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Abstract. The work is dedicated to the theoretical substantiation
of a directed search for 8-bit permutations with given cryptographic
properties: differential uniformity and nonlinearity. The statements on the
partition of the set of vectorial Boolean functions derived using generalized
construction into equivalence classes are proved. The statements that allow
one to reject functions from equivalence classes either by a high differential
uniformity or by nonbijectivity are justified. The results of this work may
be used to construct permutations with specified cryptographic properties,
ensuring the resistance of encryption algorithms against the linear and
differential methods of cryptographic analysis.
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O nnddbepeHnmaIbHOI PABHOMEPHOCTH IOJACTAaHOBOK,
IMMOCTPOEHHBIX C MUCIIOJIb30BaHEM ODOOIEeHHOIl KOHCTPYKIINNI

. Bb. ®omun, M. A. KoBprm>KHBIX

Havuonarvhuti  uccaedosamenvekuti  ynusepcumem —«Boicwas —wxona
akonomurus, Mockea

AnHoTanus. Pabora mocpsieHa TeopeTHYecKOMY OOOCHOBAHUIO Ha-
MIPABJIEHHOT'O TIOUCKA S-OMTOBBIX IOJICTAHOBOK C 3aJaHHBIMHU KPUIITOTPa-
drdgeckuMu XapakTepucTUKaMu: 1M depeHIuaIbHON J-paBHOMEPHOCTHIO
n HejuHeitHocThI0. CdopMyIMpoBaHbl U JIOKAa3aHbl YTBEPXKJIEHUS O pas-
OneHNM Ha KJACChl SKBUBAJEHTHOCTH MHOXKECTBA BEKTOPHBIX OYJIEBBIX
GYHKIINA, MTOCTPOEHHBIX C IOMOIILI0 0000ImeHHO KoHcTpyKIimn. Oboc-
HOBaHbI yTBEPKJICHUS, TTO3BOJISIONINE OTOPAKOBBIBATH (DYHKIIMU M3 KJIac-
COB 9KBHUBAJICHTHOCTH JIN0OO 110 BBICOKOMY IIOKa3aTe o JuddepeHnnaIbHOM
)-paBHOMEPHOCTH, JINOO BCJIEICTBIAE TOTO, YTO OHI HE ABJISIIOTCSA TTOICTAHOB-
KaMu. Pe3yibraTbl paboThl MOI'YT OBITH UCIIOJIB30BAHBI JIjIsi KOHCTPYUPOBa-
HUS TI0JICTAHOBOK C 3aJIaHHBIMU KPUIITOIPapUIeCKUMHI CBOMCTBaMH, 0bec-
MeYUBAIONINMU CTOMKOCTb aJITOPUTMOB MuppPOBaHUA K JUHEHHOMY U pas-
HOCTHOMY METOJIaM KPUITOrPadpUIeCKOTO aHaJI3a.

Citation: Matematicheskie Voprosy Kriptografii, 2022, v. 13, Ne 2, pp. 37-52 (Russian)
© Axanemusi kpunrorpadun Poccuiickoit @enepannu, 2022 r.



38 D. B. Fomin, M. A. Kovrizhnykh

KuaodyeBble cjioBa:  BeKTOpHad  OyieBa  (YHKINA, IIOJCTAHOBKA,
nuddepeHIuaabias 0-paBHOMEPHOCTH

Introduction

Vectorial Boolean functions (S-boxes) are among the main primitives of
modern symmetric ciphers that provide Shannon’s confusion principle [1].
S-boxes must have cryptographic properties that guarantee the impossi-
bility of using differential and linear methods of cryptographic analysis.
Thus, S-boxes with high nonlinearity can ensure the cipher resistance to
linear cryptographic analysis, since they can not be effectively replaced by
a linear analog of the same or less dimension. Moreover, S-boxes with the
minimum possible differential uniformity are used for constructing crypto-
graphic algorithms that are resistant to differential analysis.

Construction of n-bits permutations with given cryptographic proper-
ties for n > 8 is a difficult and urgent problem; this is confirmed by a large
number of scientific publications and reports at all-Russian and interna-
tional cryptographic conferences (e.g. [2-10]). The known approaches to
constructing permutations may be divided into explicit algebraic methods,
pseudo-random generation, and heuristic algorithms (see, e.g., an overview
in [2]).

The idea of a combination of the above approaches seems promising,
in particular, the use of functional circuits to derive permutations using
functions of lower dimension (see, e.g., an overview in [9]). Moreover, such
schemes usually have some parameters which may be used to optimize the
cryptographic properties of constructed permutations.

Thus, in [4] a new construction of 8-bit S-boxes with nonlinearity up
to 108, differential uniformity 6 or 8, algebraic degree 7, and algebraic
immunity 3 was proposed. It uses the inversion in the field Fy« and two
arbitrary permutations of the space V.

In [5,6] new schemes based on the well-known Feistel and Lai— Massey
structures for generating permutations of dimension n = 2k, k > 2, are
presented. The proposed constructions use inversion in the field Fqr, an
arbitrary k-bit non-bijective function (which has no pre-image for 0), and
any k-bit permutation. New 8-bit permutations without fixed points, which
have the same strong combination of cryptographic properties as in [4] are
introduced.

In [7] new classes of 8-bit permutations based on the butterfly structure
were proposed. It was shown that there are at least 36 new constructions
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for permutations that have the nonlinearity 108, differential uniformity 6,
algebraic degree 7, and graph algebraic immunity 3.

The papers |9, 10] extend the methods of constructing permutations
from [7] to the case of an arbitrary vector space Vi, and theoretically
substantiate the experimental results obtained in [7]. TU-decomposition
described in [11,12] is used as a functional circuit. Necessary and, in some
cases, sufficient conditions for the resulting permutation to have given non-
linearity, algebraic degree, and differential uniformity are proved. Also, new
generalized construction of vector functions is described. It utilizes mono-
mial permutations as the basic constituent elements. In the case m = 4,
768 tuples of parameters of the generalized construction were experimen-
tally found, using which, with the correct choice of auxiliary 4-bit permu-
tations, 8-bit permutations with nonlinearity 108, differential uniformity 6,
and algebraic degree 7 may be obtained.

The purpose of this paper is the theoretical substantiation of a directed
search for 8-bit permutations with given cryptographic properties: differ-
ential uniformity and nonlinearity, among vectorial Boolean functions ob-
tained using a generalized construction that admits 7'U-decomposition.

This paper is structured as follows. Section 1 contains the main defini-
tions and notations used in the work. In Section 2 we consider a generalized
construction of (2m, 2m)-function and show that this construction admits
TU-decomposition. In Section 3 we introduce an equivalence relation on
the set of all vector Boolean functions defined by generalized construction.
Each equivalence class is determined by a tuple of exponents of monomial
permutations. In Section 4, we prove several statements that allow us to
reject the equivalence classes of 8-bit S-boxes that do not contain permu-
tations with a low differential uniformity. Non-rejected classes may be used
to generate 6-uniform 8-bit permutations with nonlinearity equal to 108.

1. Definitions and Notation

Let V,, be n-dimensional vector space over the field of two elements [Fy,
Vx =V, \ {0}. The finite field of 2" elements is denoted by Fan, where
Fon = Fylz]/g(x), g(z) is an irreducible polynomial of degree n over the
field Fo. We denote by Z /2™ the ring of the integers modulo 2". There is a
bijective mapping Z/2" — V,, that associates an element of the ring Z /2"
with its binary representation, and a bijective mapping V,, — [Fo» that
assigns a binary string to an element of the field Fo». The operations of
addition and multiplication in the field F5» are denoted by the signs “+”
and “-”, respectively.

2022, T. 13, Ne 2, C. 37-52




40 D. B. Fomin, M. A. Kovrizhnykh

It is well known [13] that there are only three irreducible polynomials
of degree 4 over the field F5. For definiteness, we will further work in the
field Fgs = Folz]/a* + 2 + 1.

Concatenation of the vectors a € V,,, b € V,,, is denoted by al|b € V1.
The dot product of two vectors a,b € V,, is an element of the field IF,
calculated by the formula (a,b) = a,,_1b,_1+. ..+ agbg, where addition and
multiplication are carried out in the field 5. Note that the direct product
of vector spaces V,, x V,, may be associated with V5,,.

Definition 1. The vectorial Boolean (n,m)-function is a mapping
V,, = V,,. Permutation over V,, is a bijective (n,n)-function.

The symmetric group of all permutations of the space V,, is denoted
by S(V3,).
d

Monomial permutations of the field Fom are permutations of the form 2,
where d is a positive integer such that ged(d,2™ —1) = 1. In this case, only
the values d < 2™ —1 may be considered. In particular, for m = 4, monomial
permutations are obtained for d € {1,2,4,7,8,11,13,14}. Moreover, linear
monomial permutations of the field Fos are x? for d € {1,2,4,8} [13].

Definition 2. Let F' be (n,m)-function, 1 < ¢t < min(n,m), z1,11 € V4,
ro € Vg, Yo € Vi, © = x1]|we, and y = wy1l|ye. Let T(zq,22) be
(n,t)-function such that when fixing an arbitrary x, the function T be
a bijection with respect to the variable x1, and U be (n, m — t)-function.
Then if the function F' may represented as

F(x) = F(z1||z2) = (T(21, 22), Uz, T(21,22))), (1)

then such a representation of the function F will be called
TU-decomposition [12].

Definition 3. The differential uniformity of (n, m)-function F' is defined
as
dp = max dp(a,b),
acVy b€V

where 6p(a,b) = |{z € V| F(x + a) + F(x) = b}|.

The use of functions with a lower differential uniformity in the synthe-
sis of cryptographic algorithms makes it possible to guarantee resistance
against the differential method of cryptographic analysis. For vectorial
(n,n)-functions, the smallest value of 0z is equal to 2. For even n, only
one example (up to CCZ-equivalence) of a one-to-one 2-uniform function
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is known so far — the Dillon 6-bit permutation [14]. We can assume that
0 > 8 is a large value of the differential uniformity for the case n = 8
since 8-bit permutation with d = 8 may be obtained by pseudo-random
search [2,15,16].

2. Generalized construction of (2m, 2m)-functions

Let (2m,2m)-function F'(x1,x9) = y1||y2, where 1,9, y1, 92 € Vi, be
given by the following generalized construction, first introduced in [8],

o B

%\1(561), To = O,

(2)

v - a2y, 1 #0,
7T2($2), r1 = 0.

Yo = G2($1,$2) = {

Hereinafter, one should pass from vectors of the space V,, to the correspon-
ding elements of the field Fom and perform exponentiation and multiplica-
tion in the field Fom. Moreover, in (2), Ty, o are permutations over V,,.
Without loss of generality, we assume that the following equalities hold

71(0) =0, 75(0) = 0. (3)

The parameters of the function (2) are permutations 7, T and the tuple
of indexes (o, 3,7, ) of monomial permutations.

For the system (2) to specify a bijective mapping under the condition (3)
it is sufficient that the system

Gl(xl,l’z) = b17
{ Go(w1,72) = b,
has solutions for arbitrary by, by € V,,.
Statement 1. The construction (2) admits the TU -decomposition (1).

Proof. Indeed, put T'(z1,z3) = Gi(x1,x9), note that for a fixed arbi-
trary zo the function 7' is a bijection with respect to the variable x1, then

(T(xluxQ)))\ : xgv ) 7& 07 x1 7& 07

U($2aT(xlax2)) = %2(372)7 Iy = 07
0, Lo = 0,
where aA =y mod (2" — 1), p =0 — fA mod (2™ — 1). O
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Note that the GOST 34.12-2018 (Kuznyechik) permutation and the only
known (up to CCZ-equivalence) 2-uniform permutation of the space V,, for
even n also allow the T'U-decomposition. The study of constructions that
allow the T'U-decomposition seems to be important.

3. On equivalence of functions derived using
a generalized construction

In this section, we propose the principle of partitioning the set of func-
tions derived using a generalized construction into disjoint equivalence
classes. The corresponding statement is proved. It is shown how to obtain
the entire equivalence class from one of its representatives.

Let us state a lemma [10, Lemma 1| for the case of functions that are
obtained using the construction (2).

Lemma 1. Let (2m, 2m)-function F be obtained using the construction (2),
and ay,as, by, by € V,,, then dp(ay||as, bi]|bs) is larger than or equal to the
number of solutions to the system of equations

(4)

(71 +a1)* (22 +ap)’ + 2525 = by,
(.’L’l + al)V . (CCQ + CLQ)(S + SU¥ . .’,Ug = bg,

with the following constraints on the values of the variables x1 and x5:

T 7& O, i) 7é 0, I 7£ aq, i) 7£ as. (5)
Proof of the lemma is obvious since under the constraints (5) the equa-
tions defining the function have the form (4). O

The following statement is a generalization of the corresponding state-
ment from [10].

Statement 2. Let us consider the system (4) under constraints (5) with a
tuple of parameters (a, 3,7,9), where x*, 2%, 27, and 2° define monomial
permutations over the field Fom . Let also the maximal number of its solu-
tions (x1,x3), 1, € Fom, for ay, as, by, by € Fom, where a; and ay do not
vanish stmultaneously, be known.

Then the systems obtained from (4) by changing the parameters to

(-dy, B-dy, v-dy, §-dy) mod (2™ —1), orto
(a-dy, B-dy, v-dy, 0-dy) mod (2™ —1), orto
(77 57 &, 6)7 or tO (67 a? 57 7)7 or tO (67 77 /67 Cv)?
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di da

where the mappings x* and x® define linear permutations over the
field Fom , have the same maximal number of solutions satisfying the condi-
tions (5).

Proof. Let us consider the system

(.Tl + al)d1~a . (332 + CLQ)dl'B + ajclil'a . gjglﬂ = bclil7
(21 + a1)®7 - (20 + ap) @0 + 2P g0 = ple,

(6)

where aq,as,b1,00 € Fom and aq, as do not vanish simultaneously. Note
that, because of % and z% are the bijective mappings, if b; and by take all
values from the field Fom, then b, b%* also take all values from this field.
Taking into account the linearity of the mappings % and 29, we write the
system (6) in the form

(214 a)* - (w4 as)? + 2§ - 2h)™ = b,

(21 + @) (2 +ag)’ + a7 -af)® = by
Again, due to the bijectivity of the functions #% and 292, this system is
equivalent to the system (4). Thus, a system with a tuple of parameters
(a-dy, B-dy, 7y-da, -d2) mod (2™ — 1) has the maximal number of solutions
that satisfy the conditions (5), which coincides with the maximal number

of solutions of the system (4).
Further, consider the system

(21 + a1)D® - (zg + ag)2P + :Uill'a : :cg?ﬂ = by,
(z1 + a1)P7 - (xg + ag)®? + :L'ill'7 . x‘2i2'5 = b,

where aq, as,by,b0o € Fom and aq, as do not vanish simultaneously. Taking
into account the linearity of the mappings z% and z%, we write the sys-
tem (7) in the form

(1 +ay)* - (29 +a3*)" + (a) - (2°)7 = by,
(oft o) (o +af) 4 @) @) = b

Making the replacement xfl = Y1, :1:32 = 1o, aill = a1, and agZ = as, we get
a system of the form (4)

(y1 + @) (y2 + @)’ +yft - yzﬁ = by,
(yi4+a@)  (y2+a@)° +y] - y5 = b
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Thus a system with a tuple of parameters (a-dy, 5-dy, y-dy, 0-dy) mod 2™—1
has the maximal number of solutions that satisfy the conditions (5), which
coincides with the maximal number of solutions of the system (4).

The systems of the form (4) with tuples of parameters (o, S3,7,0),
(7,9,a,8), (B,,6,7), and (3,7, B, a) coincide up to a change in the or-
der of writing equations or renaming variables. O]

Further, throughout this section, we will consider the case m = 4.

Remark 1. Note that the sets {1,2,4,8} and {7, 11, 13, 14} are closed un-
der multiplication by d € {1,2,4,8} modulo 15. Then, by virtue of State-
ment 2, we obtain that 8* = 212 = 4096 of all possible parameter tuples
(e, 5,7,0) of the functions from the family (2) are split into disjoint equiv-
alence classes with the same maximal number of solutions of the system (4)
under the constraints (5) in each class. A distinct equivalence class can be
obtained from one of its representatives (a, 3,7, 9), by composing different
tuples from the following ones

(-dy-ds, B-dy-dy, v-dy-d3, 6-dy-dy) mod 15,
(’}/dl 'd3, 5d1 'd4, Oé'dg'd;;, 6 d2 4) mod 15,
(6 . dl . d3, a - dl . d4, 0 - d2 . d3, 4) mod 15, (8C
(5 . dl : dg, Y d1 . d4, 6 . dg . d3, a - d2 . d4) mod 15, (8d
where dl, dz, dg, d4 c {1, 2, 4, 8}
Statement 3. There are 64 different tuples of the form
(dl . d3, dl . d4, d2 . dg, d2 . d4) mod 15,
where dy,dy, ds, dy € {1,2,4,8}.

Proof. At the beginning, let us put d; - d3 = 1, this is possible in four
cases: dy = dz3 = 1,ordy =d3 =4,0ordy = 2,d3 =8, or dp =8, d3 = 2.
Note that in the first case tuples of the form (1, dy, ds, ds-ds) mod 15 are
specified. Taking into account that dy,dy € {1,2,4,8}, we get 16 different
tuples. In the remaining three cases the values d; and dz generate tuples
that coincide with these 16 already considered ones. Similarly, we obtain
16 different tuples for the cases dy - d3 = 2, dy - d3 = 4, dy - d3 = 8. This
implies the validity of the statement. 0

Thus, by virtue of Statement 2, the set of (8, 8)-functions derived using

the generalized construction (2) is divided into equivalence classes corre-
sponding to the tuples of parameters («, 3,7,d) with the same maximal

MATEMATNUYECKUWE BOIIPOCHI KPUIITOI'PA®NN



On differential uniformity of permutations derived using a generalized construction 45

number of solutions to (4), (5) for functions from the same class. Moreover,
due to Lemma 1, functions from the same class have the same lower bound
for differential uniformity. The auxiliary Statement 3 that is proven in this
section we will use to calculate the cardinality of each equivalence class.

4. Justification of criteria for rejection
of vectorial Boolean functions

derived using a generalized construction

In this section, we prove statements that allow us to reject functions
given by the construction (2), either by the high differential uniformity or
by the nonbijectivity. The statements of the previous and present sections

permit to make the conclusion for all functions from the equivalence class
basing on the analysis of only one of its representatives.

4.1. On differential uniformity

This subsection is devoted to rejection of (2m, 2m)-functions (2) in the
case of m = 4, by differential uniformity 2™ —2 = 14 and higher. Moreover,
some of the statements below (Propositions 1, 2) are also true in the general
case (without restriction m = 4).

Proposition 1. Let F' be a (2m, 2m)-function given by the construction (2).
If the mappings x and x" define linear permutations over the field Fom,
then op = 2™ — 2.

Proof. Let x1 # 0, x5 # 0. Consider the case ay = 0, then the system of
equations (4) may be written in the form

(@1 + @) +2%) = b,
vy((x1+ @) +a]) = b

Since the permutations x® and z7 are linear, we obtain

{ oh(2f +af +ag) = by,

o3(z] +al +2]) = b,
ajg-a‘f = by, 9
22.al = b (9)
2 1 — 2

Further, we fix arbitrarily a,,b; € Fom, a; # 0, by # 0. Because of the
bijectivity of the mapping x” from the first equation of the system (9)
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we find unique x5 # 0 and substitute it into the second equation, thereby
defining b,. Thus, for fixed permissible values of ay, by, by, the system (9)
is solvable with respect to x,, while z; may take any admissible values.
Therefore, taking into account the constraints x; # 0, x; # ay, we obtain
that the number of solutions of the system is at least 2™ —2. Using Lemma 1,
we find that 0 > 2™ — 2. OJ

Remark 2. In view of Proposition 1 and Statement 2 in the case m = 4
we have 2-42-8% — 4% = 1792 tuples of parameters («, 3,7, §) corresponding
to (8, 8)-functions from the family (2) with a large differential uniformity.

Proposition 2. Let F' be a (2m, 2m)-function given by the construction (2).
Ifa=p0=~v=29, then op > 2™ — 2.

Proof. Let x1 # 0, x9 # 0. Let as = 0, by = by = 1, then the system of
equations (4) is reduced to one equation

75 (71 + @) +a7) = 1. (10)

Since the mapping £ is bijective, if x5 runs through all 2™ — 1 values from
the multiplicative group of the field Fom, then the inverse element to x§,
which we denote c, also takes all values from the multiplicative group. Thus,
the equation (10) may be written as

(1 +a1)* + 2f = ¢, (11)

where ¢ € Fom \ {0}. It is known [17, Sec. 4] that the total number of
solutions to the equation (11) is equal to 2™, where a; # 0 is a fixed value
and c takes all 2™ — 1 values from the multiplicative group of the field Fom.
Therefore, taking into account the constraints z; # 0, 1 # a; (5), the
number of solutions of the original system is no less than 2™ — 2. In view
of the Lemma 1 the same estimate is true for dp. ]

Remark 3. According to Proposition 2 and Statements 2, 3 in the case
m = 4 we have 64 tuples of parameters (a, 3,7, d) that were not previously
considered in Proposition 1. These tuples define (8, 8)-functions from the
family (2) with a large differential uniformity. The representative of this
equivalence class is (7,7,7,7).

Proposition 3. Let F' be a (8,8)-function given by the construction (2). If
a=11,8=v=1,6 =13, then op > 14.
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Proof. Let a1 = ay = 2 € Fos, by = 0, by = 23 + 1 € Fyu, where z is
a primitive element of the field. Then the system of equations (4) may be
written in the form

(ry+2) (zo+ )+ 21t 2y = 0,
(1 +2) (T2 + )P+ 2d3 = 23+ 1.

(12)
From the first equation in (12) it follows that x; # 0, 5 # 0, x1 # x = a4,
Ty # x = ao, therefore, x1 + x and x; are elements of the multiplica-
tive group of the field Fy4, hence they are some powers of x, in addition,
(r1 + 2)1 - (29 + ) = xl! - x5, Therefore, raising both sides of the last
equality to the 11th power and using the fact that z'° = 1, we get

(1 +2) - (20 + 1) =21 - 23" (13)

Substituting the expression in the left-hand side of (13) into the second
equation of the system (12), we obtain the chain of equations

vz (et )t =d 4 le ol (Rt ad) =22+ 1
so ot =r+ler -2 =@ +1) 28 o2l =22

Hence, taking into account the conditions x; # =z, x9 # x, we get 14
solutions (x1,x2). By Lemma 1, we find that dp > 14. O

Remark 4. For the representative (o, 5,7v,9) = (11,1,1,13) all different
tuples of its equivalence class may be obtained by formulas (8a) and (8b),
since formulas (8c) and (8d) give the same tuples. Indeed, the tuple of
parameters (13,1,1,11) in (8d) is obtained from (11,1,1,13) in (8a) for
dy = 2,dy = d3 = 4, dy = 8, the tuple (1,11,13,1) in (8c) is produced
from (1,13,11,1) in (8b) for d; = 2, dy = dy = 1, d3 = 8. Hence, by means
of Proposition 3 and Statements 2, 3 we obtain 128 tuples of parameters
(e, 8,7, 0) corresponding to (8, 8)-functions from the family (2) with a large
differential uniformity.

Proposition 4. Let F' be a (8,8)-function given by the construction (2).
Ifa=766=~v=1,0=717, then 0p > 14.

Pmof.Letal:a2:a€F24,a7éO,b1:bgzbEng;,b;éO,
r1 = x9 # 0, then the system of equations (4) may be written in the form

{(x1+a>7-(x1+a)+xi-fl = b (14)

(z1+a) (x1+a) +x1-2] = b
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The system (14) is reduced to equation (x; + a)® + 2% = b, or
a® = b. (15)

Let us choose a,b € Fau satisfying the equality (15). Then, taking into
account the conditions (5) we obtain 14 solutions (z1, z1). By Lemma 1, we
find that 6 > 14. O

Remark 5. For the representative (a, 3,7,9) = (7,1,1,7) all different tu-
ples of its equivalence class may be obtained by formulas (8a) and (8b),
since the tuples (5, «,d,v) and (9,7, 5,«) in formulas (8c) and (8d) are
identical to tuples (7,9, a, 8) and («a, 3,7, 9) in (8b) and (8a) respectively.
Hence, using Proposition 4 and Statements 2, 3 we find 128 tuples of pa-
rameters («, 3,7,d) corresponding to (8, 8)-functions from the family (2)
with a large differential uniformity.

4.2. On the functions that are not permutations

This section is devoted to rejecting such (2m, 2m)-functions (2), which
can not be used to construct a permutation. The possibility of rejecting the
entire equivalence class by one of its representatives, which is not a bijection
for any values of auxiliary permutations 7y, 7, is justified. Further, in the
case m = 4, a proposition to discard representatives of seven equivalence
classes by the indicated condition is proved.

Statement 4. Let F' be a (2m,2m)-function given by the construction (2)
with a tuple of parameters (o, 3,7,9), where 2, 2, 27, and 2° define mono-
maal permutations. If F' is not a bijection for any values of the permutations
mi(x;), i € {0,1}, then any (2m,2m)-function from the family (2) with the
following tuples of parameters
(a'dlaﬁ'dlav'd276'd2) m0d2m_1’
(Oé'dhﬁ'dQ;fy'dlad'dQ) m0d2m_17

(’77 57 a, 6)7 (67 a, 57 7)7 (57 7> B? O[)

such that the mappings ¥ and x% define linear permutations over the
field Fom , also is not a bijection for any values of the permutations 7;(x;),

ie{0,1}.

Proof. By the condition of the statement, the (2m, 2m)-function F' from
the family (2) with parameters («, 5,7,0) is not a bijection for any values
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of permutations 7;(x;), ¢ € {0, 1}, that is, there are such values x1, zs, 71,
Ty € Fom\{0}, x1 # T1 or x9 # T5, that the following equalities hold:

= %Cf . .’132 = G1($1,$2) - yl’
2y =] - T = Go(T1,T2) = Uo.

Then for the same values of x1,xs, 71, Ty for the tuples (- dy, B - dy, 7y -
dy, 8 - dy) mod (2™ — 1) we have Gy(z1,20) = 2B . 2P = (2. 2))h =

(7 ~B)d1 — ~d1a ~d15 = G1(Z1,T2), and similarly Ga(x1, x2) = Go(7T1, T2).

Based on the bijectivity of the mappings %, 2%, which define linear
permutations, for the tuples (a-dy, B -ds, v-dy, §-ds) mod (2™ — 1) we
uniquely find values vy, vy, 01,02 € Fom\{0}, such that vfl = x4, vg = X9,
o = 7, 0% = T,. Then Gy(vr,v0) = o8 - 0PP = 2o . 2f = 70 . 30 =
5?10‘ -Nd?ﬂ = G1(v1,09), and similarly G(vq, 2)2) = Go(v1,09).

For tuples of parameters (v,d,a, ), (8,a,0,7), (6,7,8,«) the equal
values y; = vy, and y, = ¥y are obtained by the corresponding transpo-

sition of arguments x1, x2, T1, To. O

Proposition 5. (8,8)-function F' given by the construction (2) with the
parameters («, 3,7,6) from the list below 1) (7,7,7,13), 2) (1, 7,7,7),
3) 4,7,7,7), 4) (7,7,2,2), 5) (1,1,7,13), 6) (2,7,7,7), 7) (7,2,2,7), is
not a bijection for any values of the permutations 7;(x;), i € {O, 1}.

Proof. For the construction (2) with each of the seven specified tuples
of parameters from the condition of the proposition, it suffices to indicate
the values x1, 29,21, Ty € F2u\{0}, 1 # T; or o # Ty, such that y; =
G1($1,1‘2) = a7 - 335 = 27 555 = Gl(afl,fz) =y and Yo = G2(331,$2) =
l"ly . l’g = 57? . :fg = Gg(fl,ig) = {JQ.

1. Letx1:xEF24,x2:x3—|—x2:x6E]F24,:¥1—552::1:3—|—x +x =

21t € Fos. Then yy = 2] 28 = 27 (25)" = 21, yo = 27233 = 27+ (251 = 219,
§1 =777 = (2T (@) =2, o = 7T - @3 = (') - (211)13 = 210,

For the other tuples, the proof may be carried out similarly; therefore,
we present only sets of appropriate values x1, xs, T1, To.

2.0 =1, a9=a2?4z2, 0, =23 +22 4+, To=2>+2+ 1.

3w =a3 4+t ta, ay=2,0, =2, Ty =2+ 22 + 2.

foxy=ao=1,T =2+ +a+1, Ty =2’
5‘561:%5132=563,f1=$3+:€2+x,%2=x2+1.

6. r1 =1, $2=$3+:L',51=%2:x3+a:2+x+1.
To=lLom=0r4+2 51 =242 +2+1, 5 =1+ O
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Corollary 1. (8,8)-functions F from the family (2) with parameters
(e, B,7,0) from the equivalence classes generated by the tuples of parame-
ters indicated in Proposition 5, are not bijections for any values of permu-
tations ;(x;), i € {0,1}.

Taking into account the Corollary 1, we reject all tuples of parameters
from the equivalence classes with representatives specified in the Proposi-
tion 5.

Remark 6. For the representative («, 3,v,0) = (7,7,7,13) all different
tuples of its equivalence class may be obtained by the formula (8a), since
formulas (8b), (8¢c), and (8d) will give the same tuples. Therefore, in the
equivalence class generated by the representative (7,7,7,13), there are 64
tuples of parameters. Further, the representatives of (4,7,7,7), (1,7,7,7)
and (2,7,7,7) generate three classes with 256 tuples in each one (768 tu-
ples in total). Reasoning similarly to the Remark 5, we can show that the
representatives of (1,1,7,13), (7,7,2,2) and (7,2, 2,7) generate equivalence
classes of 128 tuples in each one (384 tuples in total).

In Table 1 we show the representatives of the equivalence classes and
the reasons for rejection.

Table 1. Summary table of the equivalence classes for m = 4

Ne | The representative of the The number | The reason for rejection
equivalence class of elements

1 Generalized representative: 1792 0r > 14, according to Statement 1
(a, B,7,0), where a, vy € {1,2,4,8}

2 (7,7,7,7) 64 O0F > 14, according to Statement 2

3 (11,1,1,13) 128 0r > 14, according to Statement 3

4 (7,1,1,7) 128 6r > 14, according to Statement 4

5 (7,7,7,13) 64

6 (1,7,7,7) 256

7| (4,7,7,7) 256 are not permutations,

8 (7,7,2,2) 128 according to Statement 5

9 (1,1,7,13) 128

10 | (2,7,7,7) 256

11 | (7,2,.2,7) 128

12 | (1,1,7,11) 256

13 | (1,7,7,11) 256 are not rejected

14 | (1,7,7,2) 128

15 | (7,7,7,11) 128
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Conclusion

The statements proved in this paper justify the rejection of 3328 tuples of
parameters («, 3,7,0) of (8,8)-functions F defined by the construction (2)
due to the value 0z > 14 or because F' is not a bijection. The 768 tuples of
parameters (o, 3,7, d) remained unrejected, which are split by Statement 2
and Remark 1 into 4 equivalence classes with representatives (1,1,7,11),
(1,7,7,11) with 256 tuples in each class, (1,7,7,2), (7,7,7,11) with 128
tuples in each class (see Table 1). In [8,10] it was indicated that using
these tuples of parameters with the correct choice of permutations 7;(x;),
i € {0,1}, 6-uniform permutations with nonlinearity 108 can be obtained.
Experimental results on receiving permutations with given cryptographic
properties and an algebraic degree that is equal to 7 are presented in [18].
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