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Abstract Currently numerous cryptographic systems are based on SP-networks.
These primitives are supposed to be secure but recent investigations show that
some attacks are possible. The aim of this work is to study how secure the Rus-
sian standardized block cipher Kuznyechik over invariant attacks. We study
the already known decompositions of its permutation and show the ways of
constructing invariant subsets. A new approach to invariant attacks is pre-
sented and it proves that there are no subsets based on S-Box properties that
are invariant under round functions of Kuznyechik.
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1 Introduction

Invariant attacks are some of the best known approaches to studing crypto-
graphic algorithm security based on its structural properties. Modern crypto-
graphic primitives have a round based structure, and several algorithms have
been broken using this type of attack [1–3].

A lot of researches focus on the cryptographic properties of the Russian
standardized block cipher Kuznyechik, [4–6]. At the same there is no proof
of any practical attacks on it. The authors [4] have suggested that recently
founded decompositions of the permutation of Kuznyechik may lead to some
attacks on it. In this work we propose a new approach to generalizing invariant
attacks based on S-Box properties of the algorithm and analyse the resistance
of the Kuznyechik block cipher on it. In particular, the algebraic properties
of the permutation structure was analyzed using computer evaluations. It is
shown that the structure of the permutation cannot be used for proprosed
variant of invariant attacks.

2 Preliminaries

Let Fq be a finite field of characteristic 2 with q = 2p elements, Fn
q — an n-

dimensional vector space over Fq. The additive group (Fq,⊕) is homomorphic
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to the group (Fp
2,⊕) with exclusive-or operator ⊕. By GLm(q) we denote a

group of n× n invertible matrices over Fq.
Block cipher design is based on Shannon’s principles of confusion and dif-

fusion [7]. Function F : Fm
q → Fm

q of key-alternating substitution-permutation
networks (SP-networks or SPN) is composed of a layer of substitution boxes
(S-boxes), and a layer of bit permutations. Let

FK(x) = F (x)⊕K = X[K] (F (x))

be a round function (incuding the key addition), F (x) = L ◦ S(x), x ∈ Fm
q ,

where

– S: Fm
q → Fm

q , S(x) = S(x1, . . . , xm) = (π(x1), . . . , π(xm));
– L: Fm

q → Fm
q , L(x) = x · L, L ∈ GLm(q), L = (li,j)m×m, li,j ∈ F∗

q .

Such an SP-network will be denoted as SPN∗.
According to [3] the core idea of a nonlinear invariant attack is to find a

function g : Fm
q → F2 so that there are many keys K:

g (FK(x)) = g(x⊕ k)⊕ c = g(x)⊕ g(k)⊕ c ∀x ∈ Fm
q .

In particular, if there is a subset G of Fm
q so that

{FK(x+ a), x ∈ G} = G, where a, b ∈ Fm
q (1)

for a lot of keys K, the function g is an indicator function of the subset G.
This idea can be generalized as follows. Let G ⊂ Fm

q , r ∈ N and

FKi+r
◦ . . . ◦ FKi

(G) = G

for a set of vectors of keys {(Ki, . . . ,Ki+r)}. The set G can be used to apply
an invariant attack. The problem is how to find a way to construct such a
subset. The easiest way to do it is to use the invariants of functions S and L.
This paper proposes a different approach, which involves in constructing an
invariant for a round transformation, which, in general, is not an invariant of
S or L.

Let A and B be a pair of families of sets

A = {A1, A2, . . . , Aea} , Ai ⊆ Fq,

B = {B1, B2, . . . , Beb} , Bi ⊆ Fq

and for any i ∈ {1, . . . , ea} there is j ∈ {1, . . . , eb} so that π (Ai) ⊆ Bj .
If families Am and Bm are the Cartesian product of families A and B

correspondingly, then for any element Ai1 × . . . × Aim ∈ Am, there is an
element Bj1 × . . .×Bjm ∈ Bm so that

S (Ai1 × . . .×Aim) = (π(Ai1)× . . .× π(Aim)) ⊆ Bj1 × . . .×Bjm .
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Suppose that set G is a subset of family Am and r = 0. That means that
there is a key K so that the following diagram is true:

Ai1 × . . .×Aim
S−→ Bj1 × . . .×Bjm︸ ︷︷ ︸

∈Bm

L−→ C︸︷︷︸
∈C

X[K]−−−→ Ai1 × . . .×Aim︸ ︷︷ ︸
∈Am

. (2)

An obvious consequence of this diagram is the following

Proposition 1 Let F : Fm
q → Fm

q be a round function of a key-alternating
SPN∗. If there is a key K so that the diagram (2) is true, then the family

C = LS (Ai1 × . . .×Aim)

has a form Cl1 × . . .× Clm , where Clj , j ∈ {1, . . . ,m} is a subset of a Fq.

Using the same idea we can generalise this approach for r ≥ 0. Let G =
(V,E) be an oriented graph, with vertices

V =
{
Ai1 × . . .×Aim |Aij ⊆ Fq, j ∈ {1, . . . ,m}

}
.

An edge
(
Ai′1
× . . .×Ai′m

, Ai′′1
× . . .×Ai′′m

)
is in E if and only if there is a key

K so that
FK

(
Ai′1
× . . .×Ai′m

)
= Ai′′1

× . . .×Ai′′m
.

The generalization of an invariant attack is possible if there is a cycle in G.
If diagram (2) is true then there is a loop in G, if |E| = 0 then the attack is
impossible. If there is a cycle of length r + 1 in G then the following diagram
is true:

Ai1 × . . .×Aim
S−→ Bj1 × . . .×Bjm

L−→ Cl1 × . . .× Clm

X[Ki]−−−−→
X[Ki]−−−−→ Ao1 × . . .×Aom

S−→ . . .
X[Ki+r]−−−−−→ Ai1 × . . .×Aim . (3)

Then Ai1 × . . .×Aim ∈ G and

FKi+r
◦ . . . ◦ FKi

(Ai1 × . . .×Aim) = Ai1 × . . .×Aim .

Using the graph representation and the fact that L ∈ GLm(q) the following
proposition can be easily proved.

Proposition 2 Let F : Fm
q → Fm

q be a round function of a key-alternating
SPN∗, A′ = Ai′1

× . . .× Ai′m
and A′′ = Ai′′1

× . . .× Ai′′m
be two vertices of the

same cycle of graph G,

B′ = S (A′) , C ′ = LS (A′) , B′′ = S (A′′) , C ′′ = LS (A′′) .

Then

– B′ = Bj′1
× . . .×Bj′m

, B′′ = Bj′′1
× . . .×Bj′′m

∈ Bm,
– C ′ = Cl′1

× . . .× Cl′m
, C ′′ = Cl′′1

× . . .× Cl′′m
∈ Fm

q ,

–
∣∣Ai′1

∣∣ = . . . =
∣∣Ai′m

∣∣ = ∣∣Bj′1

∣∣ = . . . =
∣∣Bj′m

∣∣ = ∣∣Cl′1

∣∣ = . . . =
∣∣Cl′m

∣∣,



4

–
∣∣Ai′1

∣∣ = ∣∣Ai′′1

∣∣.
Proof Let’s cosiser the cycle (3) of graph G. Obviously |Ccv | = |Aov | for any
v = 1, . . . ,m. Moreover:

|Bjv | ≥ |Ajv |, v = 1, . . . ,m,

and because of the form of L:

|Clv | ≥ |Bjw |, v, w = 1, . . . ,m.

Then for any Ai1 × . . .×Aim in the cycle (3) and for any v = 1, . . . ,m

|Aiv | ≤ |Bjv | ≤ |Clv | = |Aov | ≤ . . . ≤ |Aiv |.

Let’s prove that |Cl1 | = |Cl2 |. The remaining equalities can be proved
similarly:

|Cl1 | = |Ao1 | ≤ . . . ≤ |Ai1 | ≤ |Bj1 | ≤ |Cl2 |,
|Cl2 | = |Ao2 | ≤ . . . ≤ |Ai2 | ≤ |Bj2 | ≤ |Cl1 |.

Using these cardinality relations it is possible to show on algebraic structure
of vertices in cycles of G.

Theorem 1 Let F : Fm
q → Fm

q be a round function of a key-alternating SPN∗,
Ai1 × . . .×Aim is a vertex of a cycle of graph G,

– S (Ai1 × . . .×Aim) = Bj1 × . . .×Bjm ,
– L(Bj1 × . . .×Bjm) = Cl1 × . . .× Clm .

Then

1. Aiz = aiz +Aiz , Bjz = bjz +Bjz , Clz = clz +Ciz are some cosets in (Fq,⊕),
z = {1, . . . ,m}, where aiz , bjz , clz ∈ F1, Aiz , Bjz , Clz are some subgroups
of (Fq,⊕);

2. for any z ∈ {1, . . . ,m} there is c ∈ Fq where π(c ⊕ Clz ) is a coset of a
subgroup of (Fq,⊕).

Proof To prove this theorem we show that for every jz, z ∈ {1, . . . ,m} set
Bjz is a coset bjz + Bjz in (Fq,⊕) of the subspace Bjz . For the sets Clz the
proof can be done in the same way. Then Aiz is also a coset in (Fq,⊕) of some
subspace of the second part of the theorem is obvious.

Without losing generality, let us consider z = 1.

Cl1 =

{
m∑

v=1

bv · lv,l1

∣∣∣∣∣ bv ∈ Biv , v ∈ {1, . . . ,m}

}
.

Let v′, v′′ be arbitrary numbers in set ∈ {1, . . . ,m} and xv ∈ Biv , v ∈
{1, . . . ,m}. Using the fact that |Cl1 | = |Biv | for any v ∈ {1, . . . ,m} the fol-
lowing equations are true:

Cl1 =

 ∑
v∈{1,...,m}\{v′}

xv · lv,l1 ⊕ yv′ · lv′,l1

∣∣∣∣∣∣ yv′ ∈ Biv′

 ,
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Cl1 =

 ∑
v∈{1,...,m}\{v′′}

xv · lv,l1 ⊕ yv′′ · lv′′,l1

∣∣∣∣∣∣ yv′′ ∈ Biv′′

 .

Then the set

C ′ (xv′′) =
{
xv′′ · lv′′,w ⊕ yv′ · lv′,w| yv′ ∈ Biv′

}
is equal to the set

C ′′ (xv′) =
{
xv′ · lv′,w ⊕ yv′′ · lv′′,w| yv′′ ∈ Biv′′

}
.

To facilitate further prove, let us write these sets in the following form:

C ′ (xv′′) = Biv′ · lv′,w ⊕ xv′′ · lv′′,w,

C ′′ (xv′) = Biv′′ · lv′′,w ⊕ xv′ · lv′,w.

Then

C ′ (xv′′) = C ′′ (xv′) ∀ xv′ ∈ Biv′ , xv′′ ∈ Biv′′ . (4)

Using (4) we have that(
Bi′v

+ xv′
)
· lv′,w =

(
Bi′′v

+ xv′′
)
· lv′′,w.

Then

Biv′ ⊕ x1 = Biv′ ⊕ x2 ∀x1, x2 ∈ Biv′ . (5)

because lv′,w ∈ F∗
q .

If 0 ∈ Biv′ then using equation (5) we have:

Biv′ = Biv′ ⊕ x1 ∀x1 ∈ Biv′ .

That means that Biv′ is closed under the operation “⊕”.
If 0 /∈ Biv′ then consider H = x1 ⊕ Biv′ for any x1 ∈ Biv′ . The obvious

consequence is that 0 is in H. Let’s show that H is closed under the operation
“⊕”. If we fix any x1, x2 ∈ Biv′ their sum is in the set Biv′ according to the
equation (5):

Biv′ = Biv′ ⊕ (x1 ⊕ x2) .

This completes the proof.

This theorem sets up a way of finding the invariant subset Am. First of all we
need to enumerate pairs (Ai, Bi) of coset of (Fq,⊕) so that π(Ai) = Bi.

In this work we analyze the Kuznyechik block cipher that is known to be
an SPN∗ and prove that |E| = 0. To prove this fact, let us first prove the
following theorem.
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Theorem 2 Let F : Fm
q → Fm

q be a round function of a key-alternating SPN∗,
Ai1×. . .×Aim is a vertex of a cycle of graph G, Bj1×. . .×Bjm = S (Ai1 × . . .×Aim).
For any z ∈ {1, . . . ,m} Aiz , Bjz = Bjz ⊕ bjz is a coset in (Fq,⊕), where Bjz

is a subgroup, and

Uz = {0} × . . .× {0} × Bjz︸ ︷︷ ︸
z

×{0} × . . .× {0}.

Then the set Wz = L (Uz) takes the form of:

Wz = Wz1 × . . .×Wzm ,

where Wzh is a coset of some subgroup of (Fq,⊕) so that there is a constant
ch where π (Wzh ⊕ ch) is also coset of a subgroup of (Fq,⊕), h = {1, . . . ,m}.

Proof Let’s consider the following set

Bj1 × . . .×Bjm = Bj1 × . . .× Bjm ⊕ (bj1 , . . . , bjm) .

Without a loss of generality let’s consider h = 1.

L(Bj1 × . . .×Bjm) = L(Bj1 × . . .× Bjm)⊕ L (bj1 , . . . , bjm) =

= L({0} × Bj2 × . . .× Bjm)⊕ L (bj1 , . . . , bjm)⊕ L(U1) =

= L({0} × Bj2 × . . .× Bjm)⊕ L (bj1 , . . . , bjm)⊕W1. (6)

U1 is a subgroup in Fm
q then L(U1) = W1 is a subgroup in Fm

q too. Moreover,
let

W1 =
{(

w
(j)
1,1, . . . , w

(j)
1,m

)∣∣∣ j ∈ {1, . . . , |U1|}
}
.

Then for any z = {1, . . . ,m} W1,z =
{
w

(j)
1,z

∣∣∣ j ∈ {1, . . . , |U1|}
}

is a subgroup

in Fq because L = (li,j)m×m, li,j ∈ F∗
q .

According to theorem 1

L(Bj1 × . . .×Bjm) = Cl1 × . . .× Clm = Cl1 × . . .× Clm ⊕ (cl1 , . . . , clm), (7)

where Clz is a subgroup in (Fq,⊕), clz ∈ Fq, z ∈ {1, . . . ,m}. From equations
(6) and (7) it follows that set W1 is a subset in

Cl1 × . . .× Clm ⊕ (cl1 , . . . , clm)⊕ L (bj1 , . . . , bjm)

because

(0, . . . , 0) ∈ L({0} × Bj2 × . . .× Bjm).

At the same time |W1,z| = |Cl1 | from which it follows that Cl1 = W1,z. Using
theorem 1 this theorem is proven.
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3 Kuznyechik permutation properties

Increased attention has been paid to the permutation of the Russian startedi-
zed algorithm Kuznyechik [8] in recent years. Its first decomposition was found
by Alex Biryukov, Leo Perrin, and Aleksei Udovenko [9]. In this work we call
it a BPU-decomposition. Some other curious properties were found in [10,4].
The BPU-decomposition has a rather simple design (see fig. 1) which can be
used for an efficient implementation on various platforms [11].

Fig. 1 BPU-decomposition, [9]

The following algorithm was found by [9] to implement the S-Box of Kuznyechik.
Let F24 = GF (24, ·,⊕) = GF (2)[y]/(f(y)) be a finite field with 24 elements
and an irreducible polynomial f(y) = y4 ⊕ y3 ⊕ 1. Every element x ∈ F28 can
be considered as a concatenation of l, r ∈ F24 using a bit representation of x:

x = (x1, . . . , x8) = (l∥r), l = (x1, . . . , x4), r = (x5, . . . , x8).

Using this bijection, the algorithm from [9] can be presented as follows:

1. (l ∥ r) := α(l ∥ r),
2. if r = 0, then l := ν0(l), else l := ν1(l · I(r));
3. r := σ(r · φ(l)),
4. return (l ∥ r) := ω(l ∥ r),
where nonlinear transformations ν0, ν1, I, σ, φ are given in the following
table (we consider that elements of F24 can be shown in the hexadecimal
representation):

I 0, 1, c, 8, 6, f, 4, e, 3, d, b, a, 2, 9, 7, 5
ν0 2, 5, 3, b, 6, 9, e, a, 0, 4, f, l, 8, d, c, 7
ν1 7, 6, c, 9, 0, f, 8, 1, 4, 5, b, e, d, 2, 3, a
φ b, 2, b, 8, c, 4, 1, c, 6, 3, 5, 8, e, 3, 6, b
σ c, d, 0, 4, 8, b, a, e, 3, 9, 5, 2, f, 1, 6, 7
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and linear transformations α and ω are the following:

α =



0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
0 1 0 0 0 0 1 1
1 1 1 0 1 1 1 1
1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 0
0 0 0 1 1 0 1 0
0 0 1 0 0 0 0 0


, ω =



0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
1 0 0 1 1 0 1 0
0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.

According to Theorem 1, we must look for a coset Ai of some subgroup
of (Fq,⊕), which is mapped by the S-Box to some coset Bi of a subgroup of
(Fq,⊕). Let us show that the BPU-decomposition allows us to extract such
cosets.

Proposition 3 For S-Box π of Kuznyechik there are two pairs of subgroups
(Ai,Bi)

– A1 =
{
α−1 (0xd · x∥x)

∣∣x ∈ F24
}
, B1 = {β (0∥y)| y ∈ F24},

– A2 =
{
α−1 (x∥0)

∣∣x ∈ F24
}
, B2 = {β (y∥0)| y ∈ F24},

so that there is a, b ∈ F8
2 : π(Ai ⊕ a) = Bi ⊕ b.

Proof Let π̂ be an affine-equivalent permutation of π (see fig. 2):

π̂(x) = ω−1
(
π
(
α−1(x)

)
⊕ (0x2∥0xc)

)
.

Fig. 2 Decomposition of π̂

If we show that for

– A′
1 = { (0xd · x∥x)|x ∈ F24}, B′

1 = { (0∥y)| y ∈ F24},
– A′

2 = { (x∥0)|x ∈ F24}, B′
2 = { (y∥0)| y ∈ F24},
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Fig. 3 π̂ maps A′
1 to B′

1

equation π̂ (A′
i) = B′

i is true for every i ∈ {1, 2}, we’ll be able to prove the
proposition.

Without a loss of generality, let’s consider case i = 1 (fig. 3) case i = 2 can
be considered similarly (fig. 4).

If x is not equal to 0, then x·0xd·x−1 = 0xd is a constant and ν1 (0xd)⊕ 0x2 = 0x0.
It’s obvious that π̂ maps the set {(x · 0xd∥x) , x ∈ F∗

24} to {(0∥y) , y ∈ F∗
24}

because of the facts: φ (0x2) ̸= 0, x1 ·0x2 = x2 ·0x2⇔ x1 = x2, σ is a bijection
and σ(0) = 0xc.

If x is equal to 0 then π̂ (0∥0) = (0∥0).

The proved proposition only indicates that such cosets exist, but does
not prove that others do not exist. To enumerate them all, let’s consider an
algorithm that works for any permutation. Let span(S) be a linear span of set
S. Using the ideas from [12] the following algorithm can be proposed:

Algorithm 1.

1. i := 0
2. for every a, b ∈ Fq:
(a) Ai ← {0};
(b) Bi ← span (π (Ai ⊕ a)⊕ b);
(c) Ai ← span

(
π−1 (Ai ⊕ b)⊕ a

)
;

(d) if Ai = span(Ai) then:
– if |Ai| ≠ 28, print(Ai = Ai ⊕ a,Bi = Bi ⊕ b), i← i+ 1;
– for every x ∈ F8

2\Ai: Ai ← span (Ai ∪ x), go to step (2.b);
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Fig. 4 Invariant subspace of π̂

Proposition 4 Algorithm 1 is correct.

Proof It’s obvious that if there is coset Ai ⊂ F8
2 so that a permutation π maps

it into coset Bi ⊂ F8
2 then algorithm 1 will print it.

Definition 1 A pair of sets (Ai,Bi) is an I pair of sets for permutation
π : Fq → Fq if there is a, b ∈ Fq so that

π(Ai ⊕ a) = Bi ⊕ b.

Subspaces Ai and Bi are called LI and RI sets for π correspondingly.

In proprosition 3 we found two I pairs of sets (Ai,Bi) for permutation π;
every set consists of 16 elements. Using algorithm 1 one can find such pairs of
sets of any size. We implemented it and founded:

– 2 I pairs (Ai,Bi), |Ai| = |Bi| = 16;
– 1 943 I pairs (Ai,Bi), |Ai| = |Bi| = 4;
– 2 730 I pairs (Ai,Bi), |Ai| = |Bi| = 2.

4 Impossibility attack details

Using theorem 2 we can propose the following approach to prove the impos-
sibility of an invariant attack. Let (Ai,Bi) be an I pair for permutation π.
Consider

B
(j)
i = {0} × . . .× {0}︸ ︷︷ ︸

j−1

×Bi × {0} × . . .× {0},
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L
(
B

(j)
i

)
= C

(j)
i =

{(
c
(j,1)
i,k , . . . , c

(j,m)
i,k

)
, k = 1, . . . , |Bi|

}
.

It follows from theorem 2 that every set

C
(j,l)
i =

{
c
(j,l)
i,k , k = 1, . . . , |Bi|

}
must be Ad — a subset of an LI set for π. Then

∃ c1, c2 ∈ F24 : π (Ad ⊕ c1)⊕ c2

is a subgroup of (Fq,⊕). Using a computer calculation and the ideas presented
above we proved the following

Proposition 5 Let π be a permutation, L be a linear and S be a nonlinear
transformation of the Kuznyechik algorithm. Then for every I pair (Ai,Bi),
|Bi| > 1, for permutation π and for every j = {1, . . . ,m}, there is l =

{1, . . . ,m} so that C
(j,l)
i is not a subset of any subgroup Ad so that

∃ c1, c2 ∈ F24 : π (Ad ⊕ c1)⊕ c2

is a subgroup of (Fq,⊕).

Let’s consider the most interesting example and take into account an I pair
of sets (Ai,Bi) proposition 3:

– A1 = {0x00, 0x05, 0x22, 0x27, 0x49, 0x4c, 0x6b, 0x6e, 0x8b, 0x8e, 0xa9, 0xac,
0xc2, 0xc7, 0xe0, 0xe5}, B1 = {0x00, 0x01, 0x0a, 0x0b, 0x44, 0x45, 0x4e,
0x4f, 0x92, 0x93, 0x98, 0x99, 0xd6, 0xd7, 0xdc, 0xdd};

– A2 = {0x00, 0x01, 0x0a, 0x0b, 0x44, 0x45, 0x4e, 0x4f, 0x92, 0x93, 0x98,
0x99, 0xd6, 0xd7, 0xdc, 0xdd}, B2 = {0x00, 0x02, 0x04, 0x06, 0x10, 0x12,
0x14, 0x16, 0x20, 0x22, 0x24, 0x26, 0x30, 0x32, 0x34, 0x36};

There are the largest LI and RI sets for π. We also can mention that B1 = A2.
If we consider

B1
1 = B1 × {0} × . . .× {0}

then C1,1
1 = B1 = A2 because according to [8] the linear transformation of

Kuznyechik is based on LFSR with the least feedback coefficient equal to
e ∈ F8

2. At the same time neither C1,2
1 ̸= A1 ⊕ a nor C1,2

1 ̸= A2 ⊕ a for any
a ∈ F28 which means that Ai1 in G is not A1⊕c for any c ∈ F28 . Much simpler:

B1
2 = B2 × {0} × . . .× {0}.

In this case C1,1
2 = B2 ̸= A1 and C1,1

2 = B2 ̸= A1.

5 Conclusion

We presented a new approach to invariant attacks based on S-box proper-
ties of an SPN∗. Kuznyechik is an SPN∗ since it has a linear layer based on
an MDS-matrix. Using a computer calculation we enumerated all I pairs for
permutation π of the Kuznyechik algorithm and proved the impossibility of a
generalised invariant attack.
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9. Alex Biryukov, Léo Perrin, and Aleksei Udovenko. Reverse-Engineering the S-Box of
Streebog, Kuznyechik and STRIBOBr1. In Marc Fischlin and Jean-Sébastien Coron,
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