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Abstract. Demographic and population structure inference is one of the most

important problems in genomics. Population parameters such as effective population

sizes, population split times and migration rates are of high interest both themselves

and for many applications, e.g. for genome-wide association studies. Hidden Markov

Model (HMM) based methods, such as PSMC, MSMC, coalHMM etc., proved to be

powerful and useful for estimation of these parameters in many population genetics

studies. At the same time, machine and deep learning have began to be used in

natural science widely. In particular, deep learning based approaches have already

substituted hidden Markov models in many areas, such as speech recognition or user

input prediction. We develop a deep learning (DL) approach for local coalescent time

estimation from one whole diploid genome. Our DL models are trained on simulated

datasets. Importantly, demographic and population parameters can be inferred based

on the distribution of coalescent times. We expect that our approach will be useful

under complex population scenarios, which cannot be studied with existing HMM

based methods. Our work is also a crucial step in developing a deep learning framework

which would allow to create population genomics methods for different genomic data

representations.
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1. Introduction

Genomic data is a rich source of information about population structure and history.

A lot of relations between individuals and whole populations are encrypted there. For

example, one can see the out-of-Africa expansion in human history from a single non-

African individual [1]. This event is represented as a bottleneck in the population

history, in other words the population size during the corresponding period of time

appears to be small. There are other interesting characteristics, or parameters, of

population histories: population split times, migration rates, admixture times and

proportions. All these parameters affect the distribution of times to the most recent

common ancestor of individuals representing populations, or shortly coalescent times.

Due to recombinations, coalescent times change across a genome. And given that

genome is a long sequence (e.g. human genome is approximately 3x109bp) even one

diploid genome can provide a reliable estimation of the coalescent time distribution.

So, inference of coalescent times from real data (e.g. from a single diploid genome or

multiple genomes) is a crucial step underlying the inference of population parameters

and population history.

Hidden Markov Model (HMM) based methods proved to be powerful for

demographic and population analysis from genome-wide sequences. The benefit of

using HMMs is that it allows to infer population history based on the local structure

of genome-wide sequences and allow to model recombinations. This is an important

difference from site frequency spectrum (SFS) based methods such as dadi [7] and

momi [8]. A number of methods (e.g. PSMC, diCal, MSMC, MSMC2, SMC++,

ASMC [1–3]) based on HMM were implemented. The population models underlying

these methods is SMC [4] and its corrected version SMC’ [5]. Both of these models

consider genealogies as a set of coalescent trees across the genomes, with neighbour

trees connected by recombination which can be viewed as a subtree prune-and-regraft

process. Pruning corresponds to breaking an ancient lineage by recombination, while

regrafting corresponds to recoalescence of a prunned lineage back on the coalescent tree.

In the coalescent HMM, hidden variables are coalescent times which change along

the genome due to recombinations. Observations are homozygous and heterozysous

sites in the genome sequences. Heterozygous site arises as a result of a mutation in the

sample history.

For coalescent HMM, transition and emission matrices are parametrised by

population parameters [1]. Most of the methods assume a single population model

with effective population size varying over time. (e.g. PSMC, SMC++). Other methods

require phasing (e.g. MSMC, coalHMM, MSMC-im [6]). Some of the methods work with

special data representations (ASMC for sparse data, unpublished method ngsPSMC for

genotype likelihoods [11].
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Extending HMM-based methods for wider class of population models, and for

new types of input data is always rather challenging and requires substantial efforts

in mathematical model derivation, software implementation and method verification.

Our goal is to develop a machine learning framework which would allow to make

inference under complex population models (structured populations with admixture

and continuous migration) and would allow straightforward extension (by training a

model on a simulated dataset) for different input data types (e.g. multiple genomes,

phased/unphased genomes, called variants or genotype likelihoods). Currently we study

performance of different neural network architectures, their precision and scalability in

the simplest case of a single diploid genome and a single population scenario. We present

the model which predicts local coalescent times across the genome.

2. Method

2.1. Training dataset

We train our models on simulated datasets, because it is not feasible to obtain empirical

data with the ground truth local coalescent times. We developed a random generator

of population scenarios. Overall, it samples times of demographic events (changes of

effective population size), population sizes and some other population parameters from

prior distributions. For each generated population scenario, we run msprime [10] to

simulate chromosomes along with known local coalescent trees.

Currently we have the following process for generating population scenarios (each

described by a picewise constant effective population size history).

• Sample the number N of effective population size changes from the uniform

distribution U [1; 20].

• Sample time Tmax of the deepest (in the past) change of the effective population

size from distribution.

• We sample times between population size changes from exponential distribution on

the logarithmic time scale: first we sample ti from exp(1) and then re-scale them

using the following formula:

Ti(ti) = α exp(β ti),

where α is a scaling parameter and β = Tmax

maxi(ti)
. This is the time scale used in

PSMC.

• For each time interval we sample effective population size independently from Beta

distribution B(2; 5)

For each demographic scenario we generate a diploid genome (two haplotypes)

together with local coalescent times with msprime coalescent simulator.

We choose to solve the classification problem (estimating probabilities that local

coalescent time falls within a certain time range) instead of regression problem
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(predicting a single most likely value of coalescent time). This strategy is similar to

the HMM posterior decoding, and provides us with the tractable uncertainty of our

estimates.

2.2. Data preparation

2.2.1. Data splitting The input dataset d represents a set of SNPs d = {d1, d2, . . . , dn},
where n is an amount of available genome sequences, and each sequence di has a

length of 30 millions numbers of either 0 or 1. Due to limitations of available

memory in GPU, every sequence di is divided into segments of length seg len, i.e

di = {di1, di2, . . . , diL}, where L – is a number of segments. As a result, training

dataset consists of d= {d11, d12, . . . , d1L, d21, . . . , d2L, . . . , dn1, . . . , dnL} segments. It’s

worth noting that the main limitation of the approach in this paper is that neural

network will be trained on each segment independently of other surrounding segments

from the same genome.

2.2.2. Neural network architecture Our first attempt was to build recurrent NN models

(GRU, LSTM) [13, 14] because it is natural to use them for sequential data. However,

they failed to capture a reasonable signal in the data. So, we added a CNN layer [12] that

extracts low-level features. Also, several convolutional layers can extract more advanced

features based on combinations from previous layers. As a result, a combination of CNN

and RNN layers give a satisfactory output.

3. Results

In order to evaluate the results, we visualise the ground truth and predicted coalescent

times along the genomes (see Fig 1). Each panel represent a genome segment. Y-axis

corresponds to the time intervals. The inferred probabilities of the local coalescent time

being at a certain time interval, are encoded as a heatmap. The ground truth coalescent

times are shown with the black line.

In general, our neural network predicts the MRCA time for most positions. Though,

there are some artefacts like “oscillations” around the true constant values (see Fig 1 c

and d). More studies should be done to resolve the issue. Also, quantitative evaluations

of the prediction quality should be done.

4. Summary

In this work we validated the deep learning approach to the population analysis from

whole genome sequences. We present a deep neural network which can reasonably

well predict the local coalescent times across the genome. We considered only simplest

demographic scenarios. In future we will improve the accuracy of our method and we
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(a) (b)

(c) (d)

(e) (f)

Figure 1: The heatmaps show the distribution of local coalescent times along the genome

inferred by deep learning model. The black lines show the true coalescent time known

from the simulations.

will consider complicated demographic scenarios with admixture of multiple populations.

Such scenarios are much closer to real ones. So, this approach should greatly improve

the accuracy of our method compared to HMM-based methods which usually assume a

single population model.
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