γ̃ ⊂ Z̃ be a geodesic between z̃1 and z̃2. Let t1 be the first point such that 
d(Θ̃γ(t), Õ′) ≤ c1 and t2 be the last point with such a property (if such points t1, t2 do 
not exist, then we can apply the following arguments directly to d(Θ̃(z̃1), Θ̃(z̃2)) instead 
of cutting the curve in three parts and considering d(Θ̃(z̃1), Θ̃γ̃(t1)) + d(Θ̃(z̃1), Θ̃γ̃(t2))). 
Then

d(Θ̃(z̃1), Θ̃(z̃2)) ≤ d(Θ̃γ̃(t1), Θ̃γ̃(t2)) + d(Θ̃(z̃1), Θ̃γ̃(t1)) + d(Θ̃(z̃1), Θ̃γ̃(t2)).

By definition of t1 and t2, d(Θ̃γ̃(t1), Θ̃γ̃(t2)) ≤ 2c1. Now divide parts of γ between 
Θ̃(z̃1) and Θ̃γ̃(t1) and between Θ̃(z̃1) and Θ̃γ̃(t2) by segments of length c1/λ1. Apply 
the previous lemma to them, so

d(Θ̃(z̃1), Θ̃γ̃(t1)) + d(Θ̃(z̃1), Θ̃γ̃(t2)) ≤ N

(
λ1

c1
λ1

+ c1

)
,

where N ≤ d(z̃1, ̃z2)/(c1/λ1) is the number of segments in the subdivision. So,

d(Θ̃(z̃1), Θ̃(z̃2)) ≤ 2c1 + 2λ1d(z̃1, z̃2). �
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6.4. Proof of Theorem 6.1 – Part 1

Let ψ′ be a kernel on Z̃ which is invariant by isometry, that is, for any isometry ι,

ψ′(ι(z̃1), ι(z̃2)) = ψ′(z̃1, z̃2).

As an example of such a kernel, consider a kernel depending only on the distance between 
points. Let ζ be a kernel on Z̃ ′ which is also invariant by isometries. Define a complex 
function v on Z̃ as follows

v(·) =

⎛
⎝∫

Y

u(z̃′)ζ(Θ̃(z̃), z̃′)dz̃′
⎞
⎠ ∗ ψ′(·, z̃).

We will write shortly for the integral

u ∗t ζ(Θ̃)(z̃) =
∫
Y

u(z̃′)ζ(Θ̃(z̃), z̃′)dz̃′.

Then v ◦ ι = −v. Indeed,

v ◦ ι =
(
u ∗t ζ(Θ̃)

)
∗ ψ′ ◦ ι =

(
u ∗t ζ(Θ̃) ◦ ι

)
∗ ψ′.

On the other hand, using both relations Θ̃ ◦ ι = ι′ ◦ Θ̃ and (ι′)2 = id, we have

u ∗t ζ(Θ̃) ◦ ι(z̃) =
∫

u(z̃′)ζ(Θ̃(ιz̃), z̃′)dz̃′ =
∫

u(z̃′)ζ(ι′Θ̃(z̃), (ι′)2z̃′)dz̃′ =

=
∫

u(z̃′)ζ(Θ̃(z̃), ι′z̃′)dz̃′ =
∫

u(ι′z̃′)ζ(Θ̃(z̃), z̃′)dz̃′ = −u ∗t ζ(Θ̃),

hence v is skew-symmetric with respect to ι. We get immediately that 
∫
v = 0. Now 

apply successively Lemma 4.3 and Lemma 4.4.

Step 1. By Lemma 4.3 there exists a kernel ψ1 on Z̃ which is controlled by a and b and 
such that

(∫
|∇(u ∗t ζ(Θ̃) ∗ ψ′)|p

)1/p

≤ Nψ1

(
u ∗t ζ(Θ̃)

)
,

where for ψ1, the width of support is Rψ1 = Rψ′ and

supψ1 ≤ sup∇ψ′ supψ′

infz Vol B(z̃, Rψ) .
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Step 2. By Lemma 4.4 there exists a kernel ζ1 on Z̃ ′ such that

Nψ1

(
u ∗t ζ(Θ̃)

)
≤ C̃Nζ1(u),

where the width of support of ζ1 is 2Rζ + λ1R
ψ′ + c1, the supremum of ζ1 is

sup ζ1 = supψ1

cYτ
e2Rζ+λ1R

ψ′
+c1(2λ1R

ζ + c1)2

and

C̃ = 1
cYτ

(supψ1)3/pe
(
(2+λ1)Rψ′

+c1

)
/p

(
(2 + λ1)Rψ′

+ c1

)2/p
.

Step 3. Applying Lemma 4.3 we get that there exists a kernel ζ2 on Z̃ ′ such that

Nζ2(u) ≤ C(n)‖∇u‖p,

we remind that the constant C(n) depends only on the dimension of Z̃ ′ if the Ricci 
curvature is bounded from below, that is supμi is bounded.

Step 4. Here we merely need to pass from Nζ1 to Nζ2 . Apply Lemma 4.3 once more

Nζ1 ≤ ĈNζ2 ,

where

Ĉ = sup ζ1 sup ζ2
cYτ

Rζ2

εζ2
(2e)(2R

ζ+λ1R
ψ′

+c1)/εζ2 .

Choose ψ′ and ζ such that Rψ′ = 1 and Rζ = 1. Then supψ′ and sup ζ are controlled 
by a and b. Note also that εζ2 = 1. So combining all inequalities we get

∫
B(R)

|∇v|p ≤ C1(a, b) (λ1 + c1)3+2/p
e(9+3/p)(λ1+c1)

∫
Tn×[0,+∞]

|∇u|p,

where C1(a, b) is a constant depending only on a, b and dimension n. Let Q = λ1 + c1
and

C(Q) = (λ1 + c1)3+2/p
e(9+3/p)(λ1+c1).
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6.5. Proof of Theorem 6.1 – Part 2

We will give a lower bound for the Lp-norm of the function v = (u ∗ φ) ∗ ψ′. Our aim 
is to prove that the absolute value of v is nearly constant. For simplicity of notations, 
suppose first that the volume growth of Zμ and Zμ′ is the same, that is 

∑
μi =

∑
μ′
i. 

Denote these sums by |μ| and |μ′| respectively. We are going to show that there exists a 
subset A of the ball B(z0, R) such that on the one hand the volume of A is rather big, 
that is Vol(A) ≥ Vol(B(z0, R))/2 and on the other hand its image lies rather far from 
the base point Θ(A) ∩B(z′0, R− (λ1 + c1 + λ2 + c2)) = ∅.

Denote r = λ2 + c2. We will construct a finite subset J in B(z0, R) ⊂ Zμ and a 
partition of J into e|μ|r subsets {Jk}k=1,...,n, each of cardinality |Jk| = e|μ|(R−r) with the 
following property

• (P) For any k ∈ {1, . . . , n} if z1 and z2 are points of Jk then the open balls of radius 
r centred at these points are disjoint.

So, let z1, z2 ∈ Jk be two different points. It follows from (P) that

2r ≤ d(z1, z2) ≤ λ2d(Θ(z1),Θ(z2)) + c2,

hence d(Θ(z1), Θ(z2)) ≥ 2, so the balls B(Θ(z1), 1) and B(Θ(z2), 1) are disjoint. Fix 
some d > 0 and denote by J ′

k ⊂ Jk the set of points whose images are not farther than 
R− d from z′0 that is if z ∈ J ′

k then d(z′0, Θ(z)) ≤ R− d. We obtain

|J ′
k|Vol(B(Θ(z), 1)) ≤ Vol(B(z′0, R− d + 1)),

and we conclude that |J ′
k| ≤ e|μ|(R−d). Denote the union of J ′

k by J ′ then |J ′| ≤
e|μ|(R−d+r). Hence, whenever d ≥ r + 1,

|J ′|
|J | ≤ e|μ|(r−d) ≤ 1

2 .

So, we choose d = r + 1. Now let A be the union of all 1-balls centred at points of 
J \ J ′, A = ∪z∈J\J ′B(z, 1). The volume Vol A ≥ 1/2Vol(B(z0, R)). By definition of 
A, for any point z ∈ A there exists a point z′ ∈ J \ J ′ at most 1-far away from z, 
d(z, z′) ≤ 1. Applying triangle inequality we get d(z′0, Θ(z)) ≥ d(z′0, Θ(z′)) − (λ1 + c1) ≥
R− (λ1 + c1 + λ2 + c2).

Here we describe the set J ⊂ {R} × R
n/Zn (we fix the first coordinate t = R). This 

is the set of points z = (R, x1, . . . , xn) such that for any i = 1, . . . , n, xi is an integer 
multiple of e−μiR modulo 1. J0 is the subset of points such that for any i, xi is a whole 
multiple of eμi(r−R). Let K be the set of vectors k = (0, k1, . . . , kn) such that for any i

the number eμiRki is an integer between 0 and eμi(r−R) − 1. For k ∈ K, we define 
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Jk = J0 + k. Then for any two different points z1, z2 of Jk,

d(z1, z2) = max log
(
|x1

i − x2
i |1/μi

)
≥ r.

We constructed the needed set. Now we notice that the lifting Ã ⊂ Z̃ of A has the same 
properties relatively to Θ̃: the image Θ̃(Ã) lies at distance at least R− (λ1 +c1 +λ2 +c2)
from the base point and the volume of Ã is at least a half of the volume of the ball 
B(z̃0, R).

Now let us compute |v(z̃)| for z̃ ∈ Ã (in fact here we will give an upper bound for 
|v| which is true for all z̃ ∈ B(z0, R) and a lower bound for z̃ ∈ Ã). We remind that by 
construction, z̃ is sent far from the base point, d(z̃′0, Θ̃(z̃)) ≥ R− (λ1 + c1 + λ2 + c2).

|(u ∗ φ) ∗ ψ′(z̃)| =

∣∣∣∣∣∣
∫
X

∫
Y

u(z̃′)ζ(Θ̃(z̃1), z̃′)ψ′(z̃, z̃1)dz̃′dz̃1

∣∣∣∣∣∣
≥

∣∣∣∣∣∣
∫
X

∫
Y

(u(z̃′) − u(Θ̃(z̃)) + u(Θ̃(z̃)))ζ(Θ̃(z̃1), z̃′)ψ′(z̃, z̃1)dz̃′dz̃1

∣∣∣∣∣∣
≥

∣∣∣∣∣∣
∫
X

∫
Y

(u(Θ̃(z̃)))ζ(Θ̃(z̃1), z̃′)ψ′(z̃, z̃1)dz̃′dz̃1

∣∣∣∣∣∣
−

∣∣∣∣∣∣
∫
X

∫
Y

(u(z̃′) − u(Θ̃(z̃)))ζ(Θ̃(z̃1), z̃′)ψ′(z̃, z̃1)dz̃′dz̃1

∣∣∣∣∣∣
≥ 1 −

∫
X

∫
Y

|u(z̃′) − u(Θ̃(z̃))|ζ(Θ̃(z̃1), z̃′)ψ′(z̃, z̃1)dz̃′dz̃1. (6.1)

For the last inequality we shall use the following facts: |u| = 1 and the integral of a 
kernel over the second argument is equal to 1.∣∣∣∣∣∣

∫
X

∫
Y

u(Θ̃(z̃))ζ(Θ̃(z̃1), z̃′)ψ′(z̃, z̃1)dz̃′dz̃1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
X

u(Θ̃(z̃))ψ′(z̃, z̃1)

⎛
⎝∫

Y

ζ(Θ̃(z̃1), z̃′)dz̃′
⎞
⎠ dz̃1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
X

u(Θ̃(z̃))ψ′(z̃, z̃1)dz̃1

∣∣∣∣∣∣ =
∣∣u(Θ̃(z̃))

∣∣ = 1.

We need to estimate the double integral in Eq. (6.1). ψ′(z̃, ̃z1) is non-zero if d(z̃, ̃z1) ≤
Rψ′ = 1 and ζ(Θ̃(z̃1), ̃z′) is non-zero if d(z̃′, Θ̃(z1)) ≤ Rζ = 1. So the diameter of the set Ŝ
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of points z̃′ such that the integrand is non-zero, is at most 2λ1+c1+2 ≤ 4(λ1+c1) because 
λ1 ≥ 1. Hence Ŝ is contained in a ball BŜ of radius 4(λ1 + c1). Assume ẑ′ = Θ̃(z̃) ∈ Ŝ. 
Then by the mean value theorem, for any point z̃′ ∈ Ŝ,

|u(z̃′) − u(ẑ′)| ≤ |z̃′ − ẑ′| sup
z̃′∈BŜ

|∇u(z̃′)| ≤ 8(λ1 + c1) sup
z̃′∈BŜ

∣∣∣∣ ∂u∂x̃n

∣∣∣∣ e−μ′
nt

≤ 8π(λ1 + c1)e−μ′
nt ≤ 8π(λ1 + c1) sup

ẑ′∈BŜ

e−μ′
nd(O

′,ẑ′)

≤ 8π(λ1 + c1)e−μ′
n(R−(λ1+c1+λ2+c2)−2(λ1+c1)) ≤ 1

2

for R ≥ 8(λ1 + c1) + (λ2 + c2) = R0. Hence we have proved that

1
2 ≤ |(u ∗ φ) ∗ ψ′(z̃)| if z̃ ∈ Ã

|(u ∗ φ) ∗ ψ′(z̃)| ≤ 1 if z̃ ∈ B(z̃0, R).

And we conclude from this relation that for R ≥ R0 + 1,
∫

B(R)

|v|p ≥ 1
2pVol(B(R)) − Vol(B(R0)) ≥ e(

∑
μi)R/2p+1.

Let us compute the integral 
∫
|∇u|p.

∫
|∇u|p =

∫ ∣∣∣∣ ∂u∂xn

∣∣∣∣
p

e−μ′
npte

(∑
μ′
i

)
tdtdxn = π

+∞∫
0

e
(∑

μ′
i−pμ′

n

)
tdt = μ′

nπ

−
∑

μ′
i/μ

′
n + p

.

Hence the Poincaré constant Cp(μ) for Z satisfies

(Cp(μ))p ≥ ‖v‖p
‖∇v‖p ≥ ‖v‖p

C1(a, b)C(Q)‖∇u‖p

≥
(
μ′
nπ2p+1C1(a, b)C(Q)

)−1
e(

∑
μi)R(p−

∑
μ′
i/μ

′
n).

This proves the claim in Theorem 6.1.

6.6. Proof of Theorem 6.2

Let Θ : BZ(R) → Z ′ be a (λ1, λ2, c1, c2)-quasi-isometric embedding. By hypothesis, 
Θ is isomorphic on fundamental groups. Lemma 6.1 implies that Θ moves the origin 
a bounded distance away. Indeed, a non-null-homotopic loop of length 1 based at O is 
mapped to a non-null-homotopic loop of length ≤ Q = λ1 + c1 based at Θ(O). This 
implies that t(Θ(O)) ≤ 4Q and d(O′, Θ(O)) ≤ 4Q + 1.



V. Shchur / Journal of Functional Analysis 269 (2015) 3147–3194 3179
The space Z̃ is of the form T̃ × R where T̃ → T is a connected 2-sheeted covering 
space of torus, hence T̃ is also a torus. Hence we can apply Theorem 5.1. We have 
Cp(μ) ≤ C2(a, b)eμnR. If R ≤ 8(λ1 + c1) + (λ2 + c2) there is nothing to prove. Otherwise 
we develop the latter inequality and arrive at

(
μ′
nπ2p+1C1(a, b)C(Q)

)−1/p
e(

∑
μi/p)R

(
p−

∑
μ′
i/μ

′
n

)1/p
≤ C2(a, b)eμnR.

Hence with C3(a, b) = (μ′
nπ2p+1C1(a, b))1/pC2(a, b),

C3(a, b)C(Q) ≥ e(
∑

μi/p−μn)R
(
p−

∑
μ′
i

μ′
n

)1/p

.

We have calculated that C(Q) = Q3+2/pe(9+3/p)Q. Combining these results and taking 
the logarithm (note that in the following calculations every constant depending on μ and 
μ′ can be estimated using a and b), we get

(
3 + 2

p

)
logQ +

(
9 + 3

p

)
Q ≥ G′(a, b) +

(∑
μi

p
− μn

)
R + 1

p
log

(
p−

∑
μ′
i

μ′
n

)

with some constant G′ depending only on a and b. Because p ≥ 1, the left-hand size can 
be estimated as 5 logQ + 12Q < 24Q. Setting p =

∑
μ′
i/μ

′
n + 1/R, we get

24Q ≥ G′(a, b) +
μn

(∑
μi

μn
−

∑
μ′
i

μ′
n

− 1
R

)
R∑

μ′
i

μ′
n

+ 1
R

+ 1
p

log 1
R
.

For R ≥ G′′(a, b) with some well-chosen constant G′′,

24Q ≥ G′(a, b) + μnμ
′
n

4
∑

μ′
i

(∑
μi

μn
−

∑
μ′
i

μ′
n

)
R− μ′

n

2
∑

μ′
i

logR,

and finally we rewrite our inequality under the desired form

Q ≥ G1(a, b)
(∑

μi

μn
−

∑
μ′
n

μ′
n

)
R−G2(a, b)

with G1(a, b) and G2(a, b) being constants depending only on a and b.
This finishes the proof of Theorem 6.2.

7. Quasi-isometric distortion for regular trees

In this section, we prove that embedding hyperbolic balls into trees requires a linear 
distortion growth.

First we need to introduce coarse notions of volume and of separation (minimal volume 
of subsets dividing a metric space X into two pieces).
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Definition 7.1. Let a > 0. The a-volume of a metric space X is the following quantity

Vola(X) = sup
{
v
∣∣for any family Bj of balls of radius a covering X : #{Bj} ≥ v

}
.

Definition 7.2. Let a > 0. The a-separation of X is the number

sepa(X) = sup
{
N
∣∣for any partition X = U1 � U2 such that Vola(Ui) ≥ Vola(X)/3,

i = 1, 2, for any family Bj of pairwise disjoint balls of radius a,

#balls intersecting both U1 and U2 ≥ N
}

Theorem 7.1. Let X be a bounded metric space, and T be a tree of degree at most d. 
S = sepa(X) and V = Vola(X). Suppose that for any subset Y of X of a-volume at least 
one third of V , the diameter of Y is at least diam(X)/D for some constant D depending 
only on X. If f : X → T is a (λ, c)-quasi-isometric embedding then

• either diam(X) ≤ cD,
• or

λ2a + c ≥ logd
S

Vola(B(c)) .

Proof. Let {Bj} be a maximal set of pairwise disjoint balls of radius a in X. We consider 
T as a finite discrete metric space. If there exists a vertex t of T such that at least one 
third of centres of Bj are sent to t then diam(X) ≤ cD because of the hypothesis on the 
space X. Otherwise, for any vertex t,

Vola(f−1(t)) < Vola(X)/3.

We are going to find a vertex t which divides the tree into two components T =
T1 ∪ T2, T1 ∩ T2 = {t} such that Volaf−1(Ti), i = 1, 2, is at least one third of Vola(X). 
To obtain such a vertex consider a subtree consisting of all vertices t ∈ T with non-
empty inverse image f−1(t). Now, start from some boundary vertex (we will call T1 the 
component which contains the initial vertex) of the tree and to pass from one vertex to 
another. At every step we choose a vertex which increases Volaf−1(T1). We finish when 
the accumulated volume is sufficient, that is Volaf−1(T1) ≥ Vola(X)/3.

Denote Ui = f−1(Ti), i = 1, 2. The number Ns of balls Bj which intersect both U1
and U2 is at least Ns ≥ sepa(X) = S. Let I be a set which contains a point of the 
intersection U1 ∩Bj for all such balls, denote the image of I by I ′ = f(I).

|I ′| ≥ S

Vola(B(c)) .

Because I ′ ⊂ T1, volume consideration immediately implies that there exists v1 ∈ I ′

such that
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d(v1, T2) ≥ logd
S

Vola(B(c)) .

Thus v1 = f(u1) and u1 ∈ Bj which intersects U2, there exists u2 ∈ U2 ∩ Bj and 
d(u1, u2) ≤ 2a, hence d(v1, f(u2)) ≤ λ2a + c. Hence,

λ2a + c ≥ logd
S

Vola(B(c)) . �
Consider Hn with n ≥ 3. For a ball of radius R in Hn we have S ∼ e(n−2)R (see 

Lemma 7.1, which follows this proof), V ∼ e(n−1)R and D = 1. Then the application 
of Theorem 7.1 to B(R) ⊂ H

n with n ≥ 3 proves the linear quasi-isometric distortion 
between Hn and a regular tree.

Corollary 7.1. The quasi-isometric distortion growth for hyperbolic space Hn, n ≥ 3, and 
a regular tree is linear in R.

Lemma 7.1. Let B(R) := BHn(R) = A1 � A2 be a partition of an R-ball of hyperbolic 
n-space. Suppose that both pieces have large volume: Vol Ai ≥ 1/3Vol B(R), i = 1, 2. 
Then for R large enough the volume of the common boundary of A1 and A2, S12 =
∂A1 ∩ ∂A2 is at least

Vol S12 ≥ const(n)e(n−2)R,

where the multiplicative constant depends only on dimension n.

This lemma nearly follows from Proposition 4.1 in [5]. Indeed, in the course of the 
proof of that proposition, it is demonstrated that balls maximise the cut size3 of subsets 
of Hn with a given volume. Hence, the cut size of a ball is of the order of e(n−2)R.

Question 7.1. What is the quasi-isometric distortion between a d-regular tree and hyper-
bolic plane H2.

8. Approximation of distances and radial quasi-isometries

The goal of this section is to construct a map between geodesic Gromov hyperbolic 
spaces with homeomorphic ideal boundary, such that its restrictions on balls of variable 
radius prove a non-trivial upper bound on quasi-isometry distortion growth. The first 
step in this construction is an approximation of distance in Gromov hyperbolic spaces 
using visual distance on its ideal boundary. Then we prove that the map of interest is 
induced by a boundary homeomorphism.

3 Cut size of a set X is the infimum of volume of a subset A ⊂ X, where A divides X in several components 
with volumes at most a half of Vol(X).
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8.1. Orthogonal triangles in hyperbolic spaces

At the beginning of this subsection we give two lemmas on the geometry of orthogonal 
triangles in hyperbolic spaces. The second lemma will be used to establish an approxi-
mation of distances in hyperbolic spaces which allow to control a quasi-isometric action.

Lemma 8.1. Let σ be a geodesic segment, a be a point not on σ, and c be a projection of a
on σ. Let b ∈ σ be arbitrary, and let d denote a projection of b on ac. Then |c − d| ≤ 2δ.

Proof. By hypothesis, bd minimises the distance of b to any point of ac, and because the 
triangle bcd is δ-thin, there exists a point e ∈ bd such that d(e, ac) = |e − d| ≤ δ and 
d(e, bc) ≤ δ. Because ac is a perpendicular to σ, |a − c| ≤ |a − d| + |d − e| + d(e, bc) ≤
|a − d| + 2δ. Hence |c − d| ≤ 2δ. �
Lemma 8.2. As in the preceding lemma, let σ be a geodesic segment, a be a point not on 
σ, c be a projection of a on σ, and b be some point on σ. Let d denote a point on ac such 
that |d − c| = δ and e denote a point on bc such that |e − c| = 3δ. Then

• d(d, ab) ≤ δ, d(e, ab) ≤ δ, d(c, ab) ≤ 2δ, and
• the length of ab differs from the sum of the lengths of the two other sides by at most 

8δ,

|a− c| + |b− c| − 2δ ≤ |a− b| ≤ |a− c| + |b− c| + 8δ.

Proof. The triangle abc is δ-thin. Therefore, obviously, d(d, ab) ≤ δ (the distance from a 
point of ac to ab is a continuous function). We take a point x ∈ bc such that d(x, ca) ≤ δ. 
Using Lemma 8.1, we obtain |b − x| + d(x, ca) ≥ |b − c| − 2δ, and hence |c − x| ≤
d(x, ca) + 2δ ≤ 3δ.

We now let d1 and e1 denote respective projections of d and e on ab. Then by the 
triangle inequality, we have

• |a − d| − δ ≤ |a − d1| ≤ |a − d| + δ,
• |b − e| − δ ≤ |b − e1| ≤ |b − e| + δ, and
• 0 ≤ |d1 − e1| ≤ |d1 − d| + |d − c| + |c − e| + |e − e1| ≤ 6δ.

Combining all these inequalities, we obtain the second statement in the lemma. �
8.2. Approximation of distances in hyperbolic metric spaces

Let X, Y be two geodesic hyperbolic metric spaces with base points x0 ∈ X, y0 ∈ Y . 
Let θ : ∂X → ∂Y be a homeomorphism between ideal boundaries.



V. Shchur / Journal of Functional Analysis 269 (2015) 3147–3194 3183
Hypothesis 8.1. Assume that there exists a constant D such that for any x ∈ X there 
exists a geodesic ray γ from the base point γ(0) = x0 and passing near x: d(x, γ) < D.

We are going to construct approximately (up to D) a map Θ : X → Y extending the 
boundary homeomorphism θ. Take some point x and a geodesic ray γ from x0 passing 
near x: d(γ, x) < D. Then γ(∞) is a point on ideal boundary ∂X. The corresponding 
point θ(γ(∞)) ∈ ∂Y defines a geodesic ray γ′ such that γ′(0) = y0 and γ′(∞) = θ(γ(∞)). 
Set Θ(x) = γ′(d(x0, x)). So, by construction, Θ preserves the distance to the base point. 
Still, it depends on the choices of γ and γ′.

Definition 8.1. Define the following quantity

K(R) = sup
{∣∣∣∣log dy0(θ(ξ1), θ(ξ2))

dx0(ξ1, ξ2)

∣∣∣∣ |dx0(ξ1, ξ2) ≥ e−R ∨ dy0(θ(ξ1), θ(ξ2)) ≥ e−R

}
.

We are going to prove that the restriction of Θ on the ball B(R) ⊂ X of radius R is 
a 
(
1 + 2K(R)

D+δ , D + δ + 2K(R)
)
-quasi-isometry. The important step in the proof of this 

result is Lemma 8.3 which gives an approximation (up to an additive constant) of the 
distance between two points in a hyperbolic metric space.

Lemma 8.3. Let P1, P2 be two points in a hyperbolic metric space Z. Let P0 be a base 
point (possibly at infinity). Let distances (horo-distances if P0 is at infinity) from P1 and 
P2 to P0 be d(P1, P0) = t1 and d(P2, P0) = t2. Assume that there exist points P∞

1 and 
P∞

2 such that P1 (resp. P2) belongs to the geodesic ray defined by P0 and P∞
1 (resp. P∞

2 ). 
Denote by4

t∞ = − log visdistP0(P∞
1 , P∞

2 )

the logarithm of visual distance seen from P0. Then up to adding a multiple of δ,

d(P1, P2) = t1 + t2 − 2 min{t1, t2, t∞}.

In the proof of this lemma, all equalities hold with a bounded additive error depending 
linearly on δ which we drop for the sake of simplicity of notations.

Proof. Let P ′
0 be a projection of P0 on the geodesic P∞

1 P∞
2 . By Lemma 8.2, P ′

0 lies 
at distance at most 2δ from both P0P

∞
1 and P0P

∞
2 . Hence, up to an additive constant 

bounded by 4δ the distance between P0 and P ′
0 is equal to Gromov’s product of P∞

1
and P∞

2 . It follows that t∞ = d(P0, P ′
0) = − log visdist(P1, P2).

4 We define visdist(P∞
1 , P∞

2 ) of two points P∞
1 , P∞

2 at the ideal boundary as the exponential of minus 
Gromov’s product of these points e−(P∞

1 |P∞
2 ). Indeed, it is not a distance as it does not satisfy triangle 

inequality. But we will never have more than two points at infinity at the same time in our setting, so we 
will not use the triangle inequality property.
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The triangle P0P
∞
1 P∞

2 is δ-thin. Notice that if P1 (or P2) lies near the side P∞
1 P∞

2
then t1 ≥ t∞. Otherwise, t1 ≤ t∞ (both inequalities are understood up to an additive 
error δ). This follows from the definition of the point P ′

0 as a projection and Lemma 8.2.
Hence, if t1, t2 ≥ t∞, d(P1, P2) = d(P1, P0) + d(P2, P0) − 2d(P0, P ′

0) = t1 + t2 − 2t∞.
If t1 ≤ t∞ ≤ t2, d(P1, P2) = d(P1, P ′

0) + d(P ′
0, P2) = t2 − t1.

Finally, if t1, t2 ≤ t∞, we get d(P1, P2) = |t1 − t2| = t1 + t2 − 2 min{t1, t2} as P1 lies 
near P0P

∞
2 . �

8.3. Construction of quasi-isometry

The quasi-isometry which are going to construct in this subsection, allows us to es-
tablish an example of logarithmic quasi-isometric distortion in Subsection 9.2.

Lemma 8.4. Let Z and Z ′ be two hyperbolic metric spaces. Let Θ be the radial extension 
of a boundary homeomorphism θ, as described at the beginning of this section. Then for 
any two points P1, P2 ∈ B(P0, R) ⊂ Z such that d(P1, P2) > c, the upper bound holds

dZ′(Θ(P1),Θ(P2))
dZ(P1, P2)

≤ 1 + 2K(R)
c

.

If d(P1, P2) < c,

dZ′(Θ(P1),Θ(P2)) < 2K(R) + c.

Proof. We will use the same notations as in Lemma 8.3. Visual distance d∞Z between 
P∞

1 and P∞
2 and the (horo-)distance t∞ from P0 to P∞

1 P∞
2 are connected by the re-

lation e−t∞ = d∞(P∞
1 , P∞

2 ). In the same way we define t′∞ as the (horo-)distance for 
corresponding images.

By Lemma 8.3 we know that d(P1, P2) = t1 + t2 − 2 min{t1, t2, t∞}.
Assume first d(P1, P2) > c. We will write dZ = d(P1, P2) for the distance between P1

and P2 and dZ′ = d(Θ(P1), Θ(P2)) for the distance between their images.
There are four cases to consider. These cases depend on the relative sizes of t1, t2, t0

and t′∞ as these variables determine values of minima defining dZ and dZ′ . Without loss 
of generality, one may assume that t1 ≤ t2.

1st case. If both t1 < t∞ and t1 < t′∞, then

dZ′

dZ
= t2 − t1

t2 − t1
= 1,

and this case is trivial.
2nd case. If t∞ < t1 and t′∞ < t1. Let us give an upper bound for

dZ′
= t1 + t2 − 2t′∞ .
dZ t1 + t2 − 2t∞
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Consider

t′∞ − t∞ = log d∞(θ(P∞
1 ), θ(P∞

2 ))
d∞(P∞

1 , P∞
2 ) .

Because dZ > c, we have t1 + t2−2t∞ > c hence e(t1+t2)/2e−t∞ > ec/2. And as t1, t2 ≤ R

we obtain for visual distance d∞Z ≥ ec/2e−R ≥ e−R. We conclude that

|t′∞ − t∞| ≤ K(R).

Finally,

dZ′

dZ
= dZ′ − dZ + dZ

dZ
= 1 + t′∞ − t∞

t1 + t2 − t∞
≤ 1 + 1

c
|t′∞ − t∞|.

3rd case. Now let t∞ < t1 < t′∞. Then

dZ′ − dZ = t2 − t1 − (t1 + t2 − 2t∞) = 2(t∞ − t1) ≤ 0,

which leads to

dZ′

dZ
≤ 1.

4th case. Finally if t′∞ < t1 < t∞ then

dZ′ − dZ = (t1 + t2 − 2t′∞) − (t2 − t1) = 2(t1 − t′∞) ≤ 2(t∞ − t′∞).

We know that t1 ≤ R and at the same time we have t′∞ < t1, hence t′∞ < R and 
visual distance between P∞′

1 and P∞′
2 is at least e−R. Now in the same manner as in the 

2nd case, we obtain that t∞ − t′∞ ≤ K(R) and hence

dZ′

dZ
≤ 1 + 2K(R)

c
.

Now assume that dZ(P1, P2) ≤ c (we still suppose t1 ≤ t2), hence the distance t∞ > t2
and we are either in first or fourth situation. In the first case, t1 < t∞ and t1 < t′∞ so 
dZ′ = dZ ≤ c. In the fourth case, we have still dZ′ − dZ ≤ 2K(R) and hence d′Z ≤
c + 2K(R). �

Applying the lemma both to Θ and Θ−1, we get the following theorem.

Theorem 8.1. Let X, Y be two geodesic hyperbolic metric spaces with base points x0 ∈
X, y0 ∈ Y . Assume that there exists a constant D such that for any x ∈ X there 
exists a geodesic ray γ from the base point γ(0) = x0 and passing near x: d(x, γ) < D



3186 V. Shchur / Journal of Functional Analysis 269 (2015) 3147–3194
(Hypothesis 8.1). Let the restriction of Θ : ∂X → ∂Y be a homeomorphism between 
ideal boundaries. Then the restriction of Θ on a ball B(x0, R) ⊂ X of radius R is a 
(λ, Cq)-quasi-isometry to B(y0, R) ⊂ Y , where λ = 1 + 2K(R)

c and Cq = 2K(R) + c. The 
constant c can be chosen as c = D + δ where δ is the hyperbolicity constant.

This theorem is based on the construction of the radial extension of a boundary 
homeomorphism. The restriction of this homeomorphism on a ball in X induces a quasi-
isometry of balls in X and Y (which is a stronger limitation than a general quasi-isometric 
embedding). This construction might seem too naive, but it allows to prove the existence 
of sublinear quasi-isometric growth and hence allows to get non-trivial results. That is 
why we believe it is useful to include this result in this paper.

9. Examples

In this section we present examples of the application of the results from the previous 
section. In the first example, we consider a special case of a boundary homeomorphism 
which is a bi-Hölder map. The calculations show that for spaces Z and Z ′ in particular, 
which are two copies of Tn× [0, +∞) with metrics dt2 +

∑
e2μitdx2

i and dt2 +
∑

e2μ′
itdx2

i

respectively, K(R) = |maxi(μi/μ
′
i) − 1|R. In the second example, for unipotent locally 

homogeneous spaces we obtain a logarithmic quasi-isometry distortion growth.

9.1. Bi-Hölder maps

Here we consider a special case of the boundary homeomorphism. Let X and Y be 
again two hyperbolic metric spaces and let the homeomorphism θ between their bound-
aries be a bi-Hölder map with parameters c ≥ 1, α < 1 and β > 1

d
(
θ(ξ1), θ(ξ2)

)
≤ cd(ξ1, ξ2)α,

d
(
θ(ξ1), θ(ξ2)

)
≥ 1

c
d(ξ1, ξ2)β .

Assume first that for two points ξ1, ξ2 of the ideal boundary ∂X, the visual distance 
d(ξ1, ξ2) > e−R. Then we have

log d(θ(ξ1), θ(ξ2))
d(ξ1, ξ2)

≤ log cd(ξ1, ξ2)α−1 = −(1 − α) log d(ξ1, ξ2) � (1 − α)R.

Now, if the visual distance between images of ξ1 and ξ2 satisfy d(θ(ξ1), θ(ξ2)) > e−R, we 
get

d(ξ1, ξ2) ≥
1

e−R/α
c1/α
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and hence

log d(θ(ξ1), θ(ξ2))
d(ξ1, ξ2)

� 1 − α

α
R.

We obtain the lower bound for the logarithm of the ratio log d(θ(ξ1),θ(ξ2))
d(ξ1,ξ2) just in the 

same way as the upper-bound. If d(ξ1, ξ2) > e−R

log d(θ(ξ1), θ(ξ2))
d(ξ1, ξ2)

≥ log 1
c
d(ξ1, ξ2)β−1 = −(1 − β) log d(ξ1, ξ2) � (1 − β)R.

If d(θ(ξ1), θ(ξ2)) > e−R

log d(θ(ξ1), θ(ξ2))
d(ξ1, ξ2)

≥ log 1
c
d(θ(ξ1), θ(ξ2))(β−1)/β = −1 − β

β
log d(θ(ξ1), θ(ξ2)) �

1 − β

β
R.

This gives

K(R) � max{1 − α, 1 − β}R.

In particular, let us compute K(R) for two spaces which are variants of Tn× [0, +∞), 
denoted by Z and Z ′, with metrics dt2 +

∑
e2μitdx2

i and dt2 +
∑

e2μ′
itdx2

i respectively. 
The visual distance between points P1 and P2 is given by

d∞(P1, P2) ∼ max
1≤i≤n

|x1
i − x2

i |1/μi .

Pick the identity map θ : ∂Z → ∂Z ′. Then

d∞(θ(P1), θ(P2))
d∞(P1, P2)

∼ maxi |x1
i − x2

i |1/μ
′
i

maxi |x1
i − x2

i |1/μi
≤ max

i
|x1

i − x2
i |1/μ

′
i−1/μi .

Suppose that d(P1, P2) > e−R. Then

∣∣∣∣log d∞(θ(P1), θ(P2))
d∞(P1, P2)

∣∣∣∣ ≤ ∣∣∣log max
i

|x1
i − x2

i |1/μ
′
i−1/μi

∣∣∣
= max

i

(
μi

∣∣∣∣ 1
μ′
i

− 1
μi

∣∣∣∣ ∣∣∣log |x1
i − x2

i |1/μi

∣∣∣) ≤ max
i

∣∣∣∣μi

μ′
i

− 1
∣∣∣∣R.

So, we conclude that K(R) = |maxi(μi/μ
′
i) − 1|R.

Remark 9.1. More generally, such bi-Hölder maps exist between boundaries of arbitrary 
simply connected Riemannian manifolds with bounded negative sectional curvature. The 
Hölder exponent is controlled by sectional curvature bounds.
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9.2. Unipotent locally homogeneous space

Now assume that the space Z is a quotient R2/Z2 × R of the space R2 × R with the 
metric dt2 + e2t(dx2 + dy2). Consider the space Z ′ = R

2/Z2
�α R, quotient of the space 

R
2
�α R, where α is the 2 × 2 matrix

(
1 1
0 1

)
.

The locally homogeneous metric is of the form dt2 + gt where gt = (etα)∗g0

etα

(
x

y

)
=

(
et tet

0 et

)(
x

y

)
=

(
etx + tety

ety

)

and so gt = d(etx + tety)2 + d(ety)2 = e2t(dx2 + 2tdxdy + (t2 + 1)dy2).
Let θ : ∂Z → ∂Z ′ be the identity. Consider two points P1 = (x1, y1) and P2 = (x2, y2)

in Z. We will write x = x1 − x2 and y = y1 − y2. For the visual distance between P1, P2

we have

d∞(P1, P2) = max{|x|, |y|}.

The distance between their images θ(P1) and θ(P2) is (see Section 5 of [28] and [31])

d∞(θ(P1), θ(P2)) = max{|y|, |x− y log |y|}.

We begin with giving an upper-bound for log(d∞(θ(P1), θ(P2))/d∞(P1, P2)). We have to 
explore four different cases.

1st case. If |x| < |y| and |x − y log |y| | < |y|,

d∞(θ(P1), θ(P2))
d∞(P1, P2)

= 1.

2nd case. If |x − y log |y| | < |y| < |x|,

d∞(θ(P1), θ(P2))
d∞(P1, P2)

< 1.

3rd case. If |x| < |y| < |x − y log |y| |,

d∞(θ(P1), θ(P2)) = |x− y log y| ≤ |x| + | log |y| |.

d∞(P1, P2) |y| |y|
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If d∞(P1, P2) > e−R we have e−R < |y| ≤ 1 (the upper bound follows from the fact that 
y is a coordinate of a point of a torus) and hence | log |y| | ≤ R and we finish as follows:

d∞(θ(P1), θ(P2))
d∞(P1, P2)

≤ |x|
|y| + | log |y| | ≤ 1 + R.

If d∞(θ(P1), θ(P2)) > e−R we will consider two situations.

• If |x| > |y log |y| | then |x − y log y| < 2|x| and as |x| < |y|,

d∞(θ(P1), θ(P2))
d∞(P1, P2)

≤ 2.

• If |x| < |y log |y| | then e−R < |x − y log |y| | < 2|y log |y| | and hence | log |y| | < R, so

d∞(θ(P1), θ(P2))
d∞(P1, P2)

≤ 1 + R.

4th case. Let now |y| < |x| and |y| < |x − y log |y| |

d∞(θ(P1), θ(P2))
d∞(P1, P2)

= |x− y log |y| |
|x| ≤ 1 + |y log |y| |

|x| .

We will check two possibilities.

• If |y| ≤ |x|2 then

|y log |y| |
|x| = |y|1/2

|x|

∣∣∣ |y|1/2 log |y|
∣∣∣ ≤ 1.

• Now suppose that |y| ≥ |x|2. If d∞(P1, P2) > e−R, we see easily that |y| ≥ e−2R and 
hence

|y log |y| |
|x| ≤ |x log |y| |

|x| ≤ | log |y| | ≤ 2R.

If d∞(θ(P1), θ(P2)) > e−R we use the fact that |a + b| ≥ 2 max{|a|, |b|}. Hence, either 
|x| > e−R/2 or |y log |y| | > e−R/2 and so |y| � e−R and we finish the estimation as 
earlier.

So in the fourth case we have also

d∞(θ(P1), θ(P2))
d∞(P1, P2)

≤ 2R.

We have proved that log d∞(θ(P1),θ(P2))
d∞(P1,P2) ≤ logR in all four cases. Now we proceed to 

give a lower bound for the same expression.
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1st case. If |x| < |y| and |x − y log |y| | < |y|,

d∞(θ(P1), θ(P2))
d∞(P1, P2)

= 1.

2nd case. If |x − y log |y| | < |y| < |x|,

d∞(θ(P1), θ(P2))
d∞(P1, P2)

= |y|
|x| .

Without loss of generality, assume x > 0. By the construction of Z, |y| < 1 hence log |y| <
0. If 0 < x ≤ y log |y|, we have y < 0. Now transform x ≤ y log |y| as 1 ≤ − log |y|(−y)/x, 
hence

−y

x
≥ − 1

log |y| .

Now either d∞(θ(P1), θ(P2)) = |y| > e−R or e−R ≤ d∞(P1, P2) = |x| ≤ y log |y| which 
also means that |y| � e−R. So,

|y|
|x| ≥

1
R
.

If on the contrary y log |y| ≤ x we have

x− y log |y| < |y| < x. (9.1)

First we notice that y log |y| > x −|y| > 0. As |y| < 1 for any point of our space, log |y| < 0
and we conclude that y < 0. Now from (9.1) we obtain that x < −y(1 − log |y|). As 
1 − log |y| > 0 we obtain

−y

x
>

1
1 − log |y| .

If d∞(θ(P1), θ(P2)) = |y| > e−R, we trivially get that

|y|
|x| >

1
R
.

If e−R ≤ d∞(P1, P2) = |x| we write e−R < x < −y(1 − log |y|) and hence y � e−R, so we 
obtain the same result. So, in both cases we come to the same result

∣∣∣∣log |y|
∣∣∣∣ < R.
|x|
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3rd case. Assume |x| < |y| < |x − y log |y| |, this case is trivial as

d∞(θ(P1), θ(P2))
d∞(P1, P2)

= |x− y log y|
|y| ≥ 1.

4th case. Let now |y| < |x| and |y| < |x − y log |y| |. We also suppose that x > 0 to 
save notation.

d∞(θ(P1), θ(P2))
d∞(P1, P2)

= |x− y log |y| |
|x| =

∣∣∣∣1 − y log |y|
x

∣∣∣∣ . (9.2)

If (9.2) is greater than 1/2 then we have nothing to prove. So suppose that (9.2) is less 
than 1/2

−x

2 ≤ x− y log |y| ≤ x

2 ,

and so

x

2 ≤ y log |y| ≤ 3x
2 .

The last inequality shows that if either d∞(θ(P1), θ(P2)) ≥ e−R or d∞(P1, P2) ≥ e−R, 
|y| � e−R and so we have

|y log |y| |
x

≥ |y log |y| |
y

= | log |y| | ≥ 1
R
,

which completes our discussion of this example. We have proved that

K(R) � logR.
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Appendix A. Quasi-isometric embeddings and fundamental groups

Here we would like to discuss the hypothesis of Theorem 6.2 that quasi-isometric 
embeddings under consideration are a homotopy equivalence. We will show that if 
dim(Z) ≥ 3, one may believe that the assumption that Θ is isomorphic on fundamental 
groups, is not that restrictive. Indeed, in Proposition A.1, we shall show that this is 
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automatic, but unfortunately, the argument introduces an ineffective constant R0, which 
makes it useless. For instance, if it turns out that R0 = λ2

1, Proposition A.1 does not 
help to remove the homotopy assumption in Theorem 6.2. Nevertheless, it is included 
for the sake of completeness.

Proposition A.1. Let Z, Z ′ be two locally homogeneous hyperbolic metric spaces with 
metrics dt2 +

∑
e2μitdx2

i and dt2 +
∑

e2μ′
itdx2

i respectively, 0 < μi and 0 < μ′
i for any 

1 ≤ i ≤ n. Let their dimension to be at least 3: n + 1 ≥ 3. Then for any λ1 ≥ 1, λ2 ≥
1, c1 ≥ 0, c2 ≥ 0 there exists R0 = R0(λ1, λ2, c1, c2) such that if R > R0 and a continuous 
map f : BZμ

(O, R0) → Zμ′ is a (λ1, λ2, c1, c2)-quasi-isometric embedding, then f induces 
an isomorphism on fundamental groups π1(Zμ) → π1(Zμ′).

Proof. We provide a proof by contradiction. Assume that for arbitrarily large values 
of R, there exists a map fR : BZ(R) → Z ′ which is a (λ1, λ2, c1, c2)-quasi-isometric 
embedding which is not isomorphic on fundamental groups. Pick a 2c1/λ1-dense and 
c1/λ1-discrete subset Λ of Z. Notice that if fR is a (λ1, λ2, c1, c2)-quasi-isometry, then 
fR is bi-Lipschitz on BZ(R) ∩Λ. Conversely, if a map defined on B(R) ∩Λ is bi-Lipschitz, 
then it can be continuously extended on B(R) as a quasi-isometric embedding. Indeed, 
away from a ball, Z ′ is contractible up to scale c1.

Set ρ = d(O′, fR(O)). First, consider the case when ρ → ∞. Set σ = (ρ/4 − c1)/λ1. 
Then fR(B(O, σ)) is contained in a ball B(fR(O), ρ/4) which lies in the complement of 
B(O′, ρ/2)

fR(B(O, σ)) ⊂ B(fR(O), ρ/4) ⊂ B(O′, ρ/2)c.

The diameter of the image of any loop in B(O, σ) is at most λ1σ + c1. Because λ1σ +
c1 < ρ/4, these loops are homotopic to 0 (diameters of loops are too short relatively to 
B(O′, ρ/2)c). Hence, the restriction of fR on B(0, σ) is homotopic to 0. Hence fR lifts 
to f̃R : BZ(σ) → Z̃ ′ = Xμ′ which is homogeneous. Now up to composing f̃R with an 
isometry we can suppose that it preserves the centre f̃R(O) = O′. By Ascoli’s theorem, 
we can find a sequence f̃Rj

|Λ which uniformly converges to f̃ |Λ : Z ∩ Λ → Z̃ ′ which 
is also bi-Lipschitz. We continuously extend f̃|Λ to f̃ : Z → Z̃ ′, f̃ is a quasi-isometric 
embedding. Its extension to ideal boundaries is continuous and injective. By the theorem 
of invariance of domain, ∂f̃ : Tn � ∂Xμ = Sn is open, and thus a homeomorphism. This 
provides a contradiction if n ≥ 2.

If ρ = d(O′, fR(O)) stays bounded, we can directly use Ascoli’s theorem, and get a 
limiting continuous quasi-isometric embedding f . Again, f extends to the ideal boundary, 
∂f : ∂Z → ∂Z ′, the map ∂f is continuous and injective. Because ∂Z and ∂Z ′ have the 
same dimension, ∂f is an open map by the theorem of invariance of domain and ∂f is 
a homeomorphism. Hence, ∂f induces an isomorphism on fundamental groups. If Rj is 
sufficiently large, then fRj

is at bounded distance from f and hence fRj
also induces an 

isomorphism π1(BZ(R)) → π1(Z ′). This contradiction completes the proof. �
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Remark A.1. The proof does not provide an effective value of R0.
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