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Abstract. New classes of 8-bit permutation based on a butterfly structure are
introduced. These classes set up a new way for generating 2n-bit permutation
from n-bit ones. We introduce some classes that contain permutations with good
cryptographic properties and could be efficiently implemented for hardware and
software applications.

Key words: Boolean function, S-box, butterfly structure, bent function

Новые классы 8-битовых подстановок, построенных
с использованием конструкции «бабочка»

Д. Б. Фомин

Технический комитет по стандартизации «Криптографическая защита
информации», Москва, Россия

Аннотация. Описаны новые классы 8-битовых подстановок, построенных
с использованием конструкции типа «бабочка». Эти классы дают новый спо-
соб построения 2n-битовых подстановок по n-битовым. Введены классы
подстановок, которые обладают хорошими криптографическими свойствами
и могут быть эффективно реализованы как программно, так и аппаратно.

Ключевые слова: булева функция, подстановка, конструкция типа «бабочка»,
бент-функция

Citation:Mathematical Aspects of Cryptography, 2019, v. 10, № 2, pp. 169–180 (Russian)
c© Академия криптографии Российской Федерации, 2019 г.



170 D. B. Fomin

1. Introduction
Permutations are essential part of huge classes of cryptographic functions. These

functions are used to construct symmetric encryption functions such as stream
ciphers, block ciphers and hash functions. According to Shannon’s criteria [1]
every strong cryptographic function should provide confusion and diffusion. One
of the well studied way to hide the relationship between the key and plaintext
(or provide confusion) is using a substitutional-box — S-Box. Today, after decades
of cryptanalysis of modern cryptographic functions there are several known
properties for S-Box to be a part of secure cryptographic function.

There are a lot of reasons to compose S-Boxes from smaller ones: good
software implementation with precomputed tables, better bit-sliced implementation,
implementation for lightweight cryptography with smaller tables or lower gate
count, efficient masking in hardware [2, 3]. Permutations which are composed from
smaller ones are more secure against cache timing attacks than those relying on
general 8-bit S-boxes, which require table lookups in memory [4]. There are known
a lot of ways to construct large S-Box from smaller one: constructions based on
Feistel network [5–7], Misty network [8, 5, 9], SPN network [10–12] or other
constructions [13].

In this work we will study how to compose 8-bit S-box using a butterfly structure
that was suggested in [4] and was obtained while studying decomposition of the
Dillon APN permutation [14].

2. Definitions and Notation
We will use the following notation and definitions. Let F2n be a finite

field of size 2n. Every a ∈ F2n may be considered as a n-bit vector a =
(a0, a1, . . . , an−1), ai ∈ F2, i ∈ 0, n− 1. For any a, b ∈ F2n the operation
〈a, b〉 is a dot product:

∑n−1
i=0 ai · bi.

S-Box S is any nonlinear function S : Fn2 &→ Fm2 . In this work we construct
nonlinear bijective S-Boxes. These S-Boxes may be parts of a huge class of
cryptographic functions based on block ciphers like SPN-network, Feistel network
and etc. For every nonlinear function we can evaluate several measures of resistance
against known methods of cryptanalysis. These measures are called properties of
nonlinear function. Some of them are defined as follows.

Definition 1. The Walsh–Hadamard Transform (WHT) of an S-Box S for a ∈ F2n ,
b ∈ F2m is defined as

WS(a, b) =
∑

x∈F2n
(−1)〈a,x〉+〈b,S(x)〉.
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This function measures the correlation between the Boolean 〈b, S(x)〉 and linear
〈a, x〉 functions.

Definition 2. The nonlinearity NS of an S-Box S is a measure that is defined as
follows:

NS = 2
n−1 − 1

2
max
a,b%=0

∣∣WS(a, b)
∣∣.

S-Box with larger nonlinearity has better resistance against linear cryptanalysis. As
an example, for F28 the permutation with the largest nonlinearity is the finite field
inversion x−1 with Nx−1 = 112.

Definition 3. A nonlinear function S : Fn2 &→ Fm2 is called a bent function if
its nonlinearity is equal to 2n−1 − 2n/2−1. Let n = 2m, x, y ∈ F2m . The
Maiorana–McFarland construction [15] is the way to construct 2n-bit bent-function
from n-bit functions and finite field multiplication: every function g : Vm× Vm &→
Vn that has the following form is a bent function:

g(x, y) = π(x) · l(y) + f(x),

where π : F2m &→ F2m is a permutation, l : F2m &→ F2m is a linear permutation
and f : F2m &→ F2m is a function.

Definition 4. The algebraic degree deg(S) of the S-Box S is the minimum among
all maximum numbers of variables of the terms in the algebraic normal form (ANF)
of 〈a, S(x)〉 for all possible values x and a )= 0 :

deg(S) = min
a∈F2m\0

deg (〈a, S(x)〉) .

For any permutation on F2n the maximum value of the algebraic degree is n− 1.

Definition 5. For a given a ∈ F2m\0, b ∈ F2m we consider

δS(a, b) = # {x ∈ F2n |S(x+ a) + S(x) = b} .

The differential uniformity of an S-Box S is

δS = max
a∈F2m\{0,b}

δS(a, b).

The S-Box with smaller differential uniformity has the better resistance against
differential cryptanalysis. For F28 , permutation with the smallest known differential
uniformity is the finite field inversion x−1 with δx−1 = 4.
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We will say that two permutation S1 and S2 are linear equivalent if there exist
two linear permutations L1 and L2 : S1 = L1 ◦S2 ◦L2. We will also say that two
permutations are affine equivalent if there exist two affine permutations A1 and
A2 : S1 = A1 ◦ S2 ◦A2.

3. Possible constructions
In this paper we study the butterfly structure that has been introduced in [4].

Definition 6. Let n = 2m. We will call function F : F2n &→ F2n with input xi‖yi
and output xo‖yo ( xi, yi, xo, yo ∈ F2m ) a generalized butterfly structure if there
exist two functions

F1, F2 : F2m × F2m &→ F2m

such that:

• yo depends on xi, yi according to the equation yo = F1 (xi, yi) ,

• yi depends on xo, yo according to the equation yi = F2 (xo, yo) .

When F1 = F2 function F is a butterfly structure presented in [4].

Proposition 1. A generalized butterfly structure F is a permutation if and only if
for every fixed value y ∈ F2m functions F1(x, y) and F2(x, y) are permutations.

Proof. Let F be a permutation and y ∈ F2m . Without loss of generality we’ll
prove it for function F1 which defines the least significant bits of the output. If F1
is not a permutation for a fixed value y, then there exist x1 and x2 such that

F1(x1, y) = F1(x2, y)

and
# {yo |yo = F1(x, y), x ∈ F2m } ! 2m − 1,

and this is a contradiction with the statement that F is a permutation.
If Fi, i ∈ {1, 2}, are permutations, then there exists only one pair xo, yo for

every xi and yi. "
In [4] there was revealed that only one known 6-bit APN permutation is CCZ

equivalent to the so-called non bijective butterfly structure and that in our terms F1,
F2 are bent functions. We want to construct a permutation with good cryptographic
properties that were mentioned in section 2. In contrast with [5] we will focus on
the nonlinearity because we can choose F1 and F2 separately and independently.
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In this paper we will consider the case m = 4. The core idea of this paper is as
follows:

• Choose functions F1, F2 that correspond to Proposition 1.

• These functions may be based on Maiorana–McFarland construction and
[16]:

F ′i (x, y) =

{
πi(x) · li(y) + fi(x), li(y) )= 0,
π̂i(x), li(y) = 0,

(1)

F ′′i (x, y) =

{
πi(y) · li(x) + fi(y), πi(y) )= 0,
π̂i(x), πi(y) = 0,

(2)

where πi, π̂i are m-bit permutations, li is an m-bit linear permutation and
fi is an m-bit function.

• Make a generalized butterfly structure F based on F1 and F2 and evaluate
its cryptographic properties.

3.1. Construction based on F ′ function

Proposition 2. The function F ′i (x, y) from equation (1) is a bijective function for
any fixed value y if and only if f(x) is a constant function.

Proof. If li(y) is equal to 0 then F ′i (x, y) = π̂i(x) and is a permutation.
If li(y) is not equal to 0, then we consider the function πi(x) · li(y) + fi(x).

This function is a permutation for a fixed value y if there are no x1, x2 ∈ F2m
such that

πi(x1) · li(y) + fi(x1) = πi(x2) · li(y) + fi(x2).

Let us consider the following equations:

πi(x1) · li(y) + fi(x1) )= πi(x2) · li(y) + fi(x2)⇔
⇔ (πi(x1) + πi(x2)) li(y) )= (fi(x1) + fi(x2)) . (3)

Only a constant function fi(x) could satisfy equation (3) for every pair
x1, x2 ∈ F2m because the set {(πi(x1) + πi(x2)) li(y) |y ∈ F2m } is equal to the
set of all nonzero elements of a finite field F2m . "
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There is another possible construction:

F̂ ′i (x, y) =

{
πi(x) · li(y) + a · π(x), (li(y) + a) )= 0,
π̂i(x), (li(y) + a) = 0,

(4)

where a ∈ F2m . It is obvious that equations (1) and (4) provide affine
equivalent constructions. Moreover they provide constructions affine equivalent to
the following one:

F ′i (x, y) =

{
πi(x) · y, y )= 0,
π̂i(x), y = 0.

(5)

Let us denote

x⊗i y =
{
πi(x) · y, y )= 0,
π̂′i(x), y = 0.

(6)

We will use new ⊗i operation 1 to represent the construction on the Fig. 1.We will
call this construction “A”.

Fig. 1. Construction “A”

Fig. 2. Permutation based on two “A” constructions

The following proposition tells us that at least a part of all WHT of S-Box based
on selected construction will have a good nonlinearity.

Proposition 3. For all α,β, γ ∈ F2m :
∣∣∣WF ′i (x,y)(α‖β, γ)

∣∣∣ !
∣∣Wπi(x)·y(α‖β, γ)

∣∣+ 2m.

1 The permutation π̂′i(x) in the equation (6) is different from π̂i(x) in the equation (5) only
for construction “A” . For this construction π̂′i(x) = π̂i

(
π−1(x)

)
. For other constructions π̂′i(x) =

π̂i(x).
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Proof. We have
∣∣∣WF ′i (x,y)(α‖β, γ)

∣∣∣ =
∣∣∣∣
∑

x,y∈F2m
(−1)〈α,x〉+〈β,y〉+〈γ,F ′i (x,y)〉

∣∣∣∣ =

=

∣∣∣∣
∑

x,y∈F2m ,y %=0
(−1)〈α,x〉+〈β,y〉+〈γ,πi(x)·y〉 +

+
∑

x∈F2m
(−1)〈α,x〉+〈γ,π̂i(x)〉

∣∣∣∣ =

=

∣∣∣∣
∑

x,y∈F2m ,y %=0
(−1)〈α,x〉+〈β,y〉+〈γ,πi(x)·y〉 ±

∑

x∈F2m
(−1)〈α,x〉+

+
∑

x∈F2m
(−1)〈α,x〉+〈γ,π̂i(x)〉

∣∣∣∣ !

!
∣∣Wπi(x)·y

∣∣+
∣∣∣∣−

∑

x∈F2m
(−1)〈α,x〉 +

+
∑

x∈F2m
(−1)〈α,x〉+〈γ,π̂i(x)〉

∣∣∣∣.

If α )= 0, then the last summand is equal to
∣∣Wπ̂i(α,γ)

∣∣ ! 2m−1. If α = 0,
γ )= 0, then ∣∣∣∣−

∑

x∈F2m
(−1)〈α,x〉 +

∑

x∈F2m
(−1)〈γ,π̂i(x)〉

∣∣∣∣ = 2
m,

because # {x |〈γ, π̂i(x)〉 = 0} = 2m−1. If α = 0, γ = 0, then
∣∣∣∣−

∑

x∈F2m
(−1)〈α,x〉 +

∑

x∈F2m
(−1)〈γ,π̂i(x)〉

∣∣∣∣ = 0.

The function πi(x) · y is a bent one, so
∣∣Wπi(x)·y

∣∣ = 2m−1. "
Let us make a butterfly permutation based on the following construction (see

Fig. 2):

yo =

{
π1(xi) · yi, yi )= 0,
π̂1(xi), yi = 0,

(7)

xo =

{
π2(yi · yo), yo )= 0,
π̂2(yi), yo = 0.

(8)
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To make evaluations easier we suppose that π1, π2 are some monomial
permutations of F2m from the set

z1, z2, z4, z7, z8, z11, z13, z14.

We have implemented this construction (presented in Fig. 2) and have used a
simple version of an evolutionary algorithm [17] to execute a search among all
permutations π̂1, π̂2 for all possible fixed monomial permutations π1, π2. Let
us list some results that we have obtained.

1. We found 32 constructions that provide the way to construct permutations
with semi-optimal cryptographic properties:

• the nonlinearity is equal to 108,

• the differential uniformity is equal to 6,

• the algebraic degree is equal to 7.

2. In these constructions π1(x) is any monomial function, π2(x) = xα, α ∈
{7, 11, 13, 14}.

3. For other pairs π1(x) and π2(x) permutations have the differential
uniformity larger than 12.

4. These properties may be obtained with equal permutations π̂1(x), π̂2(x) ;
note that semi-optimal cryptographic properties are obtained for all proposed
constructions with π̂1(x) = π̂2(x) = x−1.

5. These properties may be obtained for π̂1(x) )= π̂2(x).

6. Semi-optimal cryptographic properties may be obtained even for non
monomial permutation π1(x) and π2(x). Let F22m = F2(x)/ (x4+ x+1).
An example of such a permutation is:

π̂1 = π̂2 =

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 9 10 15 3 11 13 4 2 6 14 12 1 7 8 5

)

,

π1 =

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 8 9 1 13 5 4 12 7 15 14 6 10 2 3 11

)

,

π2 =

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 11 4 2 3 15 1 10 8 12 7 13 9 6 5

)

.
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3.2. Construction based on F ′′ function
Let us consider F ′′i (x, y) function. Three constructions could be implemented

with such function (see Figs. 3–5). These constructions have absolutely the same
output function yo = F ′′1 (xi, yi), but constructions “C” and “D” change yi
correspondingly by permutation π1 and by composition of permutations π1 and
πf1. Actually, constructions “C” and “D” are not even possible functions for
generalized butterfly construction because in term of our definition yi is an output
of F ′′2 (x, y) and it can’t be changed by F ′′1 (x, y).

Fig. 3. Construction “B” Fig. 4. Construction “C” Fig. 5. Construction “D”

At the same time all these constructions are bijective for any fixed value y
and for any function fi. And output functions have the same nonlinearity as
construction “A”.

In this work we will study permutation based on two “B” constructions with
fi = 0 (see Fig. 6). In this construction yo = xi ⊗1 π1(yi) and xo =
yi ⊗2 π2 (xi ⊗1 π1(yi)) . If both π1(yi) and π2(y0) are not equal to 0, then
xo = yi · π2 (xi · π1(yi)). We suppose that π2(x) is linear equivalent to xα and
π1(x) is linear equivalent to xβ , so xo is linear equivalent to xαi · y

αβ+1
i .

We’ve implemented this construction and have used an evolutionary algorithm
to execute a search among all permutations π̂1, π̂2 for all fixed monomial
permutations π1, π2. We found four possible constructions with semi-optimal
cryptographic properties:

1. π1(x) = x, π2(x) = x13,

2. π1(x) = x2, π2(x) = x14,

3. π1(x) = x4, π2(x) = x7,

4. π1(x) = x8, π2(x) = x11.

Constructions 2 and 4 are inverse permutations for corresponding 1 and 3
constructions.
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4. Comparison with other constructions

Fig. 6. Permutation based on two “B” constructions Fig. 7. Permutation from [18]

In [18] the following construction was presented (see Fig. 7) (in terms of our
work):

xo =

{
(xi · yi)−1, yi )= 0,
π̂1(xi), yi = 0,

yo =

{
xo · y−1i , xo )= 0,
π̂2(xi), xo = 0.

Permutations with following properties were also found in [18]:
• the nonlinearity is equal to 108,
• the differential uniformity is equal to 6,
• the algebraic degree is equal to 7.

Except these properties two additional one were considered in the work:
• absence of fixed points,
• maximum graph algebraic immunity.

Our construction based on two “A” constructions with π1(x) = π2(x) = x−1

looks similar with construction presented in [18] (see Fig. 2 and Fig. 7) but
was found independently. There were no theoretical foundation and principles of
choosing this particular construction in [18] and we have no chance to compare
it with one presented in our work. At the same time it was shown in [18] that
the value of graph algebraic immunity of a constructed permutation depends on
permutations π̂i and that for π̂i(x) = x−1 the permutation has almost optimal
cryptographic properties except the value of graph algebraic immunity. We have
found that for some our constructions with π̂i(x) = x−1 the value of graph
algebraic immunity is equal to 2. But permutation π̂i(x) choosed by means of our
search algorithm doesn’t have simple algebraic structure and this permutation has
cryptographic properties like in [18], where it was also stressed that permutations
with such properties have almost optimal cryptographic characteristics. Comparison
with other results could also be found in [18].
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We’ve generalized that construction on Fig. 7 and replace x−1 by monomial
functions π1 and π2. We have searched among permutations π̂1, π̂2 for all fixed
monomial permutations π1, π2 and found the following:
• for the following 12 constructions almost optimal cryptographic properties

are obtained:
(π1,π2) ∈

{
(x7, x), (x7, x4), (x7, x7), (x11, x2), (x11, x8), (x11, x11),

(x13, x), (x13, x4), (x13, x13), (x14, x2), (x14, x8), (x14, x14)
}
,

• for 4 constructions the differential uniformity is up to 8 and the nonlinearity
is up to 104:

(π1,π2) ∈
{
(x7, x2), (x11, x), (x13, x8), (x14, x4)

}
,

• for 8 constructions the differential uniformity is up to 8 and the nonlinearity
is up to 100:
(π1,π2) ∈

{
(x7, x11), (x7, x14), (x11, x7), (x11, x13), (x13, x11), (x13, x14),

(x14, x7), (x14, x13)
}
.

5. Future work
In this paper we have presented several new classes of constructions that may

be used to find permutations with rather good cryptographic properties. But at the
same time there remains a lot of questions that should be solved. Among them:
• How many possibilities there exist to choose F1 and F2 to construct a per-

mutation with good cryptographic properties?

• How many possibilities there exist to choose πi and fi in all these construc-
tions?

• Can we choose permutations π̂i for our constructions to obtain good crypto-
graphic properties without a search algorithm?

• Can we find a construction that will be an involution?

• Can we use mixed construction for butterfly structure (as example permuta-
tion based on “A” and “B” constructions ) to find a permutation with rather
good cryptographic properties?

• How to find permutations with good hardware, FPGA or bit-sliced imple-
mentations?

6. Conclusion
In this paper some new constructions of permutation F22m &→ F22m , m = 4,

based on butterfly structure are suggested. There are at least 36 new constructions
for permutations that have the nonlinearity 108, differential uniformity 6, algebraic
degree 7 and the value of graph algebraic immunity 3.
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