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Abstract

The Morse lemma is fundamental in hyperbolic group theory. Using exponential contraction, we establish
an upper bound for the Morse lemma that is optimal up to multiplicative constants, which we demonstrate
by presenting a concrete example. We also prove an “anti” version of the Morse lemma. We introduce the
notion of a geodesically rich space and consider applications of these results to the displacement of points
under quasi-isometries that fix the ideal boundary.
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1. Introduction

Roughly speaking, the Morse lemma states that in a hyperbolic metric space, a λ-quasi-
geodesic γ belongs to a λ2-neighborhood of every geodesic σ with the same endpoints. Our
aim is to prove the optimal upper bound for the Morse lemma.
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Theorem 1 (Morse lemma). Let γ be a (λ, c)-quasi-geodesic in a δ-hyperbolic space E and σ

be a geodesic segment connecting its endpoints. Then γ belongs to an H -neighborhood of σ ,
where

H = λ2(A1c + A2δ),

where A1 and A2 are universal constants.

We prove this theorem with A1 = 4 · 78 = 312 and

A2 = 4

(
78 + 133

ln 2
e157 ln 2/28

)

in Section 5.2. This result is optimal up to the value of these constants, i.e., there exists an
example of a quasi-geodesic such that H is the distance of the farthest point of γ from σ (see
Section 6).

The Morse lemma plays an important role in the geometry of hyperbolic spaces. For exam-
ple, it is used to prove that hyperbolicity is invariant under quasi-isometries between geodesic
spaces [4] (see Chapter 5.2, Theorem 12): let E and F be δ1- and δ2-hyperbolic geodesic spaces.
If there exists a (λ, c)-quasi-isometry between these two spaces, then

δ1 � 8λ(2H + 4δ2 + c).

Hyperbolic metric spaces have recently appeared in discrete mathematics and computer sci-
ence (see, e.g., [3]). The δ-hyperbolicity turns out to be more appropriate than other previously
used notions of approximation by trees (e.g., tree width). This motivates our search for optimal
bounds for a cornerstone of hyperbolic group theory like the Morse lemma.

Gromov’s quasi-isometry classification problem for groups [5] provides another motivation.
When two groups are shown to be non-quasi-isometric, it would be desirable to give a quanti-
tative measure of this, such as a lower bound on the distortion of maps between balls in these
groups (we thank Itai Benjamini for bringing this issue to our attention). We expect our optimal
bound in the Morse lemma to be instrumental in proving such lower bounds. As an indication of
this, we show that the center of a ball in a tree cannot be moved very far by a self-quasi-isometry.

Proposition 1. Let O be a center of a ball of radius R in a d-regular metric tree T (d � 3). Let
f be (λ, c)-self-quasi-isometry of this ball. Then for any image f (O) of the center O ,

d
(
f (O),O

)
� min

{
R,H + c + λ(c + 1)

}
.

Because δ = 0 for a tree, we have d(f (O),O) � 2A1λ
2c for sufficiently large λ. We prove

this proposition in Section 6.
We present an example of a (λ, c)-quasi-isometry of a ball in a d-regular tree that moves the

center a distance λc. We are currently unable to fill the gap between λc and λ2c.
We give a second illustration. In certain hyperbolic metric spaces, self-quasi-isometries fixing

the ideal boundary move points a bounded distance. Directly applying the Morse lemma yields
a bound of H ∼ λ2c, while the examples that we know achieve merely λc. For this problem,
we can fill the gap partially. Our argument relies on the following theorem, which we call the
anti-Morse lemma.
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Theorem 2 (anti-Morse lemma). Let γ be a (λ, c)-quasi-geodesic in a δ-hyperbolic metric
space and σ be a geodesic connecting the endpoints of γ . Let 4δ � lnλ. Then σ belongs to
an A3(c+δ) lnλ-neighborhood of γ , where A3 is some constant.

We prove Theorem 2 in Section 7. In Section 9, we define the class of geodesically rich hyper-
bolic spaces (it contains all Gromov hyperbolic groups), for which we can prove the following
statement.

Theorem 3. Let X be a geodesically rich δ-hyperbolic metric space and f be a (λ, c)-self-quasi-
isometry fixing the boundary ∂X. Then for any point O ∈ X, the displacement d(O,f (O)) �
max{r0, (A4 + c)λ lnλ}, where r0,A4 are constants depending on the space X.

We first discuss the geometry of hyperbolic spaces and prove a lemma on the exponential
contraction of lengths of curves with projections on geodesics. We then discuss the invariance of
the �-length of geodesics under quasi-isometries. Using these results, we prove the quantitative
version of the Morse and anti-Morse lemmas. We define the class of geodesically rich spaces;
for this class, we estimate the displacement of points by self-quasi-isometries that fix the ideal
boundary. Finally, we show that this class includes all Gromov hyperbolic groups.

2. The geometry of δ-hyperbolic spaces

Let E be a metric space with the metric d . We also write |x − y| for the distance d(x, y)

between two points x and y of the space E. For a subset A of E and a point x, d(x,A) denotes
the distance from x to A.

There are several equivalent definitions of hyperbolic metric spaces. We first present the most
general definition, given by Gromov [6,4], although another definition is more convenient for us.

Definition 1. Gromov’s product of two points x and y at a point z is

(x, y)p = 1

2

(|x − p| + |y − p| − |x − y|).
Definition 2. A metric space E with a metric d is said to be δ-hyperbolic if for every four points
p, x, y, and z,

(x, z)p � min
{
(x, y)p, (y, z)p

} − δ.

Definition 3. A geodesic (geodesic segment, geodesic ray) σ in a metric space E is a isometric
embedding of a real line (real interval I , real half-line R+) in E.

We write xy for a geodesic segment between two points x and y (in general, there could
exist several geodesic paths between two points; we assume any one of them by this notation).
A geodesic triangle xyz is a union of three geodesic segments xy, yz, and xz.

Definition 4. A geodesic triangle xyz is said to be δ-thin if for any point p ∈ xy,

d(p,xz ∪ yz) � δ.
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Fig. 1. Illustration for Lemma 1.

A geodesic metric space is a space such that there exists a geodesic segment xy between any
two points x and y. It can be easily shown that for a geodesic space, Definition 2 is equivalent to
the following definition.

Definition 5. A geodesic metric space E is δ-hyperbolic if and only if every geodesic triangle is
δ/2-thin (hereafter, we omit the factor 1/2).

According to Bonk and Schramm [2], every δ-hyperbolic metric space embeds isometrically
into a geodesic δ-hyperbolic metric space. Without loss of generality, we therefore consider only
geodesic δ-hyperbolic spaces in what follows.

Definition 6. In a metric space, a perpendicular from a point to a curve (in particular, a geodesic)
is a shortest path from this point to the curve.

Of course, a perpendicular is not necessarily unique.

Lemma 1. In a geodesic δ-hyperbolic space, let b be a point and σ be a geodesic such that
d(b,σ ) = R. Let ba be a perpendicular from b to σ , where a ∈ σ . Let c be a point of σ such that
|b − c| = R + 2�. Then |a − c|� 2� + 4δ.

Proof. The triangle abc (see Fig. 1) is δ-thin by the definition of a δ-hyperbolic space. Hence,
there exists a point t ∈ σ such that d(t, ba) � δ and d(a, bc) � δ. Let t1 and t2 be the respective
projections of t on ba and bc. By hypothesis, R is the minimum distance from b to the points
of σ . Therefore, R = |b − a| � |b − t1| + |t1 − t | � |b − t1| + δ and R � |b − t2| + |t2 − t | �
|b − t2| + δ. Hence, |a − t1| � δ and |c − t2| � 2� + δ. By the triangle inequality, we obtain
|a − c| � |a − t1| + |t1 − t | + |t − t2| + |t2 − c|� 2� + 4δ. �
Remark 1. In particular, all the orthogonal projections of a point to a geodesic lie in a segment
of length 4δ.

Lemma 2. In a δ-hyperbolic space, let two points b and d be such that |b − d| = �. Let
σ be a geodesic and a and c be the respective orthogonal projections of b and d on σ . Let
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Fig. 2. Illustration for Lemma 2.

|a − b| > 3� + 6δ, and let d(d,σ ) > d(b,σ ). Let two points x1 ∈ ab and x4 ∈ cd be such that
2� + 5δ < d(x1, σ ) = d(x4, σ ) < |a − b| − (� + 2δ). Then |x1 − x4| � 4δ and |a − c| � 8δ.

Proof. (See Fig. 2.) By the triangle inequality and because cd is a perpendicular to σ , |c − d|�
|a −b|+ |b−d|, whence |b− c| � |c−d|+ |b−d|� |a −b|+2|b−d|. By Lemma 1, |a − c|�
2� + 4δ. The triangle abc is δ-thin, |a − x1| > |a − c| + δ. Therefore, by the triangle inequality,
d(x1, ac) > δ, and hence d(x1, bc) � δ. Let x2 denote the point of bc nearest x1. Because the
triangle bcd is also δ-thin and |b−x2|� |b−x1|− |x1 −x2| � �+δ, there exists a point x3 ∈ cd

such that |x3 −x3|� δ. It follows from the triangle cx1x3 that |x3 −c|� |x1 −c|−2δ � |x1 −a|−
2δ. On the other hand, because x5c is a perpendicular to σ , |x3 − c|� |x3 − x1| + |x1 − a|. Now,
|a − x1| = |c − x4|, and hence |x4 − x3| � 2δ. Finally, we obtain the statement in the lemma:
|x1 − x4|� 4δ.

By the triangle inequality and because d(x1, σ ) = d(x4, σ ), we have |x1 − c| � |c − x4| +
|x4 − x1|� |a − x1| + 4δ. Hence, using Lemma 1, we conclude that |a − c| � 8δ. �
Lemma 3. Let σ be a geodesic segment, a be a point not on σ , and c be a projection of a on σ .
Let b ∈ σ be arbitrary, and let d denote the projection of b on ac. Then |c − d|� 2δ.

Proof. By hypothesis, bd minimizes the distance from any its points to ac, and because the tri-
angle bcd is δ-thin, there exists a point e ∈ bd such that d(e, ac) = |e − d|� δ and d(e, bc)� δ.
Because ac is a perpendicular to σ , |a − c|� |a − d| + |d − e| + d(e, bc)� |a − d| + 2δ. Hence
|c − d|� 2δ. �
Lemma 4. As in the preceding lemma, let σ be a geodesic segment, a be a point not on σ , c be a
projection of a on σ , and b be some point on σ . Let d denote a point on ac such that |d − c| = δ

and e denote a point on bc such that |e − c| = 3δ. Then

• d(d, ab)� δ, d(e, ab)� δ, d(c, ab)� 2δ, and
• the length of ab differs from the sum of the lengths of the two other sides by at most 8δ,

|a − c| + |b − c| − 2δ � |a − b|� |a − c| + |b − c| + 8δ.
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Fig. 3. Illustration for Remark 2.

Proof. The triangle abc is δ-thin. Therefore, obviously, d(d, ab) � δ (the distance from a point
of ac to ab is a continuous function). We take a point x ∈ bc such that d(x, ca) � δ. Using
Lemma 3, we obtain |b − x| + d(x, ca)� |b − c| − 2δ, and hence |c − x| � d(x, ca) + 2δ � 3δ.

We now let d1 and e1 denote the respective projections of d and e on ab. Then by the triangle
inequality, we have

• |a − d| − δ � |a − d1| � |a − d| + δ,
• |b − e| − δ � |b − e1| � |b − e| + δ, and
• 0 � |d1 − e1| � |d1 − d| + |d − c| + |c − e| + |e − e1|� 6δ.

Combining all these inequalities, we obtain the second point in the lemma. �
Lemma 5. Let σ be a geodesic and a and b be two points not on σ . Further, let a and b have a
common projection c on σ . Let d be a point of σ and c1 be the projection of d on ab. Then

|d − c|� |d − c1| + 6δ.

Remark 2. Lemma 5 deals with a geodesic segment. The statement is not true for a complete
geodesic passing through a and b, as can be seen from Fig. 3.

Proof of Lemma 5. We take a point e ∈ bc such that |c − e| = δ and consider the triangle bcd

(see Fig. 4). Because bc is a perpendicular to dc, d(e, bd) � δ. Let e1 denote a projection of e

on bd . Let e2 and e3 be the respective projections of e1 on the geodesic segments dc1 and bc1.
Because the triangle dbc1 is δ-thin, either |e1 − e2| � δ or |e1 − e3| � δ.

I. If |e1 − e2|� δ, then |d − c| � |c − e| + |e − e1| + |e1 − e2| + |e2 − d|� |d − c1| + 3δ.
II. If |e1 −e2| > δ, then the length of the path cee3 is at most 3δ. We apply the same arguments

to ad (we assume that this is possible; otherwise, we could apply the first case to it). We obtain
the points g, g1, and g3 and the length of the path cgg3 is also at most 3δ. If neither of these
paths intersects cc1, then its length does not exceed 6δ (which follows from consideration of the
triangle ce3g3). �
Lemma 6. Let E be a δ-hyperbolic metric space and abc be a triangle in E. Then the diameter
of the set S of points of the side ab such that distance to bc and ac does not exceed 2d is not
greater than C(d + δ), where C is a constant.
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Fig. 4. Illustration for Lemma 5.

Proof. Let x be a point of ab such that d(x, bc) � δ and d(x, ac) � δ and y be a point of ab

such that d(y, bc) � d and d(y, ac) < d . Without loss of generality, we assume that y ∈ (a, x).
Because the triangle abc is δ-thin, one of these two distances does not exceed δ.

We first assume that d(y, ac) � δ. Let x ′ and y′ be points of ac such that d(x, x′) � δ and
d(y, y′) � δ. We let t , t ′, s, and s′ denote the respective projections of x, x′, y, and y′ on bc.
Because x′t ′ is a perpendicular to bc, |x′ − t ′| � |x′ −x|+ |x − t |� 2δ, and hence |t − t ′| � 4δ. If
y and y′ are sufficiently far from bc, i.e., if d � 9δ, then |s −s′|� 6δ by Lemma 2. Otherwise, we
can give a rough estimate by the triangle inequality: |s − s′| � |s −y|+ |y −y′|+ |y′ − s′|� 19δ.
Hence, in any case, |s − s′| � 19δ. We consider two cases.

If s is in the segment [b, t ′], then by applying the triangle inequality several times, we obtain

|b − y|� |b − s| + |s − y|� ∣∣b − t ′
∣∣ + |s − y| � |b − x| + |x − t | + ∣∣t − t ′

∣∣ + |s − y|
� |b − x| + 5δ + d.

And because |b − y| = |b − x| + |x − y|, we have |x − y| � 5δ + d .
The same arguments we apply if s ∈ [t ′, c]. We merely note that we can replace y with y′ and

t with t ′ with respective errors less than δ and 19δ:

∣∣c − y′∣∣� ∣∣c − s′∣∣ + ∣∣s′ − y′∣∣� ∣∣c − s′∣∣ + ∣∣s′ − y′∣∣� |c − s| + 19δ + |s − y| + δ

�
∣∣c − t ′

∣∣ + 20δ + d.

Now, because |c − t ′|� |c − x ′| + |x′ − t ′| � |c − x′| + 2δ, we have
∣∣c − x′∣∣ + ∣∣x′ − y′∣∣ = ∣∣c − y′∣∣� ∣∣c − x′∣∣ + 22δ + d.

Finally, |x − y| � |y − y ′| + |y′ − x′| + |x − x′| � 24δ + d .
The case d(y, bc)� δ is treated identically with d and δ interchanged. �



822 V. Shchur / Journal of Functional Analysis 264 (2013) 815–836
3. Quasi-geodesics and �-length

Definition 7. A map f : E → F between metric spaces is a (λ, c)-quasi-isometry if

1

λ
|x − y|E − c �

∣∣f (x) − f (y)
∣∣
F
� λ|x − y|E + c

for any two points x and y of E.

Definition 8. A (λ, c)-quasi-geodesic in F is a (λ, c)-quasi-isometry from a real interval I =
[0, l] to F .

Let γ : I → F be a curve. We assume that the interval I = [x0, xn] of length |I | = l gives the
parameterization of the quasi-geodesic γ . We take a subdivision Tn = (x0, x1, . . . , xn) and let yi ,
i = 0,1, . . . , n, denote γ (xi). The mesh of Tn is d(Tn) = min0<i�n |yi − yi−1|.

Definition 9 (�-length). Let γ : I → F be a curve. The value

L�(γ ) = sup
Tn: d(Tn)��

n∑
i=1

|yi − yi−1|

is called the �-length of the quasi-geodesic γ .

We note that the values of the �-length and the classical length are the same for a geodesic.

Lemma 7. Let γ : I → F be a (λ, c)-quasi-geodesic. For � � 2c,

L�(γ ) � 2λl.

Proof. By the definition of the �-length, � � |yi − yi−1| � λ|xi − xi−1| + c. Hence, because
� � 2c, we obtain |xi − xi−1|� (� − c)/λ � c/λ.

Now, by the definition of a quasi-geodesic (and a quasi-isometry in particular), we have

sup
Tn

∑
i

|yi − yi−1|� sup
Tn

∑
i

(
λ|xi − xi−1| + c

)
� sup

Tn

∑
i

2λ|xi − xi−1| = 2λl,

where the last equality follows because the sum of |xi − xi−1| for every subdivision of the inter-
val I is exactly equal to the length of I . �
Lemma 8. Let γ : I → F be a (λ, c)-quasi-geodesic. Let R � c be the distance between the
endpoints of γ , and let � � 2c. Then L�(γ ) � 4λ2R.

Proof. By the definition of a quasi-isometry, l/λ − c � R � λl + c. Hence, l � λ(R + c). And
by Lemma 7, L�(γ ) � 2λ2(R + c). In particular, L�(γ ) � 4λ2R for R � c. �

The next lemma allows replacing arbitrary quasi-geodesics with continuous ones.
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Fig. 5. Construction of the continuous arc γ̃ from the quasi-geodesic γ .

Lemma 9. Let γ be a (λ, c)-quasi-geodesic, and let � � c. Let T = t0, t1, . . . , tn ⊂ γ be the set
of points on γ such that T gives the �-length value L�.

1. Then the curve γ̃ consisting of the geodesic segments [ti , ti+1], i = 0,1, . . . , n − 1, is a
(λ,12� + 3c)-geodesic with the (classical) length L�.

2. Let y and y′ be points of γ̃ such that d(y, y′) � 6� + c. Let γ̃0 be the part of γ̃ between y

and y′. Then the (classical) length of γ̃0 is not greater than L�(γ̃0) � 4λ2(R + 6�).

Proof. We first note that for every i = 0,1, . . . , n− 1, the length of the interval |[ti , ti+1]| � 3�.
Indeed, if |[ti , ti+1]| > 3�, then we can add a point t ′i to the partition T . Such a point exists
because the gaps on a quasi-geodesic cannot be greater than c.

We assume that γ is parameterized by an interval I ; t−1
i ∈ I are the parameters of ti , i =

0,1, . . . , n (see Fig. 5). Let [t−1
i , t−1

i+1] be the affine parameterization of the geodesic segments
[ti , ti+1]. Then the conditions for being a (λ,4c)-geodesic are satisfied automatically for the
points of the same segment.

To simplify the notation, we let [x1, x2] and [x3, x4] denote two different intervals of γ̃ and
[z1, z2] and [z3, z4] denote their parameters. We take two points y1 ∈ [x1, x2] and y2 ∈ [x3, x4],
where w1 and w2 are their parameters. By the triangle inequality and by the definition of a quasi-
isometry,

|y1 − y2| � |x2 − x3| + |y1 − x2| + |y2 − x3| � |x2 − x3| + 6� � λ|z2 − z3| + c + 6�.

Similarly, we obtain the lower bound

|y1 − y2|� |x2 − x3| − |y1 − x2| − |y2 − x3|� |x2 − x3| − 6�� 1

λ
|z2 − z3| − c − 6�.

By the definition of a quasi-isometry, |zk − zk+1| � λ(|xk − xk+1| + c) � λ(3� + c) with
k = 1,3. Hence,

|w1 − w2| − 2λ(3� + c)� |z2 − z3| � |w1 − w2|.
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Therefore,

1

λ
|w1 − w2| − 2λ(3� + c)

λ
− 6� − c � |y1 − y2|� λ|w1 − w2| + 6� + c.

Consequently, γ̃ is a quasi-geodesic with the constants λ and 12� + 3c and statement 1 in the
lemma is proved.

To prove statement 2, we need merely note that if |y1 − y2| � 6� + c, then c � |x1 − x4| �
|y1 − y2| + 6� by the triangle inequality. The left-hand inequality allows applying Lemma 8 to
the part γ0 between x1 and x4 of the initial quasi-geodesic γ , and we use the right-hand part to
obtain the upper bound,

L(γ̃0)� L�(γ0) � 4λ2(R + 6�). �
4. Exponential contraction

Lemma 10 (Exponential contraction). Let � > 0. In a geodesic δ-hyperbolic space E, let γ be
a connected curve at a distance not less than R � � + 58δ from a geodesic σ . Let L� be the
�-length of γ . Let r = 
(R − � − 58δ)/19δ�19δ. Then the length of the projection of γ on σ is
not greater than

max

(
4δ

�
e−Kr/δ(L� + �),8δ

)
.

In other words,

• if R ��+ 58δ + (δ/K) ln((L� +�)/2�), then the length of the projection of γ on σ is not
greater than (4δ/�)e−Kr/δ(L� + �);

• otherwise, it is not greater than 8δ.

Proof. Let y0, y1, . . . , yn be points on γ such that |yi − yi−1| = � for i = 1,2, . . . , n − 1,
|yn − yn−1|� �, and y0 and yn are the endpoints of γ . Let yk be the point of this set that is near-
est σ . We take a perpendicular from yk to σ and a point xk on it with |yk − xk| = � + 3δ. Now,
on the perpendiculars from all other points yi , we take points xi such that d(xi, σ ) = d(xk, σ )

(see Fig. 6). By Lemma 2, |xi − xi−1| � 4δ for i = 1,2, . . . , n. Therefore,

n∑
i=1

|xi − xi−1|� n4δ � n�
4δ

�
� 4δ

�
(L� + �).

We set x̄0 = x0 and x̄n1 = xn and select points x̄i ∈ {x1, x2, . . . , xn−1} such that 8δ �
|xi − xi−1| � 16δ. For each i = 0,1, . . . , n1, we choose a perpendicular from x̄i to σ , move
x̄i along it a distance 16δ + 3δ = 19δ toward σ , and obtain x1

i . By Lemma 2, |x1
i − x1

i−1| � 4δ

and

n1∑∣∣x1
i − x1

i−1

∣∣� n14δ � 1

2

n1∑
|x̄i − x̄i−1|� 1

2

n∑
|xi − xi−1|� 1

2

4δ

�
(L� + �).
i=1 i=1 i=1
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Fig. 6. Exponential contraction of the length of a curve γ under projection on a geodesic σ .

We can continue such a process while the distance from the set of points {xm
i , i = 0,

1, . . . , nm} to σ is not less than 19δ and |xm
0 − xm

nm | � 8δ. After k steps, we have

nk∑
i=1

∣∣xk
i − xk

i−1

∣∣� 1

2k

4δ

�
(L� + �) = 4δ

�
e−((ln 2)/19δ)(19δk)(L� + �).

We set r = 19δk and K = (ln 2)/19. We need 8δ � (4δ/�)e−Kr/δ(L� + �) and hence
r � (δ/K) ln((L� + �)/2�). Now, if the distance between the projections of the endpoints
|xm

0 − xm
nm | is not less than 8δ at some step m, then we use Lemma 2 to do the last projection

on σ , and its length does not exceed 8δ. Otherwise, we must do the last descent to the dis-
tance 55δ using Lemma 2 (the estimate for the projection on a geodesic with � = 16δ gives the
necessary distance from the set of points to the geodesic to be greater than 3 ∗ 16δ + 6δ = 54δ)
and intervals of a length not less than 8δ contract to intervals of a length not more than δ, and we
hence have a contraction factor of unity at the last step. �
5. Quantitative version of the Morse lemma

We are now ready to prove our main result. In a δ-hyperbolic space E, any (λ, c)-quasi-
geodesic γ belongs to an H -neighborhood of a geodesic σ connecting its endpoints, where the
constant H depends only on the space E (in particular, on the constant δ) and the quasi-isometry
constants λ and c.

5.1. Attempts

To motivate our method, we describe a sequence of arguments yielding sharper and sharper
estimates. We start with the proof in [4, Chapter 5.1, Theorem 6 and Lemma 8], where the upper
bound H � λ8c2δ was obtained (up to universal constants, factors of the order log2(λcδ)). The
first weak step in this proof is replacing a (λ, c)-quasi-geodesic with a discrete (λ′, c)-quasi-
geodesic γ ′ parameterized by an interval [1,2, . . . , l] of integers, where λ′ ∼ λ2c. For a suitable
R ∼ λ′2, we take an arc xuxv of γ ′ and introduce a partition of that arc xu, xu+N,xu+2N, . . . , xv

for some well-chosen N ∼ λ′. The approximation of a δ-hyperbolic space by a tree (see
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[4, Chapter 2.2, Theorem 12.ii]) is used to obtain an estimate of the form |yu+iN − y′
u+(i+1)N | �

c′ ∼ lnλ′. By the triangle inequality, |xu − xv| � |xu − yu| + |yu − yu+N | + · · · + |yv − xu| �
2(R + λ′) + (N−1|u − v| + 1)c′. On the other hand, λ′−1|u − v| � |xu − xv|. Combining these
two inequalities, we obtain an estimate for |u − v| and hence for a distance from any point of the
arc xuxv to the point xu. The second weak step in this argument is in the estimate of the length
of projections, which can be improved significantly.

Another proof was given in [1]. It allows obtaining the estimate λ2Ham, where Ham is the con-
stant of the anti-Morse lemma (see Section 7) and is given by the equation Ham � lnλ+ lnHam.1

It is very close to an optimal upper bound but still not sharp. Also we need to notice that the
sharp estimate for Ham � lnλ. The proof uses the notion of “exponential geodesic divergence.”

Definition 10. Let F be a metric space. We call e : N→R a divergence function for the space F

if for any point x ∈ F and any two geodesic segments γ = (x, y) and γ ′ = (x, z), the length of
a path σ from γ (R + r) to γ ′(R + r) in the closure of the complement of a ball BR+r (x) (i.e.,
in X \ BR+r (x)) is not greater than e(r) for any R, r ∈ N such that R + r does not exceed the
lengths of γ and γ ′ if d(γ (R), γ ′(R)) > e(0).

The divergence function is exponential in a hyperbolic space. The next step is to prove the
anti-Morse lemma. The authors of [1] take a point p of the geodesic σ that is the distant from the
quasi-geodesic γ and construct a path α between two points of γ such that α is in the complement
of the ball of radius d(p,γ ) with the center p. Finally, they compare two estimates of the length:
one estimate follows from the hypothesis that α is a quasi-geodesic, and the other is given by the
exponential geodesic divergence. To prove the Morse lemma, they take a (connected) part γ1 of γ

that belongs to the complement of the Ham-neighborhood of the geodesic σ , and they show that
the length of γ1 does not exceed 2λ2Ham by the definition of a quasi-geodesic. In [1], they also
use another definition of a quasi-geodesic, which is less general than our definition because, in
particular, it assumes that a quasi-geodesic is a continuous curve. Consequently, some technical
work is needed to generalize their results.

To improve these bounds, we use Lemma 10 (exponential contraction) instead of exponential
geodesic convergence and Lemma 8, which do not require discretization as in [4] and provide a
much more precise estimate for a length of a projection. We can then take R = lnλ and obtain
H �O(λ2 lnλ) by a similar triangle inequality.

Below, we prove the Morse and anti-Morse lemmas independently. We only mention that
arguments in [1] can be used to deduce the optimal bound for the Morse lemma from the anti-
Morse lemma. We can also obtain an optimal upper bound for H from Lemma 11.

We now sketch the proof of a stronger result (but still not optimal): H � O(λ2 ln∗ λ), where
ln∗ λ is the minimal number n of logarithms such that ln · · · ln︸ ︷︷ ︸

n

λ � 1.

The preceding argument is used as the initial step. It allows assuming that the endpoints x

and x′ of γ satisfy |x − x′| � O(lnλ). Then comes an iterative step. We prove that if xx′ is an
arc on γ and |x − x′| = d1, then there exist two points y and y′ at distance at most C2(c, δ)λ

2

from a geodesic σ1 connecting x and x′ such that d2 := |y − y′| � C3(c, δ) lnd1. Indeed, we
choose a point z of the arc xx′ that is farthest from σ1 and let σ ′ denote a perpendicular from z

to σ1. If all points of the arc xx′ (on either side of z) whose projection on σ ′ is at a distance � λ2

1 Be careful while reading [1] because a slightly different definition of quasi-geodesics is used there with λ1 = λ2;
cf. Lemma 8.
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from σ1 are at a distance not less than lnd1 from σ ′, then Lemma 10 implies that the length of the
arc is much greater than λ2 lnd1, contradicting the quasi-geodesic assumption. Hence, there are
points y and y′ that are near σ ′. We can arrange that their projections on σ ′ are near each other,
which yields |y −y′|� lnd1. We apply this relation several times starting with d1 = C1(c, δ) lnλ

until di � 1 for some i = ln∗ λ.
In summary, we use two key ideas to improve the upper bound of H : exponential contraction

and a consideration of a projection of γ on a different geodesic σ ′.

5.2. Proof of the Morse lemma

We use the same ideas to prove the quantitative version of the Morse lemma, but we should
do it more accurately. Let γ be a (λ, c)-quasi-geodesic in a δ-hyperbolic space E, and let σ be
a geodesic segment connecting its endpoints. We prove that γ belongs to an H -neighborhood
of σ , where

H = 4λ2
(

78c +
(

78 + 133

ln 2
e157 ln 2/28

)
δ

)
. (1)

Remark 3. It is easy to give an example where H = λ2c
2 (see Section 6.2).

Indeed, a path that goes back and forth along a geodesic segment of length λ2c in a tree is a
(λ, c)-quasi-geodesic (see Section 6 for details).

Proof of Theorem 1. Applying Lemma 9 to the quasi-geodesic γ with � = 2c, we obtain a con-
tinuous (λ,27c)-quasi-geodesic γ̃ . By Lemma 8, γ belongs to a 4λ2 · 6c = 24λ2c-neighborhood
of γ̃ . Hereafter, we consider only the (λ,27c)-quasi-geodesic γ̃ , which for brevity is denoted
simply by γ , and we set c̃ = 27c. The classical length of the part of this quasi-geodesic between
two points separated by a distance R does not exceed 4λ2(R + c̃).

We introduce the following construction for subdividing the quasi-geodesic γ . We let z denote
the point of our quasi-geodesic that is farthest from σ . Let σ0 = σ be the geodesic connecting the
endpoints of γ . Let σ ′

0 be the geodesic minimizing the distance between z and σ0 (because σ0 is
a geodesic segment, σ ′

0 is not necessarily perpendicular to the complete geodesic carrying σ0).
Let s0 denote the point of intersection of σ0 and σ ′

0. Let s′
0 be the point of σ ′

0 such that the length
of the segment [s0, s

′
0] is equal to δ. We consider the set of points of γ whose projections on σ ′

0
belong to the segment [s0, s

′
0]. The point z separates this set into two subsets γ +

0 and γ −
0 (see

Fig. 7).
Let d±

0 denote the minimal distance of points of γ ±
0 to σ ′

0. We also introduce the following
notation:

• d0 = d+
0 + d−

0 + δ;
• γ1 is a connected component of γ \ (γ +

0 ∪ γ −
0 ) containing z and is also a quasi-geodesic

with the same constants and properties as γ ;
• σ1 is a geodesic connecting the endpoints of the sub-quasi-geodesic γ1;
• L1 is the length of γ1.

Applying the same idea to the curve γ1, the same point z, and the geodesic σ1, we ob-
tain the geodesic σ ′ , the parts γ ± of the quasi-geodesic, and the distances d±. We have
1 1 1
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Fig. 7. Illustration of proof of Theorem 1.

l(σ ′
0) � l(σ ′

1) + δ + 6δ. To show this, we apply Lemma 5 assuming that c = s′
0, d = z, and a

and b are the endpoints of γ1. Continuing the process, we obtain a subdivision of γ by γ ±
i and

two families of geodesics σi and σ ′
i . Finally, for some n, we obtain dn � c̃ + δ + 77δ = 78δ + c̃.

The quantity Li is the length of the subcurve γi−1, which is also a quasi-geodesic. Hence,
l(σ ′

n) � Ln � 4(dn + c̃)λ2 by construction. Therefore,

l
(
σ ′

0

)
�

n∑
i=1

7δ + 4(78δ + 2c̃)λ2.

Our goal is to prove that for sufficiently large λ,
∑

di � Cλ2, where C is a constant depending
only on c̃ and δ.

Because the value of the classical length of a segment is not less than the value of its �′-length,
by Lemma 10 (with �′ = δ) and because 
(d±

i+1 − δ − 58δ)/19δ�19δ � d±
i+1 − 78δ, we obtain

l
(
γ +
i ∪ γ −

i

)
� δ

δ

4δ
max

(
eK(d+

i+1−78δ)/δ, eK(d−
i+1−78δ)/δ

)
� δ

4
eK(di+1−δ−156δ)/2δ.

On the other hand, l(γ +
i ∪ γ −

i ) = Li − Li+1. Hence, setting C0 = (δ/4)e−157K/2, we have

C0e
Kdi+1/2δ � Li − Li+1. (2)

Let g±
i be a point of γ ±

i that minimizes the distance to σ ′
i . The part of the quasi-geodesic γ

between g+
i and g−

i is also a quasi-geodesic with the same constants and properties. By the
triangle inequality, |g−

i − g+
i | < d+

i + d−
i + δ. Therefore, by construction (see the beginning of

the proof) and because di � 78δ,

Li � 4λ2(di + c̃) � 8λ2di. (3)

The function e−d is decreasing. Therefore, because di � 4
λ2 Li , we obtain

K
die

−Kdi/2δ � K 4
Lie

−(4K/2δλ2)Li .

2δ 2δ λ2
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We are now ready to estimate n:

n =
n∑

i=1

1 = 1

C0

n∑
i=1

e−Kdi/2δC0e
Kdi/2δ � 1

C0

λ2δ

4K

n∑
i=1

e−(8K/2δλ2)Li
4K

λ2δ
(Li−1 − Li).

Setting Xi = (4K/λ2δ)Li , we have

n∑
i=1

i � λ2δ

4C0K

n∑
i=1

e−Xi (Xi−1 − Xi),

and because the function e−X is decreasing for X � 0, we can use the estimate

n∑
i=1

e−Xi (Xi−1 − Xi) �
∞∫

0

e−X dX = −e−x
∣∣∞
0 = 1.

Summarizing all the facts, returning to the initial notation, and recalling that K = ln 2/19, we
finally obtain the claimed result

H = 4λ2
(

78c +
(

78 + 133

ln 2
e157 ln 2/38

)
δ

)
. �

6. Examples

6.1. Proof of Proposition 1

Here, we prove Proposition 1 (see the Introduction). We call any connected component of a
ball with a deleted center O a branch. We call points that are sent to the branch containing the
image of the center f (O) green points and all other points of T red points.

Proof of Proposition 1. We show that there exist two red points r1 and r2 such that d(O, r1r2)�
r = c + 1.

By Definition 7, a c-neighborhood of every point of the border should contain a point of the
image. We must have at least (d−1)dR−c−1 red points near the border (we exclude the green
part). The number of points in each connected component of the complement of the ball of
radius r is less than dR−r . Therefore, if r � c, then one component contains an insufficient
number of points to cover the border of B . Hence, there exist two points r1 and r2 in dif-
ferent components of T , which means that the geodesic r1r2 passes at a distance less than r

from the center O and the quasi-geodesic f (r1r2) passes at a distance λr + c from f (O) and
belongs to an H -neighborhood of the geodesic f (r1)f (r2). Because every path from f (O)

to f (r1)f (r2) passes through O , we conclude that d(O,f (0)) < H + c + λr . We need only
choose a good value for r . Simply calculating the number of points in a mentioned compo-
nent gives the estimate 1 + d + d2 + · · · + dR−r � (1/ lnd)dR−r+1. For r = c + 1, we have
(1/ lnd)dR−r+1 � (d − 1)dR−c−1, which completes the proof. �
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6.2. Optimality of Theorem 1

We present an example of a (λ, c)-quasi-geodesic γ in a tree with H = λ2c/2. We take a real
interval [a, b] of length λ2c/2 that is a subtree. We use an interval I = [u,v] of length λc to
parameterize γ . We define γ as follows:

• γ (u) = γ (v) = a,
• we set γ (w) = b for the midpoint w of I , and
• we set D = min{|u − x|, |v − x|} and |a − γ (x)| = λD for any x ∈ [a, b].

It is easy to verify that γ is a well-defined quasi-geodesic. On the half-intervals [u,w] and [w,v],
γ just stretches the distances by λ. We now take any two points x ∈ [u,w] and y ∈ [w,v].
Assuming that |u − x| � |v − y|, we obviously have |x − y| = |u − v| − |u − x| − |v − y|.

I. The lower bound of |γ (x) − γ (y)| is given by

1

λ

(|u − v| − |u − x| − |v − y|) − c � 0 �
∣∣γ (x) − γ (y)

∣∣.
II. The upper bound of |γ (x) − γ (y)| is given by

λ
(|u − v| − |u − x| − |v − y|) + c − (∣∣a − γ (y)

∣∣ − ∣∣a − γ (x)
∣∣)

= λ
(|u − v| − |u − x| − |v − y|) + c − λ

(|v − y| − |u − x|)
= λ2c − 2λ|v − y| + c � c � 0.

6.3. Achieving the displacement λc

We now describe a self-quasi-isometry f of a ball B in a tree that moves the center O a
distance λc/2. We assume that the radius of B is greater than λc. We note that the images of two
points inside the ball B1 of radius λc with a center O can be just the same point. Let the quasi-
isometry f fix the boundary of B1, and let |O − f (O)| = λc/2. The segment [O,f (O)] is sent
to the only point f (O). For any point a of ∂B1, we let a′ denote a projection of a on [O,f (O)]
and assume that the interval [a, a′] is linearly stretched and sent to the interval [a,f (O)]. Such a
map f assigns only one image to any point. It is easy to verify that f is a quasi-isometry because
the distances between points can be diminished up to 0 and are not increased more than λ times.

7. Anti-Morse lemma

We have already proved that any quasi-geodesic γ in a hyperbolic space is at distance not
more than λ2(A1c + A2δ) from a geodesic segment σ connecting its endpoints. This estimate
cannot be improved. But the curious thing is that this geodesic belongs to a lnλ-neighborhood
of the quasi-geodesic! We can therefore say that any quasi-geodesic is lnλ-quasiconvex. This
upper bound can be improved in some particular spaces: for example, any quasi-geodesic is
c-quasiconvex in a tree.

The proof of Theorem 2 (see the Introduction) that we give below is based on using

• Lemma 10 (exponential contraction) to prove that at the distance lnλ from the geodesic σ is
at most λ2 lnλ and



V. Shchur / Journal of Functional Analysis 264 (2013) 815–836 831
• an analogue of Lemma 10 to prove that the length of a circle of radius R is at least eR (up to
some constants).

Lemma 11. Let X be a hyperbolic metric space, γ be a (λ, c)-quasi-geodesic, and σ be a
geodesic connecting the endpoints of γ . Let (yu, yv) be an arc of γ such that no point of this arc
is at distance less than C1 lnλ + C2 from σ and yu and yv are the points of the arc nearest σ .
Then the length of the projection of the arc (yu, yv) on σ does not exceed max(8δ,C3 lnλ) (with
some well-chosen constants C1, C2, and C3 depending linearly on c).

Proof. By the definition of a quasi-geodesic, we have

|u − v|
λ

− c � |yu − yv| � λ|u − v| + c.

On the other hand,

|yu − yv| �
∣∣yu − y′

u

∣∣ + ∣∣y′
u − y′

v

∣∣ + ∣∣y′
v − yv

∣∣,
where y′

u and y′
v are the projections of yu and yv on σ . We adjust the constants C1 and C2 such

that

C1 lnλ + C2 = 19δ2

K
ln

8δλ4

�
+ � + 58δ,

where � = 2c (such a choice allows applying Lemma 8). We apply the lemma on exponential
contraction (we assume that the length of the arc is rather large for using the estimate with an
exponential factor and not to treat the obvious case where the length of the projection is 8δ). We
let l(yu, yv) denote the �-length of the arc (yu, yv):

∣∣y′
u − y′

v

∣∣� l(yu, yv)e
−K(r−�−58δ)/δ = 1

2λ4
l(yu, yv).

Combining all these inequalities and using Lemma 8, we obtain

|u − v|
λ

− c � |yu − yv| � 8

K
ln

4
√

2λ + 1

8λ4
l(yu, yv)

� 8

K
ln

4
√

2λ + 4λ2 1

8λ4
|yu − yv|

� 8

K
ln

4
√

2λ + 1

2λ2

(
λ|u − v| + c

)
.

We therefore conclude that |yu − yv| � C3λ
2 lnλ, hence l(yu, yv) � C3λ

4 lnλ, and, finally, the
length of the projection of the arc (yu, yv) of γ does not exceed max(8δ,C3 lnλ). �
Proof of Theorem 2. The proof follows directly from Lemma 11. Because we have already
proved that for every point z′ ∈ σ , there exists a point z ∈ γ such that the projection of z on σ is
at distance not more than several times c + δ from z′. For simplicity, we therefore assume that
for any point of σ , there exists a point of γ projecting on this point.
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If the distance between z and z′ is less than C1 lnλ for some constant C1 = C1(c, δ) (the
value of C1 can be found from Lemma 11), then the statement is already proved. If not, then
we take an arc (yu, yv) of γ containing the point z such that the endpoints yu and yv are at the
distance C1 lnλ from σ and these points are the points of this arc that are nearest σ . Hence, by
Lemma 11, the length of the projection (which includes z) of the arc (yu, yv) does not exceed
C4 lnλ. Therefore, the distance from z to yu (and yv) is not greater than (C1 + C4) lnλ. �
8. Geodesically rich spaces

Definition 11. A metric space X is said to be geodesically rich if there exist constants r0, r1, r2,
r3, and r4 such that

• for every pair of points p and q with |p − q| � r0, there exists a geodesic γ such that
d(p,γ ) < r1 and |d(q, γ ) − |q − p|| < r2 and

• for any geodesic γ and any point p ∈ X, there exists a geodesic γ ′ passing in an
r3-neighborhood of the point p and such that d(p,γ ) differs from the distance between
γ ′ and γ by not more than r4.

Example 1. A line and a ray are not geodesically rich. Both of them satisfy the second condition
in the definition, but not the first.

Example 2. Nonelementary hyperbolic groups are geodesically rich. We prove this later.

Any δ-hyperbolic metric space H can be embedded isometrically in a geodesically-rich
δ-hyperbolic metric space G (with the same constant of hyperbolicity). We take a 3-regular tree
with a root (T ,O), assume that G = H × T , and set the metric analogously to a real tree:

• the distance between points in the subspace (H,O) equals the distance between the corre-
sponding points in H ;

• the distance between other points equals the sum of the three distances from the points to
their projections on (H,O) and between their projections on (H,O).

It is easy to show that the space G is δ-hyperbolic and geodesically rich. But such a procedure
completely changes the ideal boundary of the space. We therefore ask another question:

Question 1. Is it possible to embed a δ-hyperbolic metric space H isometrically in a geodesically
rich δ-hyperbolic metric space G with an isomorphic boundary?

Lemma 12. Let G be a nonelementary hyperbolic group. Then there exist constants c1 and
c2 such that for any point p ∈ G and any geodesic γ ∈ G such that d(p,γ ) � c1, there ex-
ists a geodesic γ ′ with a point q minimizing (up to a constant times δ) the distance to γ and
|p − q|� c2.

Proof. By symmetry, we can assume that p is the unity of the group G. We supply the ideal
boundary G(∞) with a visual distance. Because G is a nonelementary group, its ideal boundary
G(∞) has at least three points (hence, infinitely many points).
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We first prove by contradiction that there exists an ε such that for every pair of points ξ and η

of G(∞), the union of the two balls of radius ε with the centers ξ and η does not cover the whole
ideal boundary. On the contrary, we suppose that there exist two sequences of points ξn and
ηn such that the union of B(ξn,1/n) and B(ηn,1/n) includes G(∞). By compactness, we can
assume that ξn → ξ and ηn → η, and we find that G(∞) belongs to the union of B(ξ,2/n) and
B(η,2/n). Hence, the ideal boundary contains only the two points ξ and η, which contradicts
the assumption that G is nonelementary.

Let c1 be a constant such that if a geodesic γ is at a distance at least c1 from the point p, then
the visual distance between its endpoints (at infinity) is less than ε/2. We now take two points
ξ and η of G(∞) outside an ε/4-neighborhood of γ (∞) such that |ξ − η| > ε (the preceding
argument established that such a choice is possible). Let γ ′ be a geodesic with the endpoints ξ

and η. Hence, d(p,γ ′) < c1. Applying Lemma 13 completes the proof. �
Lemma 13. Let X be a δ-hyperbolic space. Then for every ε > 0, there exist constants c1 and
c2 such that for every pair of geodesics γ and γ ′ and every point p such that d(p,γ ) < c1
and visual distance between the endpoints γ (∞) and γ ′(∞) � ε, there exists a point q on γ

minimizing the distance to γ ′ up to some constant times δ and such that |p − q|� c2.

Proof. By Lemma 15, we can replace the point p with its projection p′ on the geodesic γ . Let a′
and b′ be the projections on γ of the endpoint a = γ ′(−∞) and the point b of γ ′ that minimizes
the distance from γ ′ to γ .

We consider two sequences xn and yn of points respectively on aa′ and a′γ (+∞) such that
limn→∞ xn = a and limn→∞ yn = γ (+∞). We let a′

n denote the projections of xn. Obviously,
a′
n → a′ as n → ∞. By the definition of Gromov’s product, (x|y)p′ = limn→∞(xn|yn)p′ . Using

Lemma 4, we now estimate (xn|yn)p′ :

(xn|yn)p′ = 1

2

(∣∣p′ − xn

∣∣ + ∣∣p′ − yn

∣∣ − |xn − yn|
)

� 1

2

(∣∣p′ − a′
n

∣∣ + ∣∣a′
n − xn

∣∣ + 8δ + ∣∣p′ − yn

∣∣ − ∣∣a′
n − xn

∣∣ − ∣∣a′
n − yn

∣∣ + 2δ
)
.

Now, if p′ is between a′ and b′, then (xn|yn)p′ � 5δ; otherwise (we assume that p′ is closer
to a′, i.e., the order of points on γ is p′, a′, b′), (xn|yn)p′ � |p′ − a′| + 5δ.

Therefore, to finish the proof, we must now prove that the point a′ is not far from ab. We
apply Lemma 4 once more to the triangle aa′b′ and obtain d(a′, ab′) � 2δ. Hence, because the
triangle abb′ is δ-thin, the distance from a′ to ab or bb′ is not greater than 3δ. In the first case,
the statement is proved immediately. In the second case, we note that bb′ is a perpendicular to
ab′ and hence d(a′b′) � 2d(a′, bb′) � 6δ. Therefore, a′ in this case is near the projection of the
point of ab that is nearest ab′, which completes the proof. �
Lemma 14. Let G be a nonelementary hyperbolic group. Then there exist constants c0, c1, and c2
such that for every two points p and q in the group G with |p−q| > r0, there exists a geodesic γ

such that d(p,γ )� r1 and ||p − q| − d(q, γ )|� r2.

Proof. We first assume that p is the unity of the group. We argue by contradiction: we suppose
that the statement is false, i.e., there exists a sequence of points qn such that |qn − p| → ∞ as
n → ∞, and all pairs p and qn do not satisfy the conditions in the lemma. We suppose that ξ
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Fig. 8. Illustration for Lemma 14.

is a limit point of this sequence. As in the proof of Lemma 12, we supply the boundary of the
group with a visual metric. And the same arguments provide that there exist ε > 0 and points η

and η′ on the ideal boundary G(∞) such that the pairwise visual distances between ξ , η, and η′
are greater than ε (see Fig. 8). We show that the geodesic γ with the endpoints η and η′ satisfies
the conditions in the lemma, which leads to a contradiction.

In what follows, we write ξ , η, and η′ but assume that we consider three sequences of points
converging to the corresponding points of the ideal boundary. The triangle pηη′ is δ-thin. We
take a point s of ηη′ such that d(s,pη)� δ and d(s,pη′)� δ. We let t and t ′ denote projections
of s respectively on pη and pη′. By the triangle inequality, we have

|η − t | + ∣∣η′ − t ′
∣∣ − 2δ �

∣∣η − η′∣∣� |η − t | + ∣∣η′ − t ′
∣∣ + 2δ.

By hypothesis,

visdistp
(
η,η′) = e−(η|η′)p > ε.

Hence,

|p − η| + ∣∣p − η′∣∣ − ∣∣η − η′∣∣ < 2ε0,

where ε0 = − ln ε

Combining the two inequalities, we obtain |p − t | + |p − t ′| � 2(ε0 + δ) and d(p,ηη′) �
2ε0 + 3δ. The same arguments applied to the triangles pηξ and pη′ξ show that the distance from
the point p to the geodesics ηξ and η′ξ also does not exceed 2ε0 + 3δ. We let p1, p2, and p3
denote the respective projections of p on ηη′, ηξ , and η′ξ and q denote the projection of ξ on ηη′.
By the triangle inequality, |p1 −p2| � |p1 −p|+ |p −p2| � 2(2ε0 + 3δ). Applying Lemma 4 to
the triangles qξη and qξη′, we find that the point q is not farther than 2δ from both ηξ and η′ξ .
Therefore, both p1 and q are at bounded distances from ηξ and η′ξ , and we can apply Lemma 6,
whence it follows that p1 and q are near each other at a distance of the order ε0 + δ. �
Lemma 15. Let X be a δ-hyperbolic space, ξ and η be two points of the ideal boundary ∂X, and
p and p′ be two points such that d(p,p′) = D. Then the visual distances between ξ and η from
the points p and p′ satisfy the inequality

visdistp′(ξ, η) � eD visdistp(ξ, η).
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Proof. By definition, Gromov’s product of x and y in p is

(x|y)p = 1

2

(|p − x| + |p − y| − |x − y|).
We have the same equality for x, y, and p′. Hence,

∣∣(x|y)p′ − (x|y)p
∣∣ =

∣∣∣∣1

2

(∣∣p′ − x
∣∣ + ∣∣p′ − y

∣∣ − |p − x| − |p − y|)
∣∣∣∣� ∣∣p − p′∣∣.

The last inequality follows from the triangle inequality. Therefore, by the definition of a visual
metric,

visdistp′(ξ, η) = e
(ξ |η)p′ � e(ξ |η)p+|p−p′| = eD visdistp(ξ, η). �

9. Quasi-isometries fixing the ideal boundary

We now give some estimates of the displacement of points in geodesically rich spaces un-
der quasi-isometries that fix the ideal boundary. We do not yet know whether these results are
optimal.

Remark 4. Let X be a metric space satisfying the first condition in the definition of geodesically
rich. Let f : X → X be a (λ, c)-self-quasi-isometry fixing the boundary ∂X. Then for sufficiently
large λ and any point O ∈ X, d(f (O),O) � H(λ, c, δ)+r2, where the constant C1 depends only
on the space X.

Proof. For any point O , r1 � H(λ, c, δ) for sufficiently large λ if d(O,f (O)) < r0. Otherwise,
let γ be a geodesic such that d(O,γ ) � r1 and d(f (O), γ ) > d(O,f (O)) − r2. Because f (γ )

is a quasi-geodesic with the same endpoints as γ , the quasi-geodesic lies near γ : f (γ ) ⊂ UH (γ ).
Combining all the arguments, we obtain

d
(
O,f (O)

)
� d

(
f (O), γ

) + r2 � H + r2. �
We do not know if it is possible to improve this upper bound in the general case. But in the

case of a geodesically rich space, we can improve the bound from λ2 to λ lnλ.

Theorem 1. (See Theorem 3 in the Introduction.) Let X be an (r1, r2)-geodesically rich
δ-hyperbolic metric space and f be a (λ, c)-self-quasi-isometry fixing a boundary ∂X. Then
for any point O ∈ X, d(O,f (O)) � max(r0, λ(r3 + c + c1 lnλ) + r1 + r2 + r4).

Proof. Because f fixes the boundary of X and by the anti-Morse lemma, a (c1 lnλ)-
neighborhood (where c1 = c + δ) of an image f (σ ) of any geodesic σ includes σ : σ ⊂
Vc1 lnλ(f (σ )). All the constants r0, r1, r2, r3, and r4 are the same constants as in the definition of
a geodesically rich space. We take an arbitrary point O ∈ X. We assume that d(O,f (O)) � r0
because otherwise there is nothing to prove. There exists a geodesic γ such that d(γ,O) � r1
and |d(O,f (O)) − d(f (O), γ )| � r2, and there also exists a geodesic γ ′ such that f (O) lies in
r3-neighborhood of γ ′ and such that f (O) is (up to r4) the point of γ ′ that is nearest γ .
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Because γ ′ ⊂ Vc1 lnλ(f (γ ′)), there exists a point O ′ of γ ′ such that |f (O ′) − f (O)| � r3 +
c1 lnλ. Now, d(f (O), γ ) � d(O ′, γ ) + r4 � |O ′ − O| + r1 + r4, and by the definition of a
quasi-isometry, |O ′ −O| � λ(|f (O ′)− f (O)| + c) � λ(r3 + c + c1 lnλ). Hence, d(f (O), γ ) �
λ(r3 + c + c1 lnλ)+ r1 + r4. Finally, we conclude that d(O,f (O)) � d(f (O), γ )+ r2 � λ(r3 +
c + c1 lnλ) + r1 + r2 + r4. �
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proofs of this result have been given, with different expressions for A. An optimal 
value for A (up to a multiplicative constant) has only been found recently in the ar-
ticle [5] by the second author, giving A(λ, C, δ) = Kλ2(C + δ) for an explicit constant 
K = 4(78 + 133/ log(2) · exp(157 log(2)/28)) ∼ 37723.

Unfortunately, there is a gap in the proof of this theorem in [5], which was noticed 
by the first author while he was developing a library [4] on Gromov-hyperbolic spaces 
in the computer assistant Isabelle/HOL. In such a process, all proofs are formalized on 
a computer, and checked starting from the most basic axioms. The degree of confidence 
reached after such a formal proof is orders of magnitude higher than what can be obtained 
by even the most diligent reader or referee, and indeed this process shed the light on the 
gap in [5]. The gap is on Page 829: the inequality 

∑n
i=1 e

−Xi(Xi−1 − Xi) ≤
∫∞
0 e−t dt

goes in the wrong direction as the sequence Xi is decreasing.
In this paper, we fix this gap. Here is the estimate we get.

Theorem 1.1. Consider a (λ, C)-quasi-geodesic Q in a δ-hyperbolic space X, and G a 
geodesic segment between its endpoints. Then the Hausdorff distance HD(Q, G) between 
Q and G satisfies

HD(Q,G) ≤ 92λ2(C + δ).

Let us specify precisely the terms used in this statement, as there are small variations 
in the definitions in the literature. For us, a (λ, C)-quasi-geodesic is the image of a map 
f from a compact interval to X satisfying for all x, y the inequalities

λ−1 |y − x| − C ≤ d(f(x), f(y)) ≤ λ |y − x| + C.

A map satisfying these inequalities is also called a (λ, C)-quasi-isometry. We also re-
quire λ ≥ 1 and C ≥ 0 in the definition. A geodesic segment is by definition a 
(1, 0)-quasi-geodesic. We say that the space X is δ-hyperbolic if the Gromov product 
(x, y)w = (d(x, w) + d(y, w) − d(x, y))/2 satisfies for all points x, y, z, w the inequality

(x, z)w ≥ min((x, y)w, (y, z)w) − δ.

Finally, the Hausdorff distance HD(Q, G) is the smallest number r such that G is in-
cluded in the r-neighborhood of Q, and conversely.

Remark 1.2. For any λ ≥ 3, C ≥ 0 and δ ≥ 0, one can construct an example of a 
(λ, C)-quasi-geodesic Q in a δ-hyperbolic space which satisfies HD(Q, G) ≥ λ2(C + δ)/9
where G is a geodesic segment joining the endpoints of Q. This shows that Theorem 1.1
is optimal, up to the value of the multiplicative constant. Such examples for δ = 0 are 
already given in [5], and the following is a variation around these examples.

Example 1.3. Let λ ≥ 3, C ≥ 0 and δ ≥ 0. Take X = R × [0, δ] with the L1 distance. This 

is a δ-hyperbolic space. Let λ̄ = λ/3 ≥ 1. Define a quasi-geodesic f : [0, 2λ̄(C+δ) +δ/λ̄] →
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X by going always at speed λ̄ from (0, 0) to (λ̄2(C + δ), 0), then to (λ̄2(C + δ), δ), then 
to (0, δ). The Hausdorff distance between the quasi-geodesic Q defined by f and the 
geodesic G joining (0, 0) and (0, δ) is λ̄2(C + δ) = λ2(C + δ)/9. We claim that f is a 
(λ, C)-quasi-geodesic. The upper bound d(f(x), f(y)) ≤ λ |y − x| + C is obvious as f is 
λ̄-Lipschitz by construction. For the lower bound d(f(x), f(y)) ≥ λ−1 |y − x| − C, the 
most demanding points are the endpoints of the interval x = 0 and y = 2λ̄(C + δ) + δ/λ̄: 
we should check that

d(f(x), f(y)) = δ ≥ λ−1 ·
(
2(C + δ)λ̄ + δ/λ̄

)
− C.

This follows from the choice λ̄ = λ/3.

The new proof of Theorem 1.1 has been completely formalized in Isabelle/HOL 
in [4]. Therefore, the above theorem is certified. Here is this statement as proved in 
Isabelle/HOL.

In this formal statement, ’a is a type of class Gromov_hyperbolic_space. It cor-
responds to the space X of Theorem 1.1, and the associated hyperbolicity constant is
deltaG(TYPE(’a)). Instead of talking of the quasi-geodesic Q, the formal statement is 
made in terms of its parametrization f , as the notion of endpoint of a quasi-geodesic is 
not really well defined. With this correspondence, the two statements directly correspond 
to each other.

Although the proof is more involved than the original argument in [5], the constant we 
get in the end is much better (92 instead of 37724). Indeed, we have tried to optimize the 
constant as much as we could, contrary to [5], keeping in mind the foundational nature 
of the library [4]. This optimization owes a lot to the formalization process. It makes it 
possible to optimize locally one part of the proof, and see if it breaks other parts of the 
proof by checking if the proof assistant complains that the proof is not correct any more, 
or if everything goes through. The certainty of the result also makes the optimization 
worth it, as we are sure not to have forgotten for example an edge case that would spoil 
the estimates.

Having a formalized certified proof raises interesting questions about the way to write 
mathematics. We do not need to convince a reader (or a referee!) that the result is correct, 
as we have already done the much more demanding task of convincing a computer, and 
the proof with all details can be read by the interested reader in [4]. Rather, we have 
to convey the interesting ideas. We have decided to give all the precise statements we 

use (in their traditional version, but the very same statements have been formalized 
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in [4]), but skip their proofs if they are small variations around results that are already 
available in the literature. For the main proof, we will explain (with as many details 
as in a traditional mathematical paper) a simplified version of the proof that gives the 
same statement as Theorem 1.1 but not caring much about the universal constants (this 
simplified argument gives the constant 2460 instead of 92 in Theorem 1.1). Then we will 
comment without entering in too many details on the various optimizations that can be 
done, leading to the above statement.

Remark 1.4. The proof of Theorem 1.1 is delicate. However, we would like to emphasize 
that this is not due to our desire to formalize the proof on computer: the argument 
we give in this article is the simplest one we have been able to come up with, without 
any attempt to get an easy to formalize proof. And indeed this proof was not easy to 
formalize, but the mere fact that this was possible shows how powerful proof assistants 
already are today.

2. Proof of the main theorem

The proof uses the notion of quasiconvexity. We say that a subset Y ⊆ X is 
K-quasiconvex if, for any y1, y2 ∈ Y , there exists a geodesic between y1 and y2 which 
is included in the K-neighborhood of Y . For instance, geodesics are 0-quasiconvex. 
The r-neighborhood of a 0-quasiconvex set is always 8δ-quasiconvex, see [3, Proposi-
tion 10.1.2].

We follow the global strategy of [5] to prove Theorem 1.1, with a new more involved 
argument at a key technical step. Thanks to [1], we can assume without loss of generality 
that the space X is geodesic. The quasi-geodesic Q is by definition the image of a 
(λ, C)-quasi-isometric map f : [u−, u+] → X. The statement for a general quasi-isometric 
map f reduces to the one for a continuous quasi-isometric map f thanks to the following 
approximation lemma, which is a version of [5, Lemma 9] or [2, Lemma III.H.1.11].

Lemma 2.1. Consider a (λ, C)-quasi-isometry from a compact interval to a geodesic 
metric space, whose endpoints are at distance at least 2C. Then it is within Haus-
dorff distance 2C of a (λ, 4C)-quasi-geodesic with the same endpoints which is moreover 
2λ-Lipschitz.

The proof of this lemma is very classical: assume that the initial quasi-geodesic is 
defined on an interval [u−, u+]. Then the assumptions ensure that u+ −u− ≥ C/λ. Split 
suitably the interval [u−, u+] into subintervals with length in [C/λ, 2C/λ]. The new 
quasi-geodesic will coincide with the initial one on the endpoints of these subintervals, 
and be geodesic in between. The facts that this new function is a (λ, 4C)-quasi-geodesic, 
within Hausdorff distance 2C of the original one, and 2λ-Lipschitz, follow from direct 

computations.
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Replacing the original quasi-geodesic by the new one given by Lemma 2.1 and C by 4C, 
we will assume from this point on that the (λ, C)-quasi-geodesic f is also continuous. 
Replacing the original hyperbolicity constant δ0 by a slightly larger constant δ (and 
letting δ tend to δ0 at the end of the argument), we can assume that the space is 
hyperbolic for a constant strictly smaller than δ, and also that δ > 0.

Consider z ∈ [u−, u+]. We want to estimate d(f(z), G). We will prove an estimate of 
the form

d(f(z), G) ≤ K0 + K1

K2

u+−u−∫
0

e−K2t dt = K0 + K1 · (1 − e−K2(u+−u−)), (2.1)

where K0, K1 and K2 are suitable parameters that do not depend on u− and u+. 
Both K0 and K1 will be of the form Ki = kiλ

2(C + δ), while K2 will be of the form 
K2 = k2/(δλ) where k0, k1, k2 are explicit positive real constants. They will be defined 
in (2.4), (2.7) and (2.6). This estimate is proved inductively over the size of u+ − u−, 
reducing the estimate over [u−, u+] to the estimate over a shorter interval [v−, v+]. 
We will have to show that the loss in this reduction process is controlled in terms of 
K1e

−K2(v+−v−) −K1e
−K2(u+−u−), to conclude the proof of (2.1) by induction.

Let us first explain why this estimate concludes the proof. It implies that d(f(z), G) ≤
K0 + K1. This proves that the image Q of f is included in the (k0 + k1)λ2(C +
δ)-neighborhood of G. To get the estimate on the Hausdorff distance, one needs to 
show that G is also included in a kλ2(C + δ)-neighborhood of Q for some k. This fol-
lows from the previous estimate and a standard argument (see [2]) that we recall now. 
Consider a point g ∈ G. Denote by Q− the set of points on Q that are within distance 
(k0+k1)λ2(C+δ) of a point of G in [f(u−), g], and by Q+ the set of points on Q that are 
within distance (k0 + k1)λ2(C + δ) of a point of G in [g, f(u+)]. The previous estimate 
implies that Q = Q1 ∪ Q2. As Q is connected, it follows that Q1 ∩ Q2 
= ∅. Denote by 
f(z) a point in this intersection, and by g− and g+ two points before and after g on G, 
at distance at most (k0 + k1)λ2(C + δ) of f(z). Using hyperbolicity in a triangle with 
vertices at g−, g+, f(z) and the fact that g is on a geodesic between g− and g+, it follows 
that the distance between g and f(z) is at most (k0 + k1)λ2(C + δ) + δ. As λ ≥ 1, this 
expression is bounded by (k0 + k1 + 1)λ2(C + δ). This concludes the argument, for the 
constant k = k0 + k1 + 1. We remind that [6] contains a stronger result (Theorem 3) 
claiming that the geodesic G is included in an A(δ log λ + C + δ)-neighborhood of the 
quasi-geodesic Q with some universal constant A.

It remains to prove the estimate (2.1). The proof will use two parameters L and D. 
For simplicity, let us take

L = D = 100δ. (2.2)

We keep separate notations for L and D because we will want to optimize the choice of 

their values later.
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Case 1. The case where d(f(z), G) ≤ L is trivial, as the estimate (2.1) holds if one 
takes K0 large enough.

Case 2. Let us therefore assume d(f(z), G) > L. We will construct several points along 
[u−, z]. To ease the reading, their order will correspond to the alphabetical order when 
possible.

Consider a projection πz of f(z) on G, and a geodesic segment H from πz to f(z). 
Denote by p : X → H a closest-point projection on H. The idea is to project the 
quasi-geodesic Q on H and to consider the subpart Q′ of Q that projects at distance at 
least L of πz. If one could show that Q′ is quantitatively shorter than Q and that the 
distance from f(z) to πz is controlled in terms of the distance from f(z) to a geodesic 
joining the endpoints of Q′, then we would be in good shape to prove (2.1) inductively, 
deducing the estimate for Q from the estimate for Q′. The real argument will be built 
around this naive idea, but in a more subtle way.

More precisely, consider two points y− ∈ [u−, z] and y+ ∈ [z, u+] such that the 
projections p(f(y−)) and p(f(y+)) are at distance roughly L of πz. In general, p is not 
uniquely defined and not continuous, but this is almost the case up to O(δ) thanks to 
the hyperbolicity of the space. With the following standard lemma and recalling that H
is 0-quasiconvex as it is a geodesic, one can find y− and y+ such that

d(p(f(y±)), πz) ∈ [L− 4δ, L]. (2.3)

Lemma 2.2. A closest-point projection of a connected set on a K-quasiconvex subset Y
of X has gaps of size at most 4δ + 2K. More precisely, if f : [a, b] → X is a continuous 
function and p(f(t)) denotes a closest point projection of f(t) on Y , then for any τ ≤
d(p(f(a)), p(f(b))), there exists t ∈ [a, b] such that d(p(f(a)), p(f(t))) ∈ [τ − 4δ− 2K, τ ]. 
Moreover, one can ensure that d(p(f(a)), p(f(s))) ≤ d(p(f(a)), p(f(t))) for all s ≤ t.

Denote by d− (respectively d+) the minimal distance of a point in f([u−, y−]) (respec-
tively f([y+, u+])) to H. These distances are realized by two points f(m−) and f(m+), 
by continuity of f .

Case 2.1. Assume that max(d−, d+) is not large, say ≤ D +C where D = 100δ is the 
constant we have chosen in (2.2) and C is the quasi-isometry parameter. This is again 
an easy case. Indeed, as the projections of f(m−) and f(m+) are within distance L of 
πz, one gets d(f(m−), f(m+)) ≤ 2D + 2C + L. By quasi-isometry,

d(m−,m+) ≤ λ(d(f(m−), f(m+)) + C) ≤ λ(2D + 3C + L).

As z is between m− and m+, one gets in particular d(m−, z) ≤ λ(2D + 3C + L). Then

d(f(z), πz) ≤ d(f(z), f(m−)) + d(f(m−), p(f(m−))) + d(p(f(m−)), πz)
− 2
≤ (λd(z,m ) + C) + (D + C) + L ≤ λ (3D + 5C + 2L).
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This is compatible with the inequality (2.1) if one takes

K0 = 500λ2(δ + C). (2.4)

Case 2.2. Assume now that max(d−, d+) ≥ D +C, and d− ≥ d+ for instance. This is 
the interesting case. The main step in the proof is the following lemma.

Lemma 2.3. There exist two points v ≤ x in [u−, y−] and a real number d′ ≥ d− such 
that

L− 74δ ≤ 4
√

2λ(x− v)e−d′ log(2)/(10δ) (2.5)

and d(f(v), p(f(v))) ≤ 4d′.

The numerology in the lemma (74 and 4
√

2 and log(2)/10 and 4) is of no importance: 
what only matters is that L −74δ is positive, thanks to the choice of L in (2.2), and that 
the other numbers are positive and fixed.

Let us show how to conclude the proof using the lemma. We have

m+ − v = d(v,m+) ≤ λ(d(f(v), f(m+)) + C)

≤ λ
(
d(f(v), p(f(v))) + d(p(f(v)), p(f(m+))) + d(p(f(m+)), f(m+)) + C

)
≤ λ(4d′ + L + d+ + C) ≤ 6λd′,

as L + C = D + C ≤ d− ≤ d′ and d+ ≤ d− ≤ d′. Therefore, taking

K2 = log(2)/(60δλ), (2.6)

the inequality (2.5) gives

L− 74δ ≤ 4
√

2λ(x− v)e−(m+−v)·log(2)/(60δλ) = 4
√

2λ
K2

·K2(x− v)e−K2(m+−v)

≤ 4
√

2λ
K2

(eK2(x−v) − 1)e−K2(m+−v) = 4
√

2λ
K2

(e−K2(m+−x) − e−K2(m+−v))

≤ 4
√

2λ
K2

(e−K2(m+−x) − e−K2(u+−u−)).

Consider a new geodesic G′ between f(x) and f(m+). Arguing by induction, we can 
assume that the estimate (2.1) has already been proved for G′, and we want to deduce 
it for G. Since both endpoints of G′ project within distance L of πz, one checks that the 
distance from f(z) to G is controlled by the distance from f(z) to G′ (this is a version 

of [5, Lemma 5]). More specifically,
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d(f(z), G) ≤ d(f(z), G′) + L + 4δ.

Bounding d(f(z), G′) thanks to the induction assumption, and plugging in the estimate 
from the previous equation, we get

d(f(z), G) ≤ K0 +K1(1− e−K2(m+−x)) + L + 4δ
L− 74δ · 4

√
2λ

K2
(e−K2(m+−x) − e−K2(u+−u−)).

Let us take

K1 = L + 4δ
L− 74δ · 4

√
2λ

K2
. (2.7)

Then the terms K1e
−K2(m+−x) simplify in this equation, and we are left with

d(f(z), G) ≤ K0 + K1(1 − e−K2(u+−u−)).

This is (2.1), as desired. This concludes the proof of Theorem 1.1. �
It remains to prove Lemma 2.3. The argument relies on the contracting properties 

of closest-point projections on quasiconvex sets. The first such basic statement is the 
following variation around [3, Proposition 10.2.1].

Lemma 2.4. Consider a K-quasiconvex subset Y of X. Then projections px and py on Y
of two points x and y satisfy

d(px, py) ≤ max(5δ + 2K, d(x, y) − d(x, px) − d(y, py) + 10δ + 4K).

This result expresses the classical fact that a geodesic from x to y essentially follows 
a geodesic from x to px, then from px to py, then from py to y.

The second result we need is more sophisticated. Instead of a linear gain in terms of 
the distance to the set one projects on, as in the previous lemma, it gives an exponential 
gain in the upper bound, by a successive reduction process. It is proved by putting 
points along the path with gaps of size 10δ. Then, move by 5δ towards Y : this reduces 
the distance between the points by 5δ essentially thanks to the previous lemma. Then, 
discard half the points: this shows that by moving towards Y by 5δ the length of the 
path has been divided by 2. One can iterate this argument to get the exponential gain. 
We give a statement for the projection on quasiconvex sets as this is what we will need 
later on. This statement is proved in [5, Lemma 10] for the projection on a geodesic 

segment, but the case of a general quasiconvex set is analogous.
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Lemma 2.5. Consider a (λ, C)-quasi-geodesic path f : [a, b] → X, everywhere at distance 
at least D of a K-quasiconvex subset Y . Then, if D ≥ 15/2 · δ + K + C/2, projections 
pa of f(a) and pb of f(b) on Y satisfy the inequality

d(pa, pb) ≤ 2K + 8δ + max
(

5δ, 4
√

2λ(b− a) exp
(
−(D −K − C/2) log(2)/(5δ)

))
.

Using these results, we can prove Lemma 2.3.

Proof of Lemma 2.3. For k ≥ 0, let Vk denote the (2k − 1)d−-neighborhood of H. 
These sets are all 8δ-quasiconvex. We recall that p(f(x)) is a projection of f(x) on H. 
Let pk(x) denote the point on a fixed geodesic between p(f(x)) and f(x) at distance 
min((2k − 1)d−, d(p(f(x)), f(x))) of p(f(x)). Then pk(x) is a projection of f(x) on Vk, 
and moreover these projections are compatible in the following sense: for k ≤ �, then 
pk(x) is a projection of p�(x) on Vk. Moreover, p0(x) = p(f(x)).

We will do an inductive construction over k. This construction will have to stop 
at some step, where it will give the desired points. Until the argument stops, we will 
construct a point xk ∈ [u−, y−] such that

d(pk(u−), pk(xk)) ≥ L− 8δ (2.8)

and

for all w ∈ [u−, xk], d(f(w), p0(w)) ≥ (2k+1 − 1)d−. (2.9)

Let us first check that this property holds for k = 0. Take x0 = y−. The point πz is a 
projection of f(z) on the geodesic G between f(u−) and f(u+). This does not imply that 
the projection p0(u−) of f(u−) on the geodesic H between πz and f(z) is exactly at πz

(contrary to the situation in the Euclidean plane), but by hyperbolicity one checks that 
d(πz, p0(u−)) ≤ 4δ (this is a version of [5, Lemma 3]). Since d(πz, p0(y−)) ∈ [L − 4δ, L]
by (2.3) and x0 = y−, we deduce that d(p0(u−), p0(x0)) ≥ L −8δ. This is (2.8). Moreover, 
by definition of d−, the inequality (2.9) holds for k = 0.

Assume now that (2.8) and (2.9) hold at k. We will show that either we can find a 
pair of points that satisfy the conclusion of the lemma, or we can construct a point xk+1
such that (2.8) and (2.9) hold at k + 1.

As Vk is 8δ-quasiconvex, we deduce from Lemma 2.2 that the gaps of the closest-point 
projection pk are bounded by 20δ. Therefore, we can find a point xk+1 ∈ [u−, xk] whose 
projection on Vk satisfies

d(pk(u−), pk(xk+1)) ∈ [22δ, 42δ], (2.10)

and moreover all points w ∈ [u−, xk+1] satisfy
d(pk(u−), pk(w)) ≤ 42δ. (2.11)
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There are two cases to consider:
If there exists v ∈ [u−, xk+1] with d(f(v), p0(v)) ≤ (2k+2 − 1)d−. Then we claim that 

the pair (v, xk) satisfies the conclusion of Lemma 2.3, for d′ = 2kd−. First, the inequalities 
d′ ≥ d− and d(f(v), p0(v)) ≤ 4d′ hold by construction. Moreover, d(pk(v), pk(xk)) ≥
L − 50δ as pk(xk) is far from pk(u−) by (2.8), and pk(v) is close to pk(u−) by (2.11). As 
all intermediate points are at distance at least (2k+1 − 1)d− of V0 by (2.9), they are at 
distance at least 2kd− of Vk and we can apply the exponential contraction Lemma 2.5
with D = 2kd−. As Vk is 8δ-quasiconvex, we get

L− 50δ ≤ d(pk(v), pk(xk))

≤ 24δ + max
(

5δ, 4
√

2λ(xk − v) exp
(
−(2kd− − 8δ − C/2) log(2)/(5δ)

))
.

As L − 50δ > 29δ, the maximum has to be realized by the second term. Moreover, 
2kd− − 8δ − C/2 ≥ (2kd−)/2 = d′/2, as d− ≥ D + C = 100δ + C. We obtain

L− 74δ ≤ 4
√

2λ(xk − v) exp
(
−d′ log(2)/(10δ)

)
. (2.12)

This concludes the proof in this case.
Otherwise, d(f(w), p0(w)) ≥ (2k+2 − 1)d− for all w ∈ [u−, xk+1]. In this case, (2.9)

holds for k + 1. Let us check that (2.8) also holds for k + 1, by applying the projection 
Lemma 2.4 to the points pk+1(u−) and pk+1(xk+1), which project respectively to pk(u−)
and pk(xk+1) on Vk. As Vk is 8δ-quasiconvex, this lemma gives

d(pk(u−), pk(xk+1)) ≤ max(21δ,

d(pk+1(u−), pk+1(xk+1)) − d(pk+1(u−), pk(u−)) − d(pk+1(xk+1), pk(xk+1)) + 42δ).

As d(pk(u−), pk(xk+1)) ≥ 22δ by (2.10), the maximum has to be realized by the sec-
ond term. Both distances d(pk+1(u−), pk(u−)) and d(pk+1(xk+1), pk(xk+1)) are equal to 
2kd−. We obtain

2 · 2kd− − 20δ ≤ d(pk+1(u−), pk+1(xk+1)).

As d− ≥ D = 100δ, the left hand side is ≥ L − 8δ = 92δ. This concludes the proof 
of (2.8), and of the induction.

Finally, if the conclusion of the lemma does not hold, then the induction will go on 
forever. Taking in particular w = u− in (2.9), we get d(f(u−), p0(u−)) ≥ (2k+1 − 1)d−
for all k, a contradiction. �

Here are some ways to optimize the proof to get better constants. In addition to 

multiple minor optimizations, let us mention the main ones:
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• The set V0 is 0-quasiconvex, not only 8δ-quasiconvex. This means that estimates in 
the proof of Lemma 2.3 are better for k = 0. There is a different source of gain for 
k > 0, thanks to the factor 2k. Separating the two cases improves the final constant.

• There is an exponential gain in (2.12). One can spend some part of this gain, 
say exp(−(1 − α)d′ log(2)/(10δ)) ≤ exp(−(1 − α)D log(2)/(10δ)) to improve the 
multiplicative constant, and use the remaining part exp(−αd′ log(2)/(10δ)) for the 
induction (for a suitable value of α).

• Instead of formulating the induction in terms of the distance from f(z) to a geodesic 
G between f(u−) and f(u+), it is more efficient to induce over the Gromov product 
(f(u−), f(u+))f(z) (which coincides with the distance d(f(z), G) up to 2δ) as most 
inequalities are done in terms of Gromov products. The main interest of this change 
is that, with the current argument, the point f(u−) projects on H between πz and 
f(z) within distance 4δ of πz, which means there is a small loss. With the Gromov 
product approach, let m denote the point on G which is opposite to f(z) in the 
triangle [f(z), f(u−), f(u+)], i.e., it is on G at distance (f(z), f(u+))f(u−) of f(u−)
and at distance (f(z), f(u−))f(u+) of f(u+). Let πz denote the point on a geodesic H
from f(z) to m at distance (f(u−), f(u+))f(z) of f(z). This point is within distance 
2δ of m. It turns out that the projection of f(u−) on H is between m and πz, i.e., 
opposite from f(z). The above loss is suppressed in this approach.

• Finally, one can choose freely L, D and α within some range. In particular, L and D
do not have to coincide. One can optimize numerically over these parameters to get 
the best possible bound. In the end, we take L = 18δ and D = 55δ and α = 12/100
to get the value 92 in Theorem 1.1.
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