
МАТЕМАТИЧЕСКИЕ ВОПРОСЫ КРИПТОГРАФИИ

2021 Т. 12 № 2 С. 21–38

УДК 519.719.2 DOI https://doi.org/10.4213/mvk354

A compact bit-sliced representation
of Kuznyechik S-box

О. D. Avraamova
1
, D. B. Fomin

2
, V. A. Serov

1
, A. V. Smirnov

1
,

V. N. Shokov
1

1
Lomonosov Moscow State University, Russia

2
Higher School of Economics, Moscow, Russia

Получено 25.XI.2020
Abstract. In this paper we consider a bit-sliced implementation of the
non-linear transformation shared by GOST R 34.12-2015 “Kuznyechik”
block cipher and GOST R 34.11-2012 “Streebog” hash function. We
combine analytical and computer methods to get a 226 Boolean operations
representation.
Keywords: block cipher, hash function, S-box, Kuznyechik, Streebog, bit-
slice, Boolean functions minimization

Об одном представлении нелинейного преобразования

алгоритма �Кузнечик� с помощью логических функций

О. Д. Авраамова
1
, Д. Б. Фомин

2
, В. А. Серов

1
, А. В. Смирнов

1
,

В. Н. Шоков
1

1
Московский государственный университет имени В.А.Ломоносова,

Москва
2
НИУ Высшая школа экономики, Москва

Аннотация. Рассматриваются способы реализации нелинейного пре-
образования блочного алгоритма шифрования с длиной блока 128 бит
�Кузнечик� (ГОСТ Р 34.12-2015) и хеш-функции �Стрибог� (ГОСТ
Р 34.11-2012). Показана возможность реализации подстановки за 226
логических операций.
Ключевые слова: блочный шифр, хеш-функция, подстановка,
Кузнечик, Стрибог, битовая реализация, минимизация представления
булевой функции

Citation: Matematicheskie Voprosy Kriptografii, 2021, v. 12, № 2, pp. 21–38 (Russian)

© Академия криптографии Российской Федерации, 2021 г.

22 О.D.Avraamova, D.B.Fomin, V.A.Serov, A.V.Smirnov, V.N.Shokov

1. Introduction
A permutation is a bijective mapping of a non-empty finite set onto

itself. In applications, permutations of Vn, where Vn is an n-dimensional
vector space over Galois field GF (2), are often used. Usually the dimension
of the vector space is not large, most popular versions being n = 4 or n = 8.
Permutation may be implemented as a lookup table and this representation
is often called an S-box.

S-boxes are widely used in the synthesis of block ciphers and hash-
functions. They allow one to combine necessary non-linearity with reason-
able implementation complexity of the overall scheme. At the same time,
cipher strength against known methods of cryptanalysis depends strongly
on certain properties of S-boxes used, and its potential speed and lower
resource-consumption � on the effectiveness of software and hardware im-
plementation of these elements.

We use the number of Boolean operations as the measure of complexity
of an S-box implementation. In this paper we consider implementations
of the non-linear transformation of �Kuznyechik� GOST R 34-12.2015 [1]
in the basis of AND,OR,NOT and XOR Boolean functions and try to
get a way to make it as compact as possible. The choice of these four
functions as the basis is justified by the existence of its effective hardware
and software implementation on different platforms. Inside formulas, we’ll
use short notation: · for AND, + for OR, ¬ for NOT and � for XOR.

In the classical problem of Boolean functions minimization the basis is
formed by conjunction (AND), disjunction (OR) and negation (NOT).
In this form the problem is intimately connected with the simplification
of electrical schemas. Karnaugh charts used to complete the problem for
electrical schemas are quite usable for manual optimization of Boolean func-
tions with small number of variables. Computer analog of this method was
developed by W.Quine and extended by E.McCluskey and is known as
Quine-McCluskey algorithm. The distinctive feature of our situation is the
existence of additional XOR operation, so finding transformation rules for
formulae minimization for the new set of operations is a reasonable problem.

Composition of the paper is the following. In section 1 we consider the de-
composition of �Kuznyechik� permutation found by A.Biryukov, L. Perrin,
and A.Udovenko in [2], which we call the BPU-decomposition. In section 2
we implement linear and bilinear elements of BPU-decomposition and elim-
inate branching. In section 3 we consider ways of computer optimization of
non-linear elements of the decomposition. In concluding section we compare
the overall complexity of our method with other existing solutions.

МАТЕМАТИЧЕСКИЕ ВОПРОСЫ КРИПТОГРАФИИ

A compact bit-sliced representation of Kuznyechik S-box 23

2. BPU-decomposition

In �Kuznyechik� algorithm, by GOST R 34-12.2015, a non-linear trans-
formation ⇡ of vector space V8 is used. If we try to minimize it directly,
using, for example, Espresso algorithm (in Logic Friday [3] realization),
we get 3492 Boolean operations � quite a lot. So some other approach is
needed.

0 1

I

 !

!

νν

j

σ

α

ω

Fig. 1: The structure of BPU-decomposition taken from [2]

The authors of [2] suggested to represent ⇡ as a composition of non-
linear transformations ⌫0, ⌫1, I, �, ' of V4, linear transformations ↵ and !

of V8 and multiplication } in Galois field GF (24,},�) = GF (2)[x]/(f(x))
with irreducible polynomial f(x) = x

4 � x
3 � 1, where � is the addition

and } is the multiplication in the finite field.
Consider the action of ⇡ on the set of pairs (l, r), l, r 2 GF (24). In [2]

the following algorithm to compute ⇡(l k r) was used (see fig. 1):
1) (l k r) := ↵(l k r),
2) if r = 0, then l := ⌫0(l), else l := ⌫1(l } I(r)),
3) r := �(r } '(l)),
4) (l k r) := !(l k r).
The value of (l k r) after step 4 equals to ⇡(l k r). The non-linear

transformations (not all of them are bijective) ⌫0, ⌫1, I, �, ' are given in

2021, Т. 12, № 2, С. 21–38

24 О.D.Avraamova, D.B.Fomin, V.A.Serov, A.V.Smirnov, V.N.Shokov

the following table (in hexadecimal representation):

I 0, 1, c, 8, 6, f, 4, e, 3, d, b, a, 2, 9, 7, 5
⌫0 2, 5, 3, b, 6, 9, e, a, 0, 4, f, l, 8, d, c, 7
⌫1 7, 6, c, 9, 0, f, 8, 1, 4, 5, b, e, d, 2, 3, a
' b, 2, b, 8, c, 4, 1, c, 6, 3, 5, 8, e, 3, 6, b
� c, d, 0, 4, 8, b, a, e, 3, 9, 5, 2, f, 1, 6, 7

3. Implementation of linear and bilinear elements
of decomposition and branching elimination

3.1. Bit-sliced implementation of multiplication in the finite field

One of important elements of the decomposition is the multiplication
in the finite field GF (24). It is used twice during the algorithm. Let’s find
the representation of this operation by Boolean functions. To do it, we
consider GF (24) as a four-dimensional algebra over GF (2). In this case the
components of binary representation of elements of GF (24) will be simply
the coordinates of these vectors in the standard basis {e1 = (1000) = 8,
e2 = (0100) = 4, e3 = (0010) = 2, e4 = (0001) = 1}. (In this section
elements of GF (24) will be typesetted in bold and coordinate indexes will
be written above).

By the associative, commutative and distributive laws of GF (24), op-
erations } and � are commuting, and the distributive law holds. So it is
sufficient to know pair-wise products of basic vectors, and the product of
any two arbitrary vectors may be computed by linearity:

z = (x} y) =

✓ 4X

i=1

x
iei

◆
}
✓ 4X

j=1

y
jej

◆
=
X

i,j

x
i · yj(ei } ej)

in vector form and

zk = (x} y)k =

 ✓ 4X

i=1

x
iei

◆
}
✓ 4X

j=1

y
jej

◆!k

=

✓X

i,j

x
i
y
j(ei } ej)

◆k

=
X

i,j

x
i · yj(ei } ej)

k
, k = 1, . . . , 4,

in coordinate form.

МАТЕМАТИЧЕСКИЕ ВОПРОСЫ КРИПТОГРАФИИ

A compact bit-sliced representation of Kuznyechik S-box 25

Let’s make a table of pair-wise products of basic vectors:

1000 0100 0010 0001
1000 1111 1011 1001 1000
0100 1011 1001 1000 0100
0010 1001 1000 0100 0010
0001 1000 0100 0010 0001

Separating coordinates, we have

C
1

C
2

C
3

C
4

1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0
1 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0
1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

and for every coordinate z
k (k = 1, . . . , 4) we have

z
k = (x1

, x
2
, x

3
, x

4)

0

@
c
k
11 . . . c

k
14

...
c
k
41 . . . c

k
44

1

A

0

BB@

y
1

y
2

y
3

y
4

1

CCA .

Now (returning to lower coordinate indexes) we are able to write down
formulae for every coordinate:

z1 = (x1 � x2 � x3 � x4) · y1 � (x1 � x2 � x3) · y2 � (x1 � x2) · y3 � x1 · y4,
z2 = x1 · y1 � x4 · y2 � x3 · y3 � x2 · y4,
z3 = (x1 � x2) · y1 � x1 · y2 � x4 · y3 � x3 · y4,
z4 = (x1 � x2 � x3) · y1 � (x1 � x2) · y2 � x1 · y3 � x4 · y4.

So we need 13 operations to compute z1, 7 for z2, 8 for z3, and 10 for z4.
Multiplication in our realization of GF (24) requires 38 Boolean operations
if we do not use auxiliary variables to store intermediate results. If we use
intermediate variables (denote them by P with indices), the number of
operations may be reduced further. For example, the expression (x1 � x2)

2021, Т. 12, № 2, С. 21–38

26 О.D.Avraamova, D.B.Fomin, V.A.Serov, A.V.Smirnov, V.N.Shokov

appears more than once:

z1 = (P2 � x4) · y1 � P2 · y2 � P1 · y3 � x1 · y4,
z2 = x1 · y1 � x4 · y2 � x3 · y3 � x2 · y4,
z3 = P1 · y1 � x1 · y2 � x4 · y3 � x3 · y4,
z4 = P2 · y1 � P1 · y2 � x1 · y3 � x4 · y4,
P1 = x1 � x2,

P2 = x1 � x2 � x3 = P1 � x3.

The latter realization has complexity 31.

3.2. Implementation of linear mappings

Let’s estimate the complexity of linear transformations ↵ and ! in terms
of Boolean functions. Matrix representations of ↵ and ! are the following:

↵ =

0

BBBBBBBBB@

0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
0 1 0 0 0 0 1 1
1 1 1 0 1 1 1 1
1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 0
0 0 0 1 1 0 1 0
0 0 1 0 0 0 0 0

1

CCCCCCCCCA

, ! =

0

BBBBBBBBB@

0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
1 0 0 1 1 0 1 0
0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1

CCCCCCCCCA

.

Let l = (l1, l2, l3, l4), r = (r1, r2, r3, r4) be representations of field elements
as vectors. Using an intermediate variable p1 we can represent ↵ by the
following equations:

↵1(l1, l2, l3, l4, r1, r2, r3, r4) = r1,

↵2(l1, l2, l3, l4, r1, r2, r3, r4) = l2 � r4,

↵3(l1, l2, l3, l4, r1, r2, r3, r4) = l2 � r3 � r4 = ↵2(l1, l2, l3, l4, r1, r2, r3, r4)� r3,

↵4(l1, l2, l3, l4, r1, r2, r3, r4) = l1 � l2 � l3 � r1 � r2 � r3 � r4

= ↵2(l1, l2, l3, l4, r1, r2, r3, r4)� ↵5(l1, l2, l3, l4, r1, r2, r3, r4)� l3 � r2,

↵5(l1, l2, l3, l4, r1, r2, r3, r4) = l1 � r1 � r3 = l1 � p1,

↵6(l1, l2, l3, l4, r1, r2, r3, r4) = l2 � r2,

↵7(l1, l2, l3, l4, r1, r2, r3, r4) = l4 � r1 � r3 = l4 � p1,

↵8(l1, l2, l3, l4, r1, r2, r3, r4) = l3,

p1 = r1 � r3.

МАТЕМАТИЧЕСКИЕ ВОПРОСЫ КРИПТОГРАФИИ

A compact bit-sliced representation of Kuznyechik S-box 27

Overall complexity of ↵ is 9 XOR operations. In the same way, the com-
plexity of ! is 5 XOR operations. So we get 14 Boolean operations to
represent two linear mappings.

3.3. Elimination of branching

Let’s return to item 2 of BPU algorithm: �2. If r = 0 then l := ⌫0(l)
else l := ⌫1(l } I(r))�. Write down a Boolean function which takes the
value 1 at a single point r = (0, 0, 0, 0) and has zero value at all other
points [4, p. 25–30]:

I0,0,0,0(r) = r̄1 · r̄2 · r̄3 · r̄4 = r1 + r2 + r3 + r4.

The complexity of this function is 4 Boolean operations, the complexity
of its negation � 3 operations. Now we can express l by a non-branching
formula:

l
i = I0,0,0,0(r) · ⌫i

0(l) + I0,0,0,0(r) · ⌫i
1(l } I(r)), i = 1, . . . , 4. (1)

It should be stressed that we compute I0,0,0,0(r) only once. To be more
precise, we first calculate its negation (3 operations) and then, by double-
negation law, compute I0,0,0,0(r) itself, which gives one additional operation.
One needs 16 Boolean operations to represent four equations above. Using
the fact that 0 is a fixed point for the permutation I we can reduce the
amount of Boolean operations to 13.

Let’s consider the following equations:

l
i = I0,0,0,0(r) ·

�
⌫
i
0(l)� ⌫

i
1(0)

�
� ⌫

i
1(l } I(r)), i = 1, . . . , 4. (2)

If r 6= (0, 0, 0, 0), then

I0,0,0,0(r) · ⌫i
1(l } I(r)) = ⌫

i
1(l } I(r)), i = 1, . . . , 4,

and equations (1) and (2) are equivalent.
Otherwise, let r be equal to 0. The equation (1) is equivalent to

I0,0,0,0(r) · ⌫i
0(l) = ⌫

i
0(l).

Using the fact that I(0) = 0 and x � 0 = 0 for all x 2 GF (24) it’s rather
easy to show that (2) is also equivalent to ⌫

i
0(l) for any i = 1, . . . , 4:

I0,0,0,0(r) ·
�
⌫
i
0(l)� ⌫

i
1(0)

�
� ⌫

i
1(l } I(r))

��
r=0

= I0,0,0,0(0) ·
�
⌫
i
0(l)� ⌫

i
1(0)

�
� ⌫

i
1(l } I(0)),

= 1 ·
�
⌫
i
0(l)� ⌫

i
1(0)

�
� ⌫

i
1(0) = ⌫

i
0(l), i = 1, . . . , 4. (3)

2021, Т. 12, № 2, С. 21–38

28 О.D.Avraamova, D.B.Fomin, V.A.Serov, A.V.Smirnov, V.N.Shokov

At the same time ⌫
i
1(0) = (0, 0, 1, 0). That means that we only have to

add one additional XOR operator to represent the equation (2).
After branching elimination the complexity of our representation has

increased by 13 operations. The number of operations of each kind is given
in a table below:

AND OR NOT XOR Total
I0,0,0,0(r) 3 3
I0,0,0,0(r) 1 1
Final glue

by every coordinate 1 1(2)
Final glue

for all coordinaetes 4 5 9
Total 13

4. Computer implementation of non-linear elements

4.1. Formulation of the problem

Consider a transformation table 24 ! 24 or 28 ! 28. The goal is to
represent it as a set of Boolean functions in the basis of logical functions
AND,OR,NOT,XOR with the minimal number of operations. The num-
ber of 1- and 2-input operations (AND, OR, NOT , XOR) required to
implement a function will be used as the evaluation criteria.

This estimate coincides with the actual complexity of the circuit when
it is implemented by integrated circuits containing corresponding logic ele-
ments. It also coincides if the FPGA function is used to implement it, since
logical operations in this situation are formed using a matrix of macrocells,
and the operation does not depend on the FPGA choice.

The algorithm is constructed as follows: at the first optimization step,
the Quine–McCluskey algorithm is used, then the steps described below
in sections 4.3.1-4.3.6 are iteratively repeated. After that, rules 4.4-4.7 are
applied, with repetitive calls to procedures 4.3.1-4.3.6 if necessary.

For an example illustrating the steps of the algorithm we use the table
of values of the ⌫1 function from BPU-decomposition:

Table 1

X 0 1 2 3 4 5 6 7 8 9 a b c d e f

Y 7 6 c 9 0 f 8 1 4 5 b e d 2 3 a

МАТЕМАТИЧЕСКИЕ ВОПРОСЫ КРИПТОГРАФИИ

A compact bit-sliced representation of Kuznyechik S-box 29

Each of the Y bits may be represented in the form of PDNF, consisting
of precisely 8 members since it is a coordinate function of a permutation.
For example, for Y0 in this example, this function will have the following
form:

Y0 = (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)

+ (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)

+ (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3).

The complexity of this representation is 47 operations.
Using the optimization techniques shown below, this function may be

simplified to the following form:

Y0 = (X1 +X2)�X0 �X3.

The complexity of this representation is 4. Thus, for this particular ex-
ample, the complexity decreases by more than 11 times as a result of our
optimization.

As a second example, consider Y3:

Y3 = (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)

+ (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)

+ (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3).

This function representation requires 45 operations.
By means of optimization this function may be simplified to the following

form:
Y3 = ((X0 �X3) ·X2)�X1.

The complexity of this representation of the function is 3, which is 15 times
better than the original one.

4.2. Quine–McCluskey algorithm

One of the algorithms for minimizing Boolean functions was proposed
by Willard Quine and improved by Edward McCluskey. Since the algo-
rithm is described in sufficient detail in many sources (see, for example,
[5, p. 232–239]), its implementation will not be described in this paper.

Consider the simplification of the above examples of functions with this
algorithm. For a formula representing the function Y0 (with initial com-

2021, Т. 12, № 2, С. 21–38

30 О.D.Avraamova, D.B.Fomin, V.A.Serov, A.V.Smirnov, V.N.Shokov

plexity of 47 operations)

Y0 = (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)

+ (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)

+ (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)

after optimization we get a formula with complexity 29 (1.5 times less
complexity for this example):

Y0 = (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)

+ (X0 ·X1 ·X3)

+ (X0 ·X2 ·X3) + (X0 ·X1 ·X3) + (X0 ·X2 ·X3).

For the Y3 function (the initial complexity of the representation is 45 op-
erations), the Quine–McClusky method gives the result of 22 operations
(optimization by 2 times):

Y0 = (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X3)

+ (X0 ·X2 ·X3) + (X1 ·X2).

4.3. Further optimization of the Quine–McClaskey algorithm

As further steps for optimizing Boolean functions, an algorithm consist-
ing of several steps is proposed. Moreover, each step is performed for all
members of the polynomial inside the brackets. If optimization has been
performed at any of the steps of the algorithm, then the algorithm starts
again from the first step.

4.3.1. Duplicate Elimination

This step removes duplicates that may have appeared in previous itera-
tions:

X1 ·X1 ·X2 = X1 ·X2,

X1 +X1 +X2 = X1 +X2,

X1 �X1 �X2 = X2.

4.3.2. Removing the common factor under the logical OR performed on

logical AND

(X1 ·X2) + (X1 ·X3) = X1 · (X2 +X3).

МАТЕМАТИЧЕСКИЕ ВОПРОСЫ КРИПТОГРАФИИ

A compact bit-sliced representation of Kuznyechik S-box 31

For the above example (Y0 function with complexity 47), the representation
after this transformation takes the form

Y0 =
�
X0 · ((X1 ·X2 ·X3) + (X3 · (X1 +X2)))

�

+
�
X0 ·

�
(X1 ·X2 ·X3) + ((X1 +X2) ·X3

��

with the complexity value of 20.

4.3.3. Optimization of occurrences of the same term with and without

negation for logical AND and OR, as well as optimization of constant

members

We use formulas X1 ·X1 = 0, X1 +X1 = 1, X1 · 0 = 0, X1 + 1 = 1.

4.3.4. Optimization of �NOT�

At this step, an attempt is made to reduce the number of NOT opera-
tions, using a single formula

X1 +X2 = X1 ·X2.

For the above example (formula with complexity 47), the representation of
the function after this operation will take the following form:

Y0 =
��
X1 +X2 +X3 + (X1 +X2) ·X3

�
·X0

�

+
��
(X1 ·X2 ·X3) + ((X1 +X2) ·X3)

�
·X0

�

with complexity 18.

4.3.5. Search on the table of pattern optimal functions

At this step, a table of optimal functions is used. The construction of the
table is described below. A table of values of the function being optimized
(or its parts) is generated. After that the values from this table are com-
pared with the reference ones from the table of optimal functions. If they
coincide, the pattern optimal function is used instead of the original one.
At the moment, the table of optimal functions is constructed for functions
of up to 4 variables.

To construct the table of optimal functions, the following approach was
used (let us consider the case of compiling a table for three variables).
First, functions are created within one operation (for each of the AND,

2021, Т. 12, № 2, С. 21–38

32 О.D.Avraamova, D.B.Fomin, V.A.Serov, A.V.Smirnov, V.N.Shokov

OR, XOR operations) by sequentially arranging the brackets and NOT
operations, for example:

F = X0 +X1 +X2, F = X0 +X1 +X2, F = X0 +X1 +X2,

F = X0 +X1 +X2, F = X0 +X1 +X2, F = X0 +X1 +X2,

F = X0 +X1 +X2, F = X0 +X1 +X2,

and so on.
After that, formulas using combinations of binary operations are added

(OR and XOR, for example), for which all combinations of parentheses
and negation are also sorted out, for example:
F = (X0+X1)�X2, F = X0+(X1�X2), F = (X0 +X1)�X2, and so on.

At the next step, functions with tables of the same complexity are re-
moved from the list of functions, while leaving the function with the min-
imum number of operations. The final list of pattern optimal functions is
entered into the program in symbolic form from a file, which allows, on one
hand, not to spend time on calculating the table each time the algorithm
is run, and, on the other hand, it allows to supply the table with functions
obtained by other algorithms or empirically.

We consider two examples of optimization of the components of the
function Y0

F = (X1 ·X2 ·X3) + ((X1 +X2) ·X3).

The table of values for this function (the number of operations is 8) is the
following:

X1 0 1 0 1 0 1 0 1

X2 0 0 1 1 0 0 1 1

X3 0 0 0 0 1 1 1 1

F 0 1 1 1 1 0 0 0

In the table of optimal functions there is a function with complexity 2,
the truth table of which is similar to the above:

F = X3 � (X1 +X2).

Accordingly, part of the polynomial may be replaced with this function.
Consider another example (the initial complexity of the representation

is 8):
F = (X1 +X2 +X3 + ((X1 +X2) ·X3)) ·X0.

МАТЕМАТИЧЕСКИЕ ВОПРОСЫ КРИПТОГРАФИИ

A compact bit-sliced representation of Kuznyechik S-box 33

Note that in this polynomial there is a common part X1+X2. Let us denote
it by P1. The function will take the form

F = (P1 +X3 + (P1 ·X3)) ·X0.

According to the truth table, the algorithm finds the following optimal
function:

F = X0 + (X3 � P1).

Let us return from P back to X1 +X2

F = X0 + (X3 � (X1 +X2)).

The complexity of the resulting function is 4. As a result of this optimiza-
tion step, the initial function will take the following form (complexity of 8
operations):

Y0 =
�
((X1 +X2)�X3) +X0

�
+
�
((X1 +X2)�X3) ·X0

�
.

4.3.6. Search for XOR possible usage

This step analyzes the possibility to use XOR, in accordance with the
formulas

X0 ·X1 +X0 ·X1 = X0 �X1,

(X0 +X1) + (X0 ·X1) = X0 �X1.

For the above example, the formula for the function Y0 will take the form

Y0 = X0 � (X1 +X2)�X3.

As a result, the complexity of the formula has become 4, which is about 10
times less than the original.

4.4. Additional optimization by combining brackets

In some cases, the above optimizations do not provide the minimal rep-
resentation of the function. Consider an example. After a number of opti-
mizations Y2 function has become like that:

Y2 = (X1 ·X2 ·X3) + ((X1 +X2) ·X3).

An additional step is provided for handling such cases. If there are more
than two terms under the brackets, then several functions are formed with
different placement of brackets:

Y2 = (X1·(X2·X3))+((X1+X2)·X3), Y2 = (X2·(X1·X3))+((X1+X2)·X3),

2021, Т. 12, № 2, С. 21–38

34 О.D.Avraamova, D.B.Fomin, V.A.Serov, A.V.Smirnov, V.N.Shokov

Y2 = (X3 · (X1 ·X2)) + ((X1 +X2) ·X3).

After that every formula from the set is optimized by the algorithm de-
scribed above, and the formula with smallest resulting complexity is chosen.
In our case it is the third function. It is transformed like this:

Y2 = (X3 ·(X1 ·X2))+((X1+X2)·X3) = (X3 ·(X1 +X2))+((X1+X2)·X3

= (X1 +X2)�X3.

4.5. Primary XOR-optimization

In some cases, the optimization techniques discussed above do not lead
to the best representation. Consider bit Y3 of table 2:

Y3 = (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)

+ (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)

+ (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3).

The initial number of operations in the representation of this function is 45.
As a result of the above optimizations, one can get a function of the

following form:

Y3 =
�
(X0 �X3) ·X2 ·X1

�
+
�
(X0 �X3) ·X1 ·X2

�
.

The number of operations in this representation is 9, which is 5 times less
than the original.

Nevertheless, for representations of the function with the number of
operations greater than 2, the algorithm makes an additional optimization
attempt.

4.6. Using the Algebraic Normal Form (ANF)

Further, the program uses the representation of the function in the form
of Zhegalkin polynomial (ANF). First, if one or more variables are found in
the Zhegalkin polynomial in the form of terms of the first degree and are
not found in any monomial anymore, they may be separated as terms mod-
ulo two, immediately reducing the dimension of the problem. If there are
no such variables, in some cases it is still possible to reduce the complexity
of the representation by separating certain variables as modulo two sum-
mands. Let us return to our example from section 3.1 (Table 1). Since the
XOR function takes the value 1 when arguments are different and 0 when

МАТЕМАТИЧЕСКИЕ ВОПРОСЫ КРИПТОГРАФИИ

A compact bit-sliced representation of Kuznyechik S-box 35

their values are the same, we can represent the value Y in the following
form:

Yi = Xj � F (X),

where Xj is one of X bits, and F (X) is equal to 0 for all cases where
Yi = Xj and is equal to 1 if Yi 6= Xj.

Obviously, one has to choose the bit X such that as many as possible
Yi = Xj, because in this case F (X) will have less terms. Consider the values
of Y3 in the following table:

X3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
X2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
X1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
X0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Y3 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1

For each of Xi, i = 0, . . . , 3, the number of positions in which the value
of Xi coincides with the value of Y , is calculated. For this example, we get
the following result

X0 X1 X2 X3

8 12 8 8

Accordingly, the function will have the form

Y3 = X1 � F (X).

We represent F (X) in the form of PDNF with a value of 1 for cases of
mismatch between X and Y (mismatching values are indicated by squares
around them). So we get the function

Y3 = X0 �
�
(X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)

+ (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)
�
.

The complexity of this representation of the function is 21. However, F (X)
may be optimized by the methods indicated above. After the specified pro-
cessing, the function takes the form

Y3 = X0 � ((X0 �X3) ·X2).

The complexity of this representation is 3.

2021, Т. 12, № 2, С. 21–38

36 О.D.Avraamova, D.B.Fomin, V.A.Serov, A.V.Smirnov, V.N.Shokov

4.7. Merging common parts

As the final step, the algorithm attempts to find common parts both
within one function and among all functions of the set, in order to optimize
their calculation.

For example, for the above table, the algorithm worked out the following
set of functions:

Y0 = X0 � (X1 +X2)�X3,

Y1 = ((X2 +X3)� (X0 ·X2)) +X1 � (X1 ·X3),

Y2 = ((X1 �X2) · (X0 �X3))�X2,

Y3 = X0 � ((X0 �X3) ·X2).

Total complexity is 19 operations. At the last step, the algorithm explores
what is included in Y0, Y2, and Y3. The algorithm denotes such common
parts by the symbol P. For the given example, the following formulas are
obtained:

Y0 = P0 � (X1 +X2),

Y1 = ((X2 +X3)� (X0 ·X2)) +X1 � (X1 ·X3),

Y2 = ((X1 �X2) · P0)�X2,

Y3 = X0 � ((P0 ·X2)),

P0 = (X0 �X3).

After merging the common parts into separate functions, the complexity of
our example is reduced from 19 to 17.

4.8. Optimization results

As a result of the above algorithm, the following set of Y functions was
produced for the test data table:

Y0 = P0 � (X1 +X2),

Y1 = ((X2 +X3)� (X0 ·X2)) +X1 � (X1 ·X3),

Y2 = ((X1 �X2) · P0)�X2,

Y3 = X0 � ((P0 ·X2)),

P0 = (X0 �X3).

The total complexity of this set of functions is 17, which is approximately
10 times less than the complexity of the set of non-optimized functions,

МАТЕМАТИЧЕСКИЕ ВОПРОСЫ КРИПТОГРАФИИ

A compact bit-sliced representation of Kuznyechik S-box 37

equal to 188. The following are explicit formulas for all nonlinear functions
involved in BPU-decomposition:

Number

F Presentation of opera-

tions

I Y0 =
�
X0 ·X1

�
+
��
(X0 �X1) + P 1

�
·X3

�

Y1 = (X0 ·X2)�
�
X1 · P1 · P2

�
�X3

Y2 = ((X1 �X3) · ((X0 +X2)�X1))�X2 26

Y3 =
�
X1 ·X2

�
+ (((X1 �X2) + P2) ·X0)

P1 = X0 �X2

P2 = X2 �X3

v0 Y0 =
�
X1 ·X2

�
+
��
(X1 �X2) +X1 �X3

�
·X0

�

Y1 =
⇣
(X0 �X2) ·X3 ·X1

⌘
+ P 1

Y2 = (X1 ·X3)�
��
(X2 �X3) +X1

�
·X0

�
�
�
X2 ·X3

�
29

Y3 = ((X1 � P1) ·X2)� ((X0 �X3) ·X1)

P1 = X0 +X3

v1 Y0 = (X1 +X2)� P1

Y1 = ((X2 +X3)� (X0 ·X2)) +X1 � (X1 ·X3)

Y2 = ((X1 �X2) · P1)�X2 29

Y3 = (X2 · P1)�X1

P1 = X0 �X3

' Y0 =
⇣�

X0 ·X1

�
+ (X1 �X3) ·X2

⌘
�
�
X1 ·X3

�
�X0

Y1 = ((X0 +X3) ·X1) +X2 � (X2 ·X3) 33

Y2 =
�
X0 ·X3

�
+
���

X0 +X1

�
� (X0 ·X3)

�
·X2

�

Y3 = (X0 ·X1)�
���

X2 +X3

�
� (X1 ·X2)

�
·X0

�

� Y0 =
�
X0 ·X1

�
+
�
X1 · P1 ·X3

�

Y1 = (((X2 +X3)� (X1 ·X2)) ·X0)� ((X2 �X3) ·X1)�X3

Y2 = (X0 ·X1)�
��
(X0 ·X3)�X1

�
·X2

�
�X1 �X3 31

Y3 =
�
X2 ·X3

�
+
��
X3 + P1

�
·X1

�

P1 = X0 �X2

Summary
In this paper we consider the possibility of bit-slicing the non-linear

bijective mapping of GOST R 34-12.2015 �Kuznyechik� block cipher. The
�Kuznyechik� permutation, represented by BPU-decomposition, fits into
235 Boolean operations (Table 2) after program optimization of small non-
linear elements and algebraic features of finite field multiplication.

2021, Т. 12, № 2, С. 21–38

38 О.D.Avraamova, D.B.Fomin, V.A.Serov, A.V.Smirnov, V.N.Shokov

Table 2

AND OR NOT XOR Total

I 8 5 4 9 26

v0 9 5 6 9 29

v1 4 3 3 7 17

' 11 6 8 7 32

� 11 6 7 9 33

↵ 9 9

! 5 5

multiplication in GF
�
24
�

16 15 31

multiplication in GF
�
24
�

16 15 31

branchng elimination 4 3 1 5 13

79 28 29 90 Total: 226

It should be noted that in 2016 a method of constructing S-boxes with
minimal number of logical elements got a patent in Russian Federation [6].
The method protected by this patent allows to realize non-linear mapping
of �Kuznyechick� cipher with complexity of 681 operations (254 ANDs
and 436 XORs).

Acknowledgement: The authors would like to thank Dmitry Pronkin for
helpful discussions on results and writing of the paper.

References
[1] Federal Agency on Technical Regulating and Metrology, “GOST R 34.12-2015. National

standard of Russian Federation. Block ciphers.”, 2015 (in Russian).

[2] Biryukov A., Perrin L., Udovenko A., Reverse-engineering the S-Box of Streebog,

Kuznyechik and STRIBOBr1, Cryptology ePrint Archive, Report 2016/071, 2016, http:
//eprint.iacr.org/2016/071.

[3] https://is.muni.cz/el/1423/podzim2015/VPL405/59270121/59761464/Logic_Friday_
1/?lang=en.

[4] Yablonsky S. V., Introduction to Discrete Mathematics, 4th edition, Moscow : Vysshaya

Shkola, 2006 (in Russian), 384 pp.

[5] Savel’ev A. Y., Introduction to Informatics, Moscow : Bauman Univ. Publ., 2001 (in Rus-

sian), 328 pp.

[6] Borisenko N. P., Vasinev D. A., Khoang Dyk Tkho, “Method of forming S-blocks with

minimum number of logic elements”, Abstract of Invention, RU 2572423 C2, 2016 (in

Russian).

МАТЕМАТИЧЕСКИЕ ВОПРОСЫ КРИПТОГРАФИИ

