
МАТЕМАТИЧЕСКИЕ ВОПРОСЫ КРИПТОГРАФИИ
2016 Т. 7 № 2 С. 121–130

УДК 519.671

A timing attack on CUDA implementations
of an AES-type block cipher

D. B. Fomin

Technical committee for standardization (TC 26), Moscow

Получено 15.II.2015

Abstract. A timing attack against an AES-type block cipher CUDA implementa-
tion is presented. Our experiments show that it is possible to extract a secret AES
128-bit key with complexity of 232 chosen plaintext encryptions. This approach
may be applied to AES with other key sizes and, moreover, to any block cipher
with a linear transform that is a composition of two types of linear transformations
on a substate.

Keywords: AES, Kuznyechik, Grasshopper, timing attack, cache attack, soft-
ware timing attacks, CUDA, GPU

Атака по времени на CUDA-реализацию блочного шифра типа AES

Д. Б. Фомин

Технический комитет по стандартизации (ТК 26), Москва

Аннотация. Предлагается атака на реализацию блочного шифра типа AES на
процессорах CUDA, основанная на времени выполнения шифрования. Экспе-
рименты показали, что можно найти секретный 128-битовый ключ AES по
шифрованию 232 подобранных блоков открытого текста. Этот подход при-
меним к AES с ключами других размеров и, более того, к любому блочному
шифру, в котором линейное преобразование состоит из линейных преобразо-
ваний двух типов, действующих на части состояния.

Ключевые слова: AES, Кузнечик, атака по времени, атака на кэш, програм-
мные атаки по времени, CUDA, GPU

Citation:Mathematical Aspects of Cryptography, 2016, v. 7, № 2, pp. 121–130 (Russian)
c© Академия криптографии Российской Федерации, 2016 г.



122 D. B. Fomin

1. Introduction
A timing attack is a variant of a side-channel attack when an attacker exploits a

correlation between the running times of the implementation of a cryptographic
algorithm and the values of its input data (plaintext and key) to recover the
secret key. Such attacks have been widely studied recently by researchers (see,
for example, [1–4]).

Till now no successful timing attacks against GPU implementations of ciphers
have been published. But there are a lot of different cache-timing attacks against
CPU implementation. In two publications [8, 9] the timing attacks on CUDA
implementations of AES and Blowfish were considered, but the overall conclusion
of these papers were that this type of attack is impossible. At the same time these
results show that information on the bank conflicts in shared memory of NVIDIA
GPU may leak some information on the data. Here we use the same ideas to realize
our attack.

We describe an attack against an AES-type block cipher CUDA implementation
and also study a theoretical possibility of this type of attacks. This attack is based
on a NVIDIA GPU architecture, that differs from CPU architecture. In Section 2 we
explain CUDA architecture and the core idea of the attack. In Section 5 we discuss
experimental results of the implementation of our attack on AES-128 block cipher.

2. CUDA in brief
CUDA is a software and hardware architecture developed by the NVIDIA

company. It allows to produce non-graphical computing using GPUs. A detailed
information on this architecture is available on [5].

CUDA architecture uses its own model of parallelism called SIMT (single
instructions multiple thread). Virtually all threads work in parallel and have the
same priority of memory access. Threads are grouped into blocks. The global
synchronization between threads in different blocks is generally impossible, and
for one block of threads synchronization is performed through a special memory
called shared memory. All threads in a block are divided into groups of size 32;
these groups are called warps. All threads in a warp at the same time perform the
same instruction.

There are six types of memory in CUDA architecture: global, shared, registers,
constant, texture and local. Shared memory is much faster than local and global
memories. Blocks of the shared memory correspond to thread blocks, so all threads
in the block have access to the same block of shared memory and it is always used
as a user cache.

To achieve high memory bandwidth for concurrent accesses, shared memory
is divided into equally sized memory modules (banks) that may be accessed
simultaneously.

МАТЕМАТИЧЕСКИЕ ВОПРОСЫ КРИПТОГРАФИИ



A timing attack on AES-type block cipher CUDA implementations 123

Shared memory of modern GPU has 32 banks consisting of successive 32 or 64
bits words. Each bank has a bandwidth of a word (32 or 64 bit long) per two clock
cycles. If b > 1 addresses of memory requests fall in the same memory bank, then
it is a bank conflict and the access has to be serialized and takes b times longer.
On the other hand, shared memory features a broadcast mechanism whereby a
word may be read and broadcast to several threads simultaneously when servicing
one memory read request. This reduces the number of bank conflicts when several
threads read from an address within the same 32-bit word. A common conflict-free
case is when all threads of a warp read from an address within the same word [5].

3. Description of AES-type ciphers
We consider an AES-type block cipher such that its internal state is represented

by two-dimensional arrays of words (as in AES, see [6]). Every internal state
consists of N rows and N columns of words. Each round in AES-type block
cipher consists of the following transformations:

• X — round key addition (AddRoundKey 1),

• S — non-linear bijective transform – permutation (SubBytes 1),

• L — linear transformation which is a composition of rows transformation
(ShiftRows 1) followed by columns transformation (MixColumns1).

So, the core feature of a linear transformation is that it may be decomposed
into two special invertible linear transformations. Further we consider AES with
128-bit key, but our technique is also applicable to AES with other key sizes.

Let N be equal to 4 and the internal state be a square matrix of bytes, that is
stored row by row: 



x0,0 x0,1 x0,2 x0,3
x1,0 x1,1 x1,2 x1,3
x2,0 x2,1 x2,2 x2,3
x3,0 x3,1 x3,2 x3,3



 .

Consider the following property of the linear transformation.

Proposition 1. Let bytes x0,0, . . . , x3,3 constitute an internal state of AES block
cipher after the first AddRoundKey transformation and bytes a0,0, . . . , a3,3 con-
stitute an internal state after the first round, i. e. before the second AddRoundKey.
If we fix one value from the column {a0,0, a1,0, a2,0, a3,0} and any three values
from the diagonal {x0,0, x1,1, x2,2, x3,3}, then the remaining variable x i,i is de-
fined uniquely.

1 See AES description [6].

2016, Т. 7, № 2, С. 121–130



124 D. B. Fomin

In terms of Proposition 1 for any fixed value of i we have 224 possible values
for the set x0,0, x1,1, x2,2, x3,3 to ensure the given value for ai,0.

Apparently we can do the same operation with other sets:
we set specific values to: to get given value for one of:

{x0,0, x1,1, x2,2, x3,3} {a0,0, a1,0, a2,0, a3,0}
{x0,1, x1,2, x2,3, x3,0} {a0,1, a1,1, a2,1, a3,1}
{x0,2, x1,3, x2,0, x3,1} {a0,2, a1,2, a2,2, a3,2}
{x0,3, x1,0, x2,1, x3,2} {a0,3, a1,3, a2,3, a3,3}

and can do it in 224 different variants.

4. CUDA implementations of a block cipher
A GPU program generally consists of three main parts:

1) loading data to the internal memory of GPU,

2) evaluation on the GPU,

3) extracting data from the internal memory of GPU.

Modern CUDA architecture makes it possible to exclude the first and the third
points of this list via using unified memory or page-locked host memory on some
devices. But the implementation of an algorithm generally consists of these three
parts.

To achieve maximal throughput of a block cipher implementation T-box lookup
tables are used (merged an S-box and a linear transform) [7, 11–13]. This tables
may be placed in a shared memory, texture memory or constant memory. Gener-
ally, the best place for the lookup tables is a shared memory because a thread has
a high access speed to this type of memory. Sometimes, when lookup tables can’t
be placed in a shared memory (in view of their large sizes) the implementation
with texture memory appears to be the most efficient one [7].

Shared memory access has one important property. When we encrypt random
data we have to read random data from the memory, so throughput of the imple-
mentation with a shared memory might be faster without bank conflicts. If we
can reduce bank conflicts we can increase the throughput of our implementation.
For example, in Table 2 we present the encryption throughput for three types of
encryption:

• the same block encryption multiple times — without bank conflicts,

• random data encryption — a lot of bank conflicts,

• counter encryption — less bank conflicts than random data encryption be-
cause the highest bit of counter is changed very rarely.

МАТЕМАТИЧЕСКИЕ ВОПРОСЫ КРИПТОГРАФИИ



A timing attack on AES-type block cipher CUDA implementations 125

In Table 1 we present hardware and software specifications that we have used
for experiments.

Table 1. Hardware and software specifications

OS OpenSUSE 13.1
CUDA compiler nvcc ver. 6.0
Graphics accelerator NVIDIA GTX 285 NVIDIA GTX Titan
CUDA-cores 240 2688
GPU memory 1 GB 6 GB
Processor clock (MHz) 1 476 876
CPU Intel Core i7-4770K

Table 2. Encryption throughput for different encryption modes (GTX Titan), MB/sec

Algorithm Constant Random data Counter
encryption encryption encryption

AES 128 31113 12878 14195
AES 256 26489 10960 11867

We have detected that the encryption time constitutes a main part of the working
time (without moving data between GPU memory and RAM). It is shown in
Table 2 that the throughput of a counter mode encryption is smaller than that of
a random data encryption in CBC mode; moreover, evaluation time is different
for this two modes of operations. The core idea of our approach is based on this
observation: we can encrypt different selected data and find a secret key as a
function of the data minimizing the encryption time.

5. A timing attack on AES-128 block cipher
In [8, 9] the authors have shown that bank conflicts may leak some information

on the data. Also they suggested a way to avoid it:

“ If the lookup tables are small enough (as in the case of AES) we
can create multiple copies of them in the cache and stripe them across
banks to make sure that there is always one entire copy of the table
available through each bank.” (Cf. [9].)

From our point of view one could face the following problems while imple-
menting this approach. The first one is that threads in a bank may evaluate only
the same instructions at a time. The second one is the growth of evaluation time.
And the third one is that for 32 · 4 tables (without last round) we need 128KB of
shared memory (32 is the number of banks) — more than the latest GPUs have.

2016, Т. 7, № 2, С. 121–130



126 D. B. Fomin

There are many implementations of AES block cipher with different encryption
data, keys, T-box allocation, see [9, 11–13]. The fastest one has parameters that
are presented in Table 3.

Unfortunately we can’t use ideas from [10] because for faster implementation
we have to use a number of threads, but we may use only several 32-bit registers.
CUDA architecture doesn’t allow to use 128-bit registers (only as a built-in vector
of four 32-bit registers).

Table 3. The best AES implementation parameters

T-box allocation Shared memory
Data allocation Registers
Round keys allocation Shared memory
Size of data in thread 128 bit/thread — each thread encrypts a full data block

Timing attacks may be implemented when there exists some sort of correlation
between the running times of the algorithm and the nature of the key and (possibly)
data. Typically this happens when the same operation takes different times for
different inputs. As we have showed earlier, data reading from a shared memory
takes different amounts of time and it takes smaller time when there are no bank
conflicts.

Let K={ki,j , i, j=0, 1, 2, 3} be a secret key. Assume that k0,0=0, k1,1=0,
k2,2 = 0, and k3,3 = 0. In this way (in terms of Proposition 1 in Section 3) we
can choose x0,0, x1,1, x2,2, x3,3 values in 224 variants to fix a0,0=0 (value and
indexes are presented as an example). So we can set encryption data array Pt
as follows. Let array size equals M plaintext blocks. Each byte of the plaintext
block we set up by a random value except the first one. Each first byte we’ll
choose in such a way that a0,0 = 0. Then the first byte in each block after the
second AddRoundKey transformation will be the same and the encryption time
will be reduced because in each warp all threads of a warp read from an address
within the same word (see Section 2). So we can get 32 bits of the key K :
k0,0=0, k1,1=0, k2,2=0, k3,3=0 if the encryption time will be smaller than the
encryption of M random plaintext blocks.

Let α,β, γ, δ ∈ GF
(
28
)
. If we add α,β, γ, δ to each plaintext in Pt as

follows:
add α to (0, 0) byte, add β to (1, 1) byte,
add γ to (2, 2) byte, add δ to (3, 3) byte,

we can specify 32 bits of a key K = {ki,j , i, j =0, . . . , 3} : k0,0=α, k1,1= β,
k2,2=γ, k3,3=δ. So we can find 32 bits of a key if we can encrypt our array Pt
(that is chosen for each encryption) 232 times and find in what step the encryption
time is the minimal. The number of the step with the minimal encryption time
corresponds to the right choice of α,β, γ, δ for 32 bits of the key.

МАТЕМАТИЧЕСКИЕ ВОПРОСЫ КРИПТОГРАФИИ



A timing attack on AES-type block cipher CUDA implementations 127

Apparently, we can find other 12 bytes of the key independently and find all
bytes of the key only for 3 · 232 array encryptions. So we can find all 128 bits
of the key with complexity 4 · 232 array encryptions. Moreover, we can find all
128 bits of the key with only 232 data encryptions, if we can encrypt specially
a0,0=0, a0,1=0, a0,2=0, a0,3=0 for each of four key parts.

In Table 4 we present the size of data array and the encryption time with
broadcast (Pt array in key find case) and without it (random data encryption
time).

Encryption time constitutes the main part of the working time (without mov-
ing data between GPU memory and RAM). According to Table 4 the minimum
possible time to encrypt one array is about 2 ms.

Table 4. Encryption time for different M with broadcast and without it, sec

GPU encryption time by GTX Titan encryption time by GTX 285
M the wrong the right choice of the wrong the right choice

choice of α,β, γ, δ choice of of α,β, γ, δ
α,β, γ, δ α,β, γ, δ

524 288 — — 0.00196643 0.00196088
1 048 576 0.00224006 0.0022334 0.00374532 0.00373562
2 097 152 0.00436898 0.00435408 0.00730337 0.00728249
4 194 304 0.00862449 0.00859434 0.0144648 0.0144242
8 388 608 0.0142342 0.0141866 0.02874 0.0286593
16 777 216 0.0283605 0.0282638 0.0572906 0.057132
33 554 432 0.0566222 0.0564296 — —
67 108 864 0.113143 0.112767 — —
134 217 728 0.226171 0.225415 — —

To realize this attack an attacker should know the evaluation time. We suppose
that he has access to the computer by malware or in some other manner but hasn’t
got a key. Also we suppose that he can encrypt any data with an unknown AES
key. In 2014 some new software bugs (like Shellshock) were found permitting an
attacker to gain unauthorized access to a computer system [14]. It seems not too
difficult to estimate a kernel working time (if the access to a computer is possible)
because, for example, we can evaluate any program from NVIDIA Visual Profiler.
There is no need to have root privileges to run such a program and furthermore
the profiler may be used in a command-line mode.

2016, Т. 7, № 2, С. 121–130



128 D. B. Fomin

0 50 100 150 200 250

0.05715

0.05720

0.05725

0.05730

Fig. 1. Timing attack on GTX 285 (256MB array size)

0 50 100 150 200 250

0.05645

0.05650

0.05655

0.05660

0.05665

Fig. 2. Timing attack on GTX Titan (512MB array size)

We run an experiment to find a secret key in the following way: we have
suppose that 15 bytes of a key are known and tried to find all other bytes of a
key. We encrypted data with Pt array size M =33 554 432 on GTX Titan and
M =16 777 216 on GTX 285. We tried to find (3, 3) byte of the key. Based on
Fig. 1 and 2 the shortest encryption time was detected and so the right key was
found. It is quite easy to implement such an attack.

On February 2015 recovering attacks for all 128 bits of a key were imple-
mented on eight NVIDIA Tesla K10.G2.8GB that were allowed by the NVIDIA
Technology Center. It takes shorter time than 12 days to recover the whole key.

МАТЕМАТИЧЕСКИЕ ВОПРОСЫ КРИПТОГРАФИИ



A timing attack on AES-type block cipher CUDA implementations 129

6. Comparison with other LSX-block ciphers
In this paper we use specific properties of AES block cipher suitable for imple-

mentation: small lookup tables and simple linear transformation. In the case of an
LSX-block cipher with MDS-linear transform like in Kuznyechik (Grasshopper)
[15] we can’t use this attack: to fix any value in the second round after the second
X transform we have to fix all 16 bytes of internal state. In the case of AES we
may fix only 4 bytes. So, to find the first 128-bit round key of Kuznyechik we
have to encrypt 2128 modifications of a specific array, but to find the first 128-bit
round key of an AES block cipher we may encrypt only 232 modifications of a
specific array.

On the other hand, if a linear transform of a LSX block cipher may be repre-
sented as a composition of two or more linear transforms with suitable invariant
subspaces of the state space, the attack might be applicable.

7. Conclusions
It this paper we have shown a possibility of a timing attack on an AES-type

block cipher CUDA implementations. We demonstrate that it is possible to recover
a secret 128-bit key with the complexity of 232 specific data encryptions. We use
specific properties of AES block cipher: small lookup tables and simple linear
transformation. Also we analyse GPU architecture to show a theoretic efficiency
of this type of attacks.

This attack may be applied also to AES with other key sizes and, moreover, to
any AES-type block cipher. Nevertheless this attack is not applicable to LSX-block
ciphers with MDS-linear transform like in Kuznyechik [15].

We would like to thank the reviewers for their helpful remarks.

References
[1] Page D., “Theoretical use of cache memory as a cryptanalytic side-channel”, IACR Cryptology

ePrint Archive, Report 2002/169 (2002), 14 p., https://eprint.iacr.org/2002/169.pdf.
[2] Bernstein D. J., Cache-timing attacks on AES, Tech. Rept., Chicago, IL: Dept. Math.,

Statist. and Comput. Sci., Univ. Illinois, 2005, 37 p., https://cr.yp.to/antiforgery/cachetiming-
20050414.pdf.

[3] Kocher P. C., “Timing attacks on implementations of Diffie-Hellman, RSA, DSS and other
systems”. In: “Advances in Cryptology–CRYPTO’96”, Lect. Notes Comput. Sci., 1109, 1996,
104–113.

[4] Schindler W., “A timing attack against RSA with the Chinese Remainder Theorem”. In: “ Cryp-
tographic Hardware and Embedded Systems–CHES 2000”, Lect. Notes Comput. Sci., 1965,
2000, 109–124.

[5] CUDA Toolkit documentation, Santa Clara, CA: NVIDIA Corporation, http://docs.nvidia.com/
cuda.

2016, Т. 7, № 2, С. 121–130



130 D. B. Fomin

[6] FIPS PUB 197: Advanced Encryption Standard (AES), Gaithersburg, MA: Nat. Inst. Stand.
Technol. (NIST), 2001, 47 pp., http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[7] Fomin D. B., “Implementation of an XSL block cipher with MDS-matrix linear transformation
on NVIDIA CUDA”, Математические вопросы криптографии (Math. Aspects Cryptogr.),
6 :2 (2015), 99–108.

[8] Mukherjee R., Rehman M. S., Kothapalli K., Narayanan P. J., Srinathan, K., Fast, Scalable, and
Secure Encryption on the GPU, Hyderabad: Internat. Inst. Inform. Technology, 2011, 10 pp.,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.624.5065rep=rep1type=pdf.

[9] Mukherjee R., A Performance Prediction Model for the CUDA GPGPU Platform, M.S.Thesis,
Hyderabad: Internat. Inst. Inform. Technology, 2010, 58 pp., http://web2py.iiit.ac.in/research_
centres/publications/view_publication/mastersthesis/48.

[10] Käsper E., Schwabe P.,, “Faster and timing-attack resistant AES-GCM”. In: “Cryptographic
Hardware and Embedded Systems–CHES 2009”, Lect. Notes Comput. Sci., 5747, 2009, 1–17.

[11] Iwai K, Nishikawa N., Kurokawa T., “Acceleration of AES encryption on CUDA GPU”, Int. J.
Network. Comput., 2 :1 (2012), 131–145, http://www.ijnc.org/index.php/ijnc/article/view/38/37.

[12] Kipper M., Slavkin J., Denisenko D., Implementing AES on GPU. Final Report, Toronto : Univ.
Toronto, 2009, 10 pp., http://www.eecg.toronto.edu/∼moshovos/CUDA08/ arx/AES_ON_GPU_
report.pdf.

[13] Manavski S. A., “CUDA compatible GPU as an efficient hardware accelerator for AES
cryptography”. In: “2007 IEEE International Conference on Signal Processing and Commu-
nications–ICSPC 2007”, (CD-edition), Los Alamitos, CA: IEEE Computer Soc., 2007, 65–68.

[14] L. Seltzer, “Shellshock makes Heartbleed look insignificant”, ZDNet (E-edition), September 29
(2014), http://www.zdnet.com/article/shellshock-makes-heartbleed-look-insignificant/.

[15] Dygin D. M., Lavrikov I. V., Marshalko G. B., Rudskoy V. I., Trifonov D. I., Shishkin V. A., “On a
new Russian Encryption Standard”, Математические вопросы криптографии (Math. Aspects
Cryptogr.), 6 :2 (2015), 29–34.

МАТЕМАТИЧЕСКИЕ ВОПРОСЫ КРИПТОГРАФИИ


