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Abstract. New classes of 8-bit permutation based on a butterfly structure are
introduced. These classes set up a new way for generating 2n-bit permutation
from n-bit ones. We introduce some classes that contain permutations with good
cryptographic properties and could be efficiently implemented for hardware and
software applications.

Key words: Boolean function, S-box, butterfly structure, bent function

HoBble Ki1acchl 8-0HTOBBIX MOACTAHOBOK, MOCTPOCHHBIX
C HCMMOJB30BAHUEM KOHCTPYKIIUHA «0a0ouKa»

J.b. ®omun

Texnuueckuii komumem no cmanoapmusayuu « Kpunmozpaguueckas 3awuma
ungopmayuuy, Mockea, Poccus

AnHotanusi. OnucaHbl HOBBIE KJIAacChl 8-OMTOBBIX IOICTaHOBOK, MOCTPOCHHBIX
C MCHOJIB30BaHUEM KOHCTPYKLMHU THHA «0abouka». ITH Kacchl AAIOT HOBBIM CIIO-
co0 mocTpoeHHs 2n-OUTOBBIX IIOACTAHOBOK II0 71-OMTOBBIM. BBemeHBI Kiacchl
MOZICTAHOBOK, KOTOpPbIe O0IagaroT XOPOIIUMH KPHUNTOTpapUIecKUMH CBOMCTBaMHU
1 MOTYT OBITh 3Q(QEKTHBHO pean30BaHbl KaK MIPOrpaMMHO, TaK U alllapaTHO.

KuaroueBble cioBa: OyineBa QyHKIHUS, MTOACTAHOBKA, KOHCTPYKITHS THITA «0abouKay,
OcHT-(DYHKITUS

Citation: Mathematical Aspects of Cryptography, 2019, v. 10, Ne 2, pp. 169-180 (Russian)
(© Axanemus kpunrorpaduu Poccuiickoit ®enepaunn, 2019 .



170 D. B. Fomin

1. Introduction

Permutations are essential part of huge classes of cryptographic functions. These
functions are used to construct symmetric encryption functions such as stream
ciphers, block ciphers and hash functions. According to Shannon’s criteria [1]
every strong cryptographic function should provide confusion and diffusion. One
of the well studied way to hide the relationship between the key and plaintext
(or provide confusion) is using a substitutional-box — S-Box. Today, after decades
of cryptanalysis of modern cryptographic functions there are several known
properties for S-Box to be a part of secure cryptographic function.

There are a lot of reasons to compose S-Boxes from smaller ones: good
software implementation with precomputed tables, better bit-sliced implementation,
implementation for lightweight cryptography with smaller tables or lower gate
count, efficient masking in hardware [2, 3]. Permutations which are composed from
smaller ones are more secure against cache timing attacks than those relying on
general 8-bit S-boxes, which require table lookups in memory [4]. There are known
a lot of ways to construct large S-Box from smaller one: constructions based on
Feistel network [5-7], Misty network [8, 5, 9], SPN network [10—12] or other
constructions [13].

In this work we will study how to compose 8-bit S-box using a butterfly structure
that was suggested in [4] and was obtained while studying decomposition of the
Dillon APN permutation [14].

2. Definitions and Notation

We will use the following notation and definitions. Let Fy» be a finite
field of size 2". Every a € Fon may be considered as a n-bit vector a =
(ag,ai,...,an_1), a; € Fy, i € 0,n—1. For any a,b € Fan the operation
(a,b) is a dot product: 37 a; - b;.

S-Box S is any nonlinear function S : Fy — F5'. In this work we construct
nonlinear bijective S-Boxes. These S-Boxes may be parts of a huge class of
cryptographic functions based on block ciphers like SPN-network, Feistel network
and etc. For every nonlinear function we can evaluate several measures of resistance
against known methods of cryptanalysis. These measures are called properties of
nonlinear function. Some of them are defined as follows.

Definition 1. The Walsh—Hadamard Transform (WHT) of an S-Box S for a € Fon,
b € Fym 1s defined as

Ws(a,b) = Z (_1)<a,$>+(b,8(z))‘

zE€Fon
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This function measures the correlation between the Boolean (b, S(z)) and linear
(a,x) functions.

Definition 2. The nonlinearity Ng of an S-Box S is a measure that is defined as
follows: 1
_ on—1
Ng=2"""— 53,%)3&}(() ’Wg(a, b) ’
S-Box with larger nonlinearity has better resistance against linear cryptanalysis. As
an example, for Fys the permutation with the largest nonlinearity is the finite field

inversion ! with N, -1 = 112.

Definition 3. A nonlinear function S: Fy — F3' is called a bent function if
its nonlinearity is equal to 2"~1 — 2721 Let n = 2m, x,y € Fym. The
Maiorana—McFarland construction [15] is the way to construct 2n-bit bent-function
from n-bit functions and finite field multiplication: every function g: V, X Vj, —
V,, that has the following form is a bent function:

g(z,y) = n(x) - U(y) + f(z),

where 7 : Fom +— Fom is a permutation, [ : Fom — Fom is a linear permutation
and f: Fom +—> Fom is a function.

Definition 4. The algebraic degree deg(.S) of the S-Box S is the minimum among
all maximum numbers of variables of the terms in the algebraic normal form (ANF)
of (a,S(z)) for all possible values x and a # 0:

deg(5) = ae%lii\o deg ((a, 5(x))) -

For any permutation on Fa» the maximum value of the algebraic degree is n — 1.

Definition 5. For a given a € Fam\0,b € Fom we consider
ds(a,b) = #{x € Fy |S(x+a) + S(z) =b}.
The differential uniformity of an S-Box S is

g = 1) b).
o aeIFEI}na\)EO,b} S(a7 )

The S-Box with smaller differential uniformity has the better resistance against
differential cryptanalysis. For Fys, permutation with the smallest known differential
uniformity is the finite field inversion z~! with §,-1 = 4.
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We will say that two permutation S; and Ss are linear equivalent if there exist
two linear permutations L1 and Ls: S; = Lj0Sy0 Ly. We will also say that two
permutations are affine equivalent if there exist two affine permutations A; and
AQI Sl :A1052OA2.

3. Possible constructions
In this paper we study the butterfly structure that has been introduced in [4].

Definition 6. Let n = 2m. We will call function F' : Fon +— Fon with input z; || y;
and output =, ||y, (i, Yi, To, Yo € Fom ) a generalized butterfly structure if there
exist two functions

F1, Fy : Fom X Fom +— Fom

such that:

e 1y, depends on z;, y; according to the equation y, = Fy (24,¥:) ,

e y; depends on z,, Yy, according to the equation y; = F5 (20, Yo) -

When F; = F, function F' is a butterfly structure presented in [4].

Proposition 1. A4 generalized butterfly structure F' is a permutation if and only if
for every fixed value y € Fom functions Fy(x,y) and F»(x,y) are permutations.

Proof. Let F' be a permutation and y € Fom. Without loss of generality we’ll
prove it for function F; which defines the least significant bits of the output. If F}
is not a permutation for a fixed value y, then there exist x; and z2 such that

Fl(ajlay) = Fl('r%y)

and
#{y0|y0 = Fl(way)a T c FZ’"} g 2m - 17

and this is a contradiction with the statement that F' is a permutation.

If F;, ¢ € {1,2}, are permutations, then there exists only one pair z,,y, for
every x; and y;. O

In [4] there was revealed that only one known 6-bit APN permutation is CCZ
equivalent to the so-called non bijective butterfly structure and that in our terms F7,
F5, are bent functions. We want to construct a permutation with good cryptographic
properties that were mentioned in section 2. In contrast with [5] we will focus on
the nonlinearity because we can choose F; and Fb separately and independently.
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In this paper we will consider the case m = 4. The core idea of this paper is as
follows:

e Choose functions Fj, F5 that correspond to Proposition 1.

e These functions may be based on Maiorana—McFarland construction and

[16]:
1) = ) T@) li(y) + filz),  ly) #0,
Fi(z,y) {%i(x% Li(y) = 0. (1)
gy — d 1) (@) + fily),  mily) #0,
Fi(z,y) {7? (2), ri(y) =0, 2)

where 7;, 7; are m-bit permutations, /; is an m-bit linear permutation and
fi 1s an m-bit function.

e Make a generalized butterfly structure F' based on F} and F, and evaluate
its cryptographic properties.

3.1. Construction based on F’ function

Proposition 2. The function F](z,y) from equation (1) is a bijective function for
any fixed value y if and only if f(x) is a constant function.

Proof. 1f 1;(y) is equal to O then F}(x,y) = 7;(x) and is a permutation.

If I;(y) is not equal to 0, then we consider the function ;(x) - l;(y) + fi(x).
This function is a permutation for a fixed value y if there are no x1,z2 € Fom
such that

mi(z1) - Li(y) + fi(z1) = mi(w2) - Li(y) + fi(w2).
Let us consider the following equations:

mi(z1) - Li(y) + filz1) # mi(z2) - Li(y) + fi(z2) &
& (mi(z1) + mi(w2)) li(y) # (filzr) + fi(w2)). (3)
Only a constant function f;(z) could satisfy equation (3) for every pair

x1,x2 € Fam because the set {(m;(z1) + mi(z2)) li(y) |y € Fam } is equal to the
set of all nonzero elements of a finite field Fom. O
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There is another possible construction:
Fi(a,y) T’(l“) li(y) +a-m(z), (i(y) +a)#0,
7i(z), (Li(y) +a) =0,
where a € [Fom. It is obvious that equations (1) and (4) provide affine

equivalent constructions. Moreover they provide constructions affine equivalent to
the following one:

“4)

N (%)
Let us denote

o 7ri($)'ya y # 0,

7

We will use new ®; operation ! to represent the construction on the Fig. 1.We will
call this construction “A”.

\

Yo

Fig. 1. Construction “A”
¢
1"0 yO

Fig. 2. Permutation based on two “A” constructions

The following proposition tells us that at least a part of all WHT of S-Box based
on selected construction will have a good nonlinearity.

Proposition 3. For all o, (3,7 € Fom :

WFi’(z,y)(aHﬁfY)’ < |W7ri(ac)~y(a‘|/8a7)‘ +2m

! The permutation 7(x) in the equation (6) is different from 7;(z) in the equation (5) only
for construction “A” . For this construction 7j(z) = 7; (=~ '(x)) . For other constructions 7;(z) =
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Proof. We have

WFZ_/(%y)(aHﬁ?'y)‘ = | Y (et Ban )| o

ZE,yE]FQm

Z (—1)lem+By)tlymi(@)y)

,YEFym ,y#0
x,y€Fym y# n Z F(7, 7 (@) _
IEFQm
| Y (cplearGarm@n 1 3
z,y€Fom y#0 z€Fym
+ Z (_1)<a,w>+<%%¢(w)> <
IEEFQWL

< [Wri@yel + ' D DN s
e T (Cpylen o)

zE€Fym

If a # 0, then the last summand is equal to }Wﬁi(aﬁ)‘ <2l If a =0,

~v # 0, then
’_ Z (a,z) + Z 'ym(:r

IEEFQm IZGFQm

=2m

because # {z [{(7,7;(z)) =0} =2m"1 If a =0, v =0, then

RPN IR
z€Fom zE€Fom
The function ;(x) - y is a bent one, so ’Wﬂ (2)- y‘ =2om-1 O

Let us make a butterfly permutation based on the following construction (see
Fig. 2):

m(x:) -y, ¥i #0,

o — 7
y {%1(901‘), yi =0, @
Ty = ir\2 (yl : yo)7 Yo ?é Oa (8)

7r2(yi)a Yo = 0.
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To make evaluations easier we suppose that m;, 79 are some monomial
permutations of Fom from the set

2172272,4’2,7’ 28, 21172137 Z14.

We have implemented this construction (presented in Fig. 2) and have used a
simple version of an evolutionary algorithm [17] to execute a search among all
permutations 7, 7o for all possible fixed monomial permutations 7, mo. Let
us list some results that we have obtained.

1. We found 32 constructions that provide the way to construct permutations
with semi-optimal cryptographic properties:
e the nonlinearity is equal to 108,
o the differential uniformity is equal to 6,
e the algebraic degree is equal to 7.

2. In these constructions 71 (z) is any monomial function, m(z) = 2%, «a €
{7,11,13,14}.

3. For other pairs 7i(z) and mo(z) permutations have the differential
uniformity larger than 12.

4. These properties may be obtained with equal permutations 71 (z), Ta(z);
note that semi-optimal cryptographic properties are obtained for all proposed

constructions with 71 (z) = Ta(z) =z~ 1.

5. These properties may be obtained for 71 (z) # Ta2(z).

6. Semi-optimal cryptographic properties may be obtained even for non
monomial permutation 71(z) and mo(z). Let Foom = Fo(z)/ (z* +z + 1).
An example of such a permutation is:

-~ .~ (01 2 34 5 678910111213 1415
e 091015311 134261412 1 7 8 5/’
(0123 456 78 910111213 14 15
o= 08911354127 1514 610 2 311/’

(0 1 2345 67 891011 12 13 14 15
= 014 1142315110812 713 9 6 5/
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3.2. Construction based on " function

Let us consider F}(x,y) function. Three constructions could be implemented
with such function (see Figs. 3—5). These constructions have absolutely the same
output function y, = F}'(x;,v;), but constructions “C” and “D” change y;
correspondingly by permutation 7; and by composition of permutations m; and
ms1. Actually, constructions “C” and “D” are not even possible functions for
generalized butterfly construction because in term of our definition y; is an output
of FY(z,y) and it can’t be changed by F{(z,y).

Fig. 3. Construction “B” Fig. 4. Construction “C” Fig. 5. Construction “D”

At the same time all these constructions are bijective for any fixed value y
and for any function f;. And output functions have the same nonlinearity as
construction “A”.

In this work we will study permutation based on two “B” constructions with
fi = 0 (see Fig. 6). In this construction y, = z; ® mi(y;) and z, =
Y ®2 mo (x; ®1 m1(y;)). If both m(y;) and ma(yp) are not equal to 0, then
Zo =yi -7 (zi-m1(y;)). We suppose that mo(x) is linear equivalent to z® and
m1(x) is linear equivalent to x”, so x, is linear equivalent to z$ - vy A+l

We’ve implemented this construction and have used an evolutionary algorithm
to execute a search among all permutations 7, 7o for all fixed monomial
permutations 7, wo. We found four possible constructions with semi-optimal
cryptographic properties:

1. mi(z) =2, m(z) =3,
2. m(x) =22, m(x) =2,
3. m(z) =2, m(z) =27,

8 11

4. m(z) =z° ma(z)=a"".

Constructions 2 and 4 are inverse permutations for corresponding 1 and 3
constructions.
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4. Comparison with other constructions
i Y,

xO yﬂ

Fig. 6. Permutation based on two “B” constructions Fig. 7. Permutation from [18]

In [18] the following construction was presented (see Fig. 7) (in terms of our
work):

71 (i), yi =0, 7o (), T, = 0.

{(xzyz)la %750, {xo'yi_lv $O7éo7
Lo = Yo =

Permutations with following properties were also found in [18]:

o the nonlinearity is equal to 108,

e the differential uniformity is equal to 6,

e the algebraic degree is equal to 7.

Except these properties two additional one were considered in the work:
e absence of fixed points,
e maximum graph algebraic immunity.

Our construction based on two “A” constructions with 71(z) = ma(z) = 2~}

looks similar with construction presented in [18] (see Fig. 2 and Fig. 7) but
was found independently. There were no theoretical foundation and principles of
choosing this particular construction in [18] and we have no chance to compare
it with one presented in our work. At the same time it was shown in [18] that
the value of graph algebraic immunity of a constructed permutation depends on
permutations 7; and that for 7;(z) = z~! the permutation has almost optimal
cryptographic properties except the value of graph algebraic immunity. We have
found that for some our constructions with 7;(z) = x~! the value of graph
algebraic immunity is equal to 2. But permutation 7;(x) choosed by means of our
search algorithm doesn’t have simple algebraic structure and this permutation has
cryptographic properties like in [18], where it was also stressed that permutations
with such properties have almost optimal cryptographic characteristics. Comparison
with other results could also be found in [18].
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We’ve generalized that construction on Fig. 7 and replace z~! by monomial
functions 71 and 7. We have searched among permutations 71, 7o for all fixed

monomial permutations 7y, me and found the following:
e for the following 12 constructions almost optimal cryptographic properties

are obtained:
(7'['1, 772) € {(1;77 CE), (1137, 1;4)7 (lja 11?7), (51311, 132), (mllv CL‘S)) (‘Tlla xll)v
((E13, l‘), (5613, $4)7 (3313, 1)13), (1314, 1132), (5(314, $8), (I14, 1,14)}’
e for 4 constructions the differential uniformity is up to 8 and the nonlinearity

is up to 104:

(7T17 772) € é(l‘?a 562), (xlla l‘), ($137 m8)7 (l‘14a J}4)§ )

e for 8 constructions the differential uniformity is up to 8 and the nonlinearity
is up to 100:
(m1,m2) € {(z,21), (7, 2'), (&, 27), (21,2, (27, 21), (a1, 1),

(.’1714, 1137), (:13147 $13)}'

5. Future work

In this paper we have presented several new classes of constructions that may
be used to find permutations with rather good cryptographic properties. But at the
same time there remains a lot of questions that should be solved. Among them:

e How many possibilities there exist to choose F; and Fy to construct a per-

mutation with good cryptographic properties?

e How many possibilities there exist to choose 7; and f; in all these construc-

tions?

e Can we choose permutations 7; for our constructions to obtain good crypto-

graphic properties without a search algorithm?

e Can we find a construction that will be an involution?

e Can we use mixed construction for butterfly structure (as example permuta-
tion based on “A” and “B” constructions ) to find a permutation with rather
good cryptographic properties?

e How to find permutations with good hardware, FPGA or bit-sliced imple-
mentations?

6. Conclusion

In this paper some new constructions of permutation Fozm + Fo2m, m = 4,
based on butterfly structure are suggested. There are at least 36 new constructions
for permutations that have the nonlinearity 108, differential uniformity 6, algebraic
degree 7 and the value of graph algebraic immunity 3.
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