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We consider the distributed control problem for the wave equation with memory, where

the kernel is the sum of decreasing exponential functions and the control is bounded in

modulus. We prove that the oscillations of the system can be brought to the state of rest

in a finite time. Bibliography: 14 titles.

1 Introduction

We study the control problem for the system of integrodifferential equations

θtt(t, x)−K(0)Δθ(t, x)−
t∫

0

K ′(t− s)Δθ(s, x)ds = u(t, x), x ∈ Ω, t > 0, (1.1)

θ|t=0 = ϕ0(x), θt|t=0 = ϕ1(x), (1.2)

θ|∂Ω = 0; (1.3)

here,

K(t) =

N∑
j=1

cj
γj

e−γjt, N � 2,

where cj and γj are given positive constants such that 0 < γ1 < γ2 < . . . < γN , u(t, x) is a

∗ To whom the correspondence should be addressed.

Translated from Problemy Matematicheskogo Analiza 115, 2022, pp. 111-125.

1072-3374/22/2623-0358 c© 2022 Springer Science+Business Media, LLC

358

DOI 10.1007/s10958-022-05821-z



control defined in a bounded (with respect to x) domain Ω, and |u(t, x)| � M, where M > 0 is

a given constant. It is required to bring the system to the state of rest in a finite time.

The reasoning below can be modified to the rather simple case N = 1.

We say that a system can be brought to rest if for all initial values ϕ0, ϕ1 it is possible to

find a control u(t, x) and a time T > 0 such that u(t, x) and the corresponding solution θ(t, x, u)

to the problem (1.1)–(1.3) identically vanish for any t > T .

Similar problems for membranes and plates were studied in [1], where it was shown that

vibrations of such mechanical systems can be brought to the state of rest by means of a bounded

(in modulus) and volume-distributed control. For a survey on boundary control of distributed

systems we refer to [3]. A condition under which the solution to the heat equation with memory

cannot be brought to rest in a finite time can be found in [4], where some control problems

for mechanical systems close to (1.1) were considered. This condition requires the existence

of zeros of some analytic function of complex variable in its domain of holomorphy. Problems

similar to (1.1)–(1.3) for integrodifferential equations were studied in many works. For example,

Equation (1.1) was derived in [5]. The solvability of the problem and asymptotic behavior of

a solution to an abstract equation of such a type was investigated, for example, in [6] and [7].

As proved in [8], the energy of some dissipative system decreases polynomially as the kernel

of the integral term of the equation decreases exponentially. The solvability of a problem of

the form (1.1)–(1.3) was studied in [9], where it was proved that the solution belongs to some

Sobolev space on the half-axis (with respect to t) provided that the kernel K(t) is a series of

exponential functions converging to zero as t → +∞. Formulas for the solution to the problem

(1.1)–(1.3) were obtained in [11]. In this case, the kernel K(t) is also represented as a series of

decreasing exponential functions. These formulas mean that the solution converges to zero as

t → +∞. The problem of bringing one-dimensional string vibrations to the state of rest was

studied in [12]. In this case, the kernel is identically equal to 1 and the control is concentrated

on a compact set (part of the string) moving at a constant velocity.

The controllability to rest is closely connected with the problem of bringing a system to zero,

i.e., for all initial data ϕ0 and ϕ1 there exists a control u(t, x) and a time T > 0 such that the

solution θ(t, x, u) and its first order t-derivative vanish at t = T . For systems with memory the

problem of bringing to zero differs from the problem of bringing to rest. In many situations, it

is impossible to bring a system to the state of rest. We discuss this question in detail. Let K(t)

be a linear combination of two or more decreasing exponential functions. Using the methods of

[13], we can show that the problem (1.1)–(1.3) cannot be brought to rest if the control is applied

to a part of the domain Ω. This means that there exists an initial condition such that for any

control u(t, x) (in the corresponding space) the solution to the problem (1.1)–(1.3) cannot be

brought to rest. However, we show below that the problem (1.1)–(1.3) can be brought to rest if

the control is distributed over the whole domain Ω and the boundary of Ω is rigidly fixed.

2 Statement of the Problem

Let A := −Δ be an operator acting on the space D(A) := H2(Ω) ∩H1
0 (Ω), where Ω ⊂ Rs

(s ∈ N) is a bounded connected domain with infinitely smooth boundary. Let {ψn(x)}+∞
n=1

and {α2
n}+∞

n=1 be the corresponding orthonormal system of eigenfunctions and the corresponding

eigenvalues:

−Δψn(x) = α2
nψn(x).
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We denote by W 2
2,γ(R+, A) the linear space of functions f : R+ = (0,+∞) → D(A) equipped

with the norm

‖θ‖W 2
2,γ(R+,A) =

( +∞∫

0

e−2γt(‖θ(2)(t)‖2L2(Ω) + ‖Aθ(t)‖2L2(Ω))dt

) 1
2

, γ � 0.

Definition 2.1. A function θ(t, x) is called a strong solution to the problem (1.1)–(1.3) if for

some γ � 0 it belongs to the space W 2
2,γ(R+, A) and satisfies Equation (1.1) almost everywhere

(with respect to t) on the positive half-axis R+ and the initial conditions (1.2).

We introduce the functions of complex variable λ by

ln(λ) := λ2 + α2
nλK̂(λ),

where

K̂(λ) =
N∑
k=1

ck
γk(λ+ γk)

.

We formulate two assertions in [11] on representation of the solution to the problem (1.1)–

(1.3) in the form of a series.

Theorem 2.1. Let u(t, x) ≡ 0, t ∈ R+. We assume that θ(t, x) ∈ W 2
2,γ(R+, A), γ > 0, is a

strong solution to the problem (1.1)–(1.3). Then for any t ∈ R+

θ(t, x) =
1√
2π

∞∑
n=1

(ϕ1n + λ+
nϕ0n)e

λ+
n tψn(x)

l
(1)
n (λ+

n )
+

1√
2π

∞∑
n=1

(ϕ1n + λ−
nϕ0n)e

λ−
n tψn(x)

l
(1)
n (λ−

n )

+
1√
2π

∞∑
n=1

(
N−1∑
k=0

(ϕ1n − qk,nϕ0n)e
−qk,nt

l
(1)
n (−qk,n)

)
ψn(x), (2.1)

where −qk,n are real zeros of ln(λ) (q0,n = 0, qk,n > 0, k = 1, . . . , N − 1), λ±
n is a pair of

complex conjugate zeros, l
(1)
n is the first order derivative of ln, and the series (2.1) converges in

the L2(Ω)-norm.

Theorem 2.2. We assume that u(t, x) ∈ C([0, T ], L2(Ω)) for any T > 0 and θ(t, x) ∈
W 2

2,γ(R+, A) is a strong solution to the problem (1.1)–(1.3) for some γ > 0, ϕ0 = ϕ1 = 0. Then

for any t ∈ R+

θ(t, x) =
1√
2π

∞∑
n=1

ωn(t, λ
+
n )ψn(x) +

1√
2π

∞∑
n=1

ωn(t, λ
−
n )ψn(x)

+
1√
2π

∞∑
n=1

(
N−1∑
k=0

ωn(t,−qk,n)

)
ψn(x), (2.2)

where

ωn(t, λ) =

t∫
0

un(s)e
λ(t−s)ds

l
(1)
n (λ)

,

un(t) are the Fourier coefficients of u(t, x), and the series (2.2) converges in the L2(Ω)-norm.
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Lemma 2.1. For any natural number n

1

l
(1)
n (λ+

n )
+

1

l
(1)
n (λ−

n )
+

N−1∑
k=0

1

l
(1)
n (−qk,n)

= 0.

Proof. We consider the solution to the problem (1.1)–(1.3) in the case ϕ0 = ϕ1 = 0. By

Theorem 2.2, this solution has the form (2.2) and u(t, x) is a function satisfying the assumptions

of the theorem. Taking the partial t-derivative of θ(t, x), we get

∂θ(t, x)

∂t
=

1√
2π

∞∑
n=1

(
1

l
(1)
n (λ+

n )
+

1

l
(1)
n (λ−

n )
+

N−1∑
k=0

1

l
(1)
n (−qk,n)

)
un(t)ψn(x)

+
1√
2π

∞∑
n=1

λ+
nωn(t, λ

+
n )ψn(x) +

1√
2π

∞∑
n=1

λ−
nωn(t, λ

−
n )ψn(x)

+
1√
2π

∞∑
n=1

(
N−1∑
k=1

(−qk,n)ωn(t,−qk,n)

)
ψn(x). (2.3)

Since θt(t, x)|t=0 = 0, for any natural number n from (2.3) we find
(

1

l
(1)
n (λ+

n )
+

1

l
(1)
n (λ−

n )
+

N−1∑
k=0

1

l
(1)
n (−qk,n)

)
un(0) = 0. (2.4)

We can choose u(t, x) such that all its Fourier coefficients un(t) are nonzero at t = 0. Dividing

(2.4) by un(0), we arrive at the required assertion.

We consider the space lβ of number sequences {cn}+∞
n=1 such that the series

+∞∑
n=1

|cn|2α2β
n

converges. Then we introduce the space

D(A
β
2 ) =

{
f(x) =

+∞∑
n=1

fnψn(x) : {fn}+∞
n=1 ∈ lβ

}
.

3 The Main Results

In this section, we prove the main theorem asserting that the mechanical system under

consideration can be brought to rest in a finite rime. This means that the solution and its first

order time-derivative can be brought to zero and is left at this state after the control stops.

Theorem 3.1. We assume that ϕ0 ∈ D(Aβ+1/2) and ϕ1 ∈ D(Aβ), where β > s/2 and M > 0

is a constant. Then, depending on the value of M , there exists a control u(t, x) ∈ C([0, T ]× Ω)

and a time T > 0 such that the solution to the problem (1.1)–(1.3) satisfies the equality

θ(T, x) = θ′t(T, x) = 0, (3.1)

and the condition

|u(t, x)| � M

for any t ∈ (0, T ], x ∈ Ω. If we extend u(t, x) by zero for t > T , then the problem (1.1)–(1.3) is

left at the zero state for t > T .
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Proof. We assume that u(t, x) is a function satisfying the assumptions of the theorem and

T is a given time. Following Theorems 2.1 and 2.2, we represent the solution to the problem

(1.1)–(1.3) by formulas (2.1) and (2.2). Hence

θ(t, x) =
1√
2π

∞∑
n=1

(ϕ1n + λ+
nϕ0n)e

λ+
n tψn(x)

l
(1)
n (λ+

n )
+

1√
2π

∞∑
n=1

(ϕ1n + λ−
nϕ0n)e

λ−
n tψn(x)

l
(1)
n (λ−

n )

+
1√
2π

∞∑
n=1

N−1∑
k=0

((ϕ1n − qk,nϕ0n)e
−qk,nt

l
(1)
n (−qk,n)

)
ψn(x) +

1√
2π

∞∑
n=1

t∫
0

un(s)e
λ+
n (t−s)ds

l
(1)
n (λ+

n )
ψn(x)

+
1√
2π

∞∑
n=1

t∫
0

un(s)e
λ−
n (t−s)ds

l
(1)
n (λ−

n )
ψn(x) +

1√
2π

∞∑
n=1

N−1∑
k=0

( t∫
0

un(s)e
−qk,n(t−s)ds

l
(1)
n (−qk,n)

)
ψn(x). (3.2)

We formally differentiate the last series with respect to t (the uniform convergence of the series

for θ and θt will be shown in Section 5):

∂θ(t, x)

∂t
=

1√
2π

∞∑
n=1

λ+
n (ϕ1n + λ+

nϕ0n)e
λ+
n tψn(x)

l
(1)
n (λ+

n )
+

1√
2π

∞∑
n=1

λ−
n (ϕ1n + λ−

nϕ0n)e
λ−
n tψn(x)

l
(1)
n (λ−

n )

+
1√
2π

∞∑
n=1

N−1∑
k=1

((−qk,n)(ϕ1n − qk,nϕ0n)e
−qk,nt

l
(1)
n (−qk,n)

)
ψn(x)

+
1√
2π

∞∑
n=1

(
1

l
(1)
n (λ+

n )
+

1

l
(1)
n (λ−

n )
+

N−1∑
k=0

1

l
(1)
n (−qk,n)

)
un(t)ψn(x)

+
1√
2π

∞∑
n=1

λ+
n

t∫
0

un(s)e
λ+
n (t−s)ds

l
(1)
n (λ+

n )
ψn(x) +

1√
2π

∞∑
n=1

λ−
n

t∫
0

un(s)e
λ−
n (t−s)ds

l
(1)
n (λ−

n )
ψn(x)

+
1√
2π

∞∑
n=1

N−1∑
k=1

((−qk,n)
t∫
0

un(s)e
−qk,n(t−s)ds

l
(1)
n (−qk,n)

)
ψn(x). (3.3)

We note that the fourth term in (3.3) vanishes in view of Lemma 2.1. Using (3.1) and (3.2),

(3.3), we get

−
(
(ϕ1n + λ+

nϕ0n)e
λ+
n T

l
(1)
n (λ+

n )
+

(ϕ1n + λ−
nϕ0n)e

λ−
n T

l
(1)
n (λ−

n )
+

N−1∑
k=1

(ϕ1n − qk,nϕ0n)e
−qk,nT

l
(1)
n (−qk,n)

)

=

T∫
0

un(s)e
λ+
n (T−s)ds

l
(1)
n (λ+

n )
+

T∫
0

un(s)e
λ−
n (T−s)ds

l
(1)
n (λ−

n )
+

N−1∑
k=0

T∫
0

un(s)e
−qk,n(T−s)ds

l
(1)
n (−qk,n)

, (3.4)
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− λ+
n (ϕ1n + λ+

nϕ0n)e
λ+
n T

l
(1)
n (λ+

n )
− λ−

n (ϕ1n + λ−
nϕ0n)e

λ−
n T

l
(1)
n (λ−

n )
−

N−1∑
k=1

(−qk,n)(ϕ1n − qk,nϕ0n)e
−qk,nT

l
(1)
n (−qk,n)

=

λ+
n

T∫
0

un(s)e
λ+
n (T−s)ds

l
(1)
n (λ+

n )
+

λ−
n

T∫
0

un(s)e
λ−
n (T−s)ds

l
(1)
n (λ−

n )
+

N−1∑
k=1

(−qk,n)
T∫
0

un(s)e
−qk,n(T−s)ds

l
(1)
n (−qk,n)

, (3.5)

where n = 1, 2, . . . . We set

an = −(ϕ1n + λ+
nϕ0n), an = −(ϕ1n + λ−

nϕ0n), bk,n = −(ϕ1n + (−qk,n)ϕ0n),

where k = 0, 1, 2, . . . , N − 1. We equate the values for the same coefficients

1

l
(1)
n (λ+

n )
,

1

l
(1)
n (λ−

n )
,

1

l
(1)
n (−qk,n)

, k = 0, 1, 2, . . . , N − 1.

on the left- and right-hand sides of (3.4) and (3.5). Then we obtain the new moment problem

T∫

0

un(s)e
λ+
n (T−s)ds = ane

λ+
n T ,

T∫

0

un(s)e
λ−
n (T−s)ds = ane

λ−
n T ,

T∫

0

un(s)e
−qk,n(T−s)ds = bk,ne

−qk,nT ,

(3.6)

where k = 0, 1, 2, . . . , N − 1, n = 1, 2, . . . . If the moment problem (3.6) is solvable, then the

problem of moments (3.4), (3.5) is obviously solvable. Canceling on both sides of (3.6), we

obtain the system

T∫

0

un(s)e
−λ+

n sds = an,

T∫

0

un(s)e
−λ−

n sds = an,

T∫

0

un(s)e
qk,nsds = bk,n, (3.7)

where k = 0, 1, 2, . . . , N − 1, n = 1, 2, . . . . We substitute −λ+
n = λn and −λ−

n = λn into (3.7)

and note that Re λn > 0, and qk,n > 0, k = 1, 2, . . . , N − 1 (cf. [10]). Finally, we obtain the

system of N + 2 moments for every natural number n:

T∫

0

un(s)e
λnsds = an,

T∫

0

un(s)e
λnsds = an,

T∫

0

un(s)e
qk,nsds = bk,n, (3.8)

where k = 0, 1, 2, . . . , N − 1, n = 1, 2, . . . . The solution of the system (3.8) is looked for in the

form

un(s) = C−2,ne
λns + C−1,ne

λns +
N−1∑
j=0

Cj,ne
qj,ns, n = 1, 2, . . . , (3.9)
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where C−2,n, C−1,n, and Ck,n are unknown constants. Substituting (3.9) into (3.8), we obtain

the system of N + 2 algebraic equations for every natural number n:

C−2,n

T∫

0

e2λnsds+ C−1,n

T∫

0

e(λn+λn)sds+
N−1∑
k=0

Ck,n

T∫

0

e(λn+qk,n)sds = an,

C−2,n

T∫

0

e(λn+λn)sds+ C−1,n

T∫

0

e2λnsds+
N−1∑
k=0

Ck,n

T∫

0

e(λn+qk,n)sds = an,

C−2,n

T∫

0

e(λn+qk,n)sds+ C−1,n

T∫

0

e(λn+qk,n)sds+
N−1∑
j=0

Cj,n

T∫

0

e(qj,n+qk,n)sds = bk,n,

(3.10)

where k = 0, 1, 2, . . . , N − 1. We find the determinant Δn of the problem (3.10):
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T∫

0

e2λnsds

T∫

0

e(λn+λn)sds

T∫

0

eλnsds

T∫

0

e(λn+q1,n)sds . . .

T∫

0

e(λn+qN−1,n)sds

T∫

0

e(λn+λn)sds

T∫

0

e2λnsds

T∫

0

eλnsds

T∫

0

e(λn+q1,n)sds . . .

T∫

0

e(λn+qN−1,n)sds

T∫

0

eλnsds

T∫

0

eλnsds T

T∫

0

eq1,nsds . . .

T∫

0

eqN−1,nsds

T∫

0

e(q1,n+λn)sds

T∫

0

e(q1,n+λn)sds

T∫

0

eq1,nsds

T∫

0

e2q1,nsds . . .

T∫

0

e(q1,n+qN−1,n)sds

...
...

...
...

. . .
...

T∫

0

e(qN−1,n+λn)sds

T∫

0

e(qN−1,n+λn)sds

T∫

0

eqN−1,nsds

T∫

0

e(qN−1,n+q1,n)sds . . .

T∫

0

e2qN−1,nsds

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

We note that all determinants Δn differ from zero for any natural number n since Δn is the

Gram determinant. Since

T∫

0

e(qi,n+qj,n)sds =
1

qi,n + qj,n
e(qi,n+qj,n)T − 1

qi,n + qj,n
, (3.11)

from (3.11) and the well-known property of determinants
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

bi1 + ci1 bi2 + ci2 . . . bin + cin
...

...
. . .

...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

bi1 bi2 . . . bin
...

...
. . .

...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

ci1 ci2 . . . cin
...

...
. . .

...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (3.12)
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we find that Δn is equal to the following:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e2λnT

2λn

e(λn+λn)T

λn + λn

eλnT

λn

e(λn+q1,n)T

λn + q1,n
. . .

e(λn+qN−1,n)T

λn + qN−1,n

e(λn+λn)T

λn + λn

e2λnT

2λn

eλnT

λn

e(λn+q1,n)T

λn + q1,n
. . .

e(λn+qN−1,n)T

λn + qN−1,n

eλnT

λn

eλnT

λn

T
eq1,nT

q1,n
. . .

eqN−1,nT

qN−1,n

e(q1,n+λn)T

q1,n + λn

e(q1,n+λn)T

q1,n + λn

eq1,nT

q1,n

e2q1,nT

2q1,n
. . .

e(q1,n+qN−1,n)T

q1,n + qN−1,n

...
...

...
...

. . .
...

e(qN−1,n+λn)T

qN−1,n + λn

e(qN−1,n+λn)T

qN−1,n + λn

eqN−1,nT

qN−1,n

e(qN−1,n+q1,n)T

qN−1,n + q1,n
. . .

e2qN−1,nT

2qN−1,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ βn(T ),

(3.13)

where βn(T ) is the sum of all remaining determinants, which is a result of N+2 times application

of the property (3.12) to each row of the determinant Δn. We extract eλnT from the first row

of the determinant on the right-hand side of (3.13) and from the first column. Then we repeat

this action for the second row and second column with eλnT , and so on. As a result, we get

Δn = e2λnT e2λnT
N−1∏
j=1

e2qj,nTΔn + βn(T ), (3.14)

where

Δn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

2λn

1

λn + λn

1

λn

1

λn + q1,n
. . .

1

λn + qN−1,n

1

λn + λn

1

2λn

1

λn

1

λn + q1,n
. . .

1

λn + qN−1,n

1

λn

1

λn

T
1

q1,n
. . .

1

qN−1,n

1

q1,n + λn

1

q1,n + λn

1

q1,n

1

2q1,n
. . .

1

q1,n + qN−1,n

...
...

...
...

. . .
...

1

qN−1,n + λn

1

qN−1,n + λn

1

qN−1,n

1

qN−1,n + q1,n
. . .

1

2qN−1,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Then

Δn = e2λnT e2λnT
N−1∏
j=1

e2qj,nT

(
Δn + e−2λnT e−2λnT

N−1∏
j=1

e−2qj,nTβn(T )

)
.
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We note that the sequence {|λn|} converges to +∞ as n → +∞, but Re λn = μ + O(n−2)

(μ > 0) and the sequence of real numbers {qk,n}∞n=1 converges to some positive number qk; more

exactly, qk,n = qk +O(n−2) (cf. [10]). By the definition of βn(T ),

∣∣∣∣∣e−2λnT e−2λnT
N−1∏
j=1

e−2qj,nTβn(T )

∣∣∣∣∣ → 0, T → +∞.

We represent Δn in the form

Δn =
1

(2Re λn)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T
1

q1,n
. . .

1

qN−1,n

1

q1,n

1

2q1,n
. . .

1

q1,n + qN−1,n

...
...

. . .
...

1

qN−1,n

1

qN−1,n + q1,n
. . .

1

2qN−1,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ Λn(T ), (3.15)

where Λn(T ) → 0, n → +∞ of T is fixed. We set

Pn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2q1,n

1

q1,n + q2,n
. . .

1

q1,n + qN−1,n

1

q2,n + q1,n

1

2q2,n
. . .

1

q2,n + qN−1,n
...

...
. . .

...

1

qN−1,n + q1,n

1

qN−1,n + q2,n
. . .

1

2qN−1,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where Pn is the Cauchy determinant. As known,

Pn =

∏
N−1�i>j�1

(qi,n − qj,n)
2

N−1∏
i,j=1

(qi,n + qj,n)

.

Since qi,n, i = 1, 2, . . . , N − 1, are pairwise disjoint for any n (cf. [10]), we conclude that Pn are

nonzero. It is obvious that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T
1

q1,n
. . .

1

qN−1,n

1

q1,n

1

2q1,n
. . .

1

q1,n + qN−1,n

...
...

. . .
...

1

qN−1,n

1

qN−1,n + q1,n
. . .

1

2qN−1,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= T (Pn + ξn(T )),
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where ξn(T ) → 0, T → +∞. Consequently,

Δn = e2λnT e2λnT
N−1∏
j=1

e2qj,nT
( 1

(2Re λn)2
T (Pn + ξn(T ))

+ Λn(T ) + e−2λnT e−2λnT
N−1∏
j=1

e−2qj,nTβn(T )

)

=
TPn

(2Re λn)2
e2(λn+λn)T

N−1∏
j=1

e2qj,nT
(
1 +

ξn(T )

Pn
+

(2Re λn)
2

TPn
Λn(T )

+
(2Re λn)

2

TPn
e−2(λn+λn)T

N−1∏
j=1

e−2qj,nTβn(T )
)
.

We set

ξn(T ) =
ξn(T )

Pn
,

Λn(T ) =
(2Re λn)

2

TPn
Λn(T ),

βn(T ) =
(2Re λn)

2

TPn
e−2(λn+λn)T

N−1∏
j=1

e−2qj,nTβn(T ).

Then

Δn =
TPn

(2Re λn)2
e2λnT e2λnT

N−1∏
j=1

e2qj,nT (1 + ξn(T ) + Λn(T ) + βn(T )). (3.16)

We note that Λn(T ) → 0 as n → +∞ (uniformly with respect to T ∈ [T∗,+∞) for any T∗ > 0)

and ξn(T ), βn(T ) → 0 as T → +∞; more exactly, for any ε > 0 there exist T > 0 and n∗ such

that |ξn(T )| < ε and |βn(T )| < ε for any n > n∗. Let Δ−2,n be equal to the following:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an

T∫

0

e(λn+λn)sds

T∫

0

eλnsds

T∫

0

e(λn+q1,n)sds . . .

T∫

0

e(λn+qN−1,n)sds

an

T∫

0

e2λnsds

T∫

0

eλnsds

T∫

0

e(λn+q1,n)sds . . .

T∫

0

e(λn+qN−1,n)sds

b0,n

T∫

0

eλnsds T

T∫

0

eq1,nsds . . .

T∫

0

eqN−1,nsds

b1,n

T∫

0

e(q1,n+λn)sds

T∫

0

eq1,nsds

T∫

0

e2q1,nsds . . .

T∫

0

e(q1,n+qN−1,n)sds

...
...

...
...

. . .
...

bN−1,n

T∫

0

e(qN−1,n+λn)sds

T∫

0

eqN−1,nsds

T∫

0

e(qN−1,n+q1,n)sds . . .

T∫

0

e2qN−1,nsds

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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We assume that there exists Δk,n, where k = −1, 0, 1, 2, . . . , N − 1, such that

Δk,n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T∫

0

e2λnsds . . . an . . .

T∫

0

e(λn+qN−1,n)sds

T∫

0

e(λn+λn)sds . . . an . . .

T∫

0

e(λn+qN−1,n)sds

T∫

0

e(q0,n+λn)sds . . . b0,n . . .

T∫

0

e(q0,n+qN−1,n)sds

...
...

...
. . .

...

T∫

0

e(qN−1,n+λn)sds . . . bN−1,n . . .

T∫

0

e2qN−1,nsds

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where {an, an, b0,n, b1,n, . . . , bN−1,n} is the kth column. Applying the Cramer rule, we get

C−2,n =
Δ−2,n

Δn
, C−1,n =

Δ−1,n

Δn
, Ck,n =

Δk,n

Δn
, k = 0, 1, 2, . . . , N − 1.

Then the solution (3.8) at time t has the form

un(t) =
Δ−2,n

Δn
eλnt +

Δ−1,n

Δn
eλnt +

N−1∑
k=0

Δk,n

Δn
eqk,nt.

Let λn = μn − iνn. As proved in [10], μn, νn > 0 for any natural number n. We write the

estimate for the absolute value of un(t) with any natural number n

|un(t)| � |Δ−2,n|
|Δn| eμnT +

|Δ−1,n|
|Δn| eμnT +

N−1∑
k=0

|Δk,n|
|Δn| e

qk,nT . (3.17)

Calculating the determinants Δ−2,n, Δ−1,n, Δk,n, k = 0, 1, 2, . . . , N − 1, we see that some

terms are the products of different exponential functions. We note that the product with the

largest number of exponential factors in Δ−2,n has the form

eλnT e2λnT e2q1,nT e2q2,nT · · · e2qN−1,nT .

For Δ−1,n we have similar formulas. For Δk,n (k 
= 0) we find

e2λnT e2λnT e2q1,nT e2q2,nT · · · eqk,nT · · · e2qN−1,nT .

In Δ0,n, we have

e2λnT e2λnT e2q1,nT e2q2,nT · · · e2qN−1,nT ,
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which means that un decreases like T−1 as T → +∞. Consequently, it is possible to make

the modulus of un(t) (consequently, the control u(t) itself) sufficiently small by increasing the

control time. Using (3.16) and (3.17), we get

|un(t)| � 4μ2
n

T |Pn|e4μnT
N−1∏
j=1

e2qj,nT (1− |ξn(T )| − |Λn(T )| − |βn(T )|)
eμnT (|Δ−2,n|+ |Δ−1,n|)

+

N−1∑
k=0

4μ2
n|Δk,n|

T |Pn|e4μnT
N−1∏
j=1

e2qj,nT
(
1− |ξn(T )| − |Λn(T )| − |βn(T )|

)eqk,nT , t ∈ [0, T ].

(3.18)

Strictly speaking, the estimate (3.18) is obtained for n larger than some n∗. It is obvious that

the first terms of the series are estimated from above in modulus by the constant c∗/T .
Using (3.17) and (3.18), we prove that there exists a time required for stabilization of the

system such that the control u(t, x) satisfies the conditions

|u(t, x)| � M, (3.19)

where M is an arbitrary constant.

Since the sequences {μn}, {νn}, {qk,n} such that μn = μ + O(n−2), νn = Dαn, qk,n =

qk + O(n−2), where μ, D, qk are positive numbers (cf. [10]), and the sequences {|an|}, {|bk,n|},
{|Λn|} converge to zero, we obtain the estimate

|u(t, x)| � c

T

√√√√ ∞∑
n=1

α2β
n

(
|an|2 + |an|2 +

N−1∑
k=0

|bk,n|2
)√√√√ ∞∑

n=1

α−2β
n ψ2

n(x), (3.20)

where c is a constant and T is sufficiently large. It is known (cf. [14]) that

∞∑
n=1

α−2β
n ψ2

n(x) � const , 2β > s.

Furthermore, the series
∞∑
n=1

α−2β
n ψ2

n(x) is a continuous function (if 2β > s) and

∞∑
n=1

α2β+2
n ϕ2

0n =

∫

Ω

(
A

β+1
2 ϕ0(x)

)2
dx,

∞∑
n=1

α2β
n ϕ2

1n =

∫

Ω

(
A

β
2ϕ1(x)

)2
dx.

The last series converges if A(β+1)/2ϕ0(x) ∈ L2(Ω) and Aβ/2ϕ1(x) ∈ L2(Ω). Then ϕ0(x) ∈
D(A(β+1)/2) and ϕ1(x) ∈ D(Aβ/2). However, these conditions in the formulation of the theorem

are imposed on the initial data since D(Aβ+1/2) ⊂ D(A(β+1)/2) and D(Aβ) ⊂ D(Aβ/2). Then

|u(t, x)| � C1

T
� M, (3.21)

where C1 is a constant and T is sufficiently large.
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4 Proof of Continuity of Control

We prove that u(t, x) ∈ C([0, T ]× Ω). We have

|u(t, x)| �
∞∑
n=1

|un(t)||ψn(x)| � 1

2

( ∞∑
n=1

α2β
n |un(t)|2 +

∞∑
n=1

α−2β
n ψ2

n(x)

)
. (4.1)

We note that the series
∞∑
n=1

α−2β
n ψ2

n(x) converges uniformly by the Dini theorem. Using the

Weierstrass criterion for uniform convergence, we obtain the required assertion.

5 Existence of Solutions and Convergence of Series

Now, we show that θ(t, x) can be understood as a solution to the problem (1.1)–(1.3) for t > 0.

For this purpose we use the results of [10]. Following [10], for the existence and uniqueness of a

solution to the problem (1.1)–(1.3) for t ∈ [0,+∞) the following smoothness conditions should

be satisfied: ϕ0 ∈ D(A), ϕ1 ∈ D(A
1
2 ), and A

1
2u(t, x) ∈ L2(R+, H). In this case, the solution

θ(t, x) belongs to the space W 2
2,γ(R+, A) for any γ > 0.

The initial data satisfy the smoothness conditions by the assumptions of Theorem 3.1. We

need to show that the right-hand side is sufficiently smooth. We have

∫

Ω

|A 1
2u(t, x)|2dx =

∞∑
n=1

α2
n|un(t)|2.

Using estimates similar to (3.20) for u2n(t), we get
∫

Ω

|A 1
2u(t, x)|2dx � C2, t ∈ [0, T ],

because

∞∑
n=1

α4β+2
n |ϕ0n|2 =

∫

Ω

|Aβ+ 1
2ϕ0(x)|2dx,

∞∑
n=1

α4β
n |ϕ1n|2 =

∫

Ω

|Aβϕ1(x)|2dx,

and 4β > 2s � 2. Since u(t, x) is equal to zero for t > T , we have A1/2u(t, x) ∈ L2(R+, H).

Now, we establish the uniform convergence of the series for θt with respect to t ∈ [0, T ] in

the L2(Ω)-norm. For θ the proof is similar and even easier. We have

ln(λ) = λ2 + α2
n

N∑
k=1

ck
γk

− α2
n

N∑
k=1

ck
γk(λ+ γk)

.

Then the first order derivative has the form

l(1)n (λ) = 2λ+ α2
n

N∑
k=1

ck
γk(λ+ γk)2

.
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We consider the series (3.3), t ∈ [0, T ]. Using the Parseval identity, we find

∞∑
n=1

∣∣∣λ+
n (ϕ1n + λ+

nϕ0n)e
λ+
n t

l
(1)
n (λ+

n )

∣∣∣2 � C3

∞∑
n=1

α2
n(|ϕ1n|2 + α2

n|ϕ0n|2)
α2
n

= C3

∞∑
n=1

(|ϕ1n|2 + α2
n|ϕ0n|2).

The last number sequence converges due to the choice of the space of initial data. The same

argument is valid for λ = λ−
n . Further,

∞∑
n=1

∣∣∣∣∣
N−1∑
k=1

(−qk,n)(ϕ1n − qk,nϕ0n)e
−qk,nt

l
(1)
n (−qk,n)

∣∣∣∣∣
2

� C4

∞∑
n=1

(
N−1∑
k=1

∣∣∣(−qk,n)(ϕ1n − qk,nϕ0n)e
−qk,nt

l
(1)
n (−qk,n)

∣∣∣
)2

� C5

∞∑
n=1

(|ϕ1n|2 + |ϕ0n|2).

It is obvious that the last series converges. We have

∞∑
n=1

∣∣∣∣∣
λ+
n

t∫
0

un(s)e
λ+
n (t−s)ds

l
(1)
n (λ+

n )

∣∣∣∣∣
2

� C6

∞∑
n=1

α2
n

t∫
0

|un(s)|2ds
t∫
0

|eλ+
n (t−s)|2ds

α2
n

� C7

∞∑
n=1

T∫

0

|un(s)|2ds.

The last number series converges since u(t, x) ∈ C([0, T ]×Ω) by the above. For λ = λ−
n we can

argue in a similar way. We have

∞∑
n=1

∣∣∣∣∣
N−1∑
k=1

(−qk,n)
t∫
0

un(s)e
−qk,n(t−s)ds

l
(1)
n (−qk,n)

∣∣∣∣∣
2

�
∞∑
n=1

(
N−1∑
k=1

∣∣∣∣∣
(−qk,n)

t∫
0

un(s)e
−qk,n(t−s)ds

l
(1)
n (−qk,n)

∣∣∣∣∣
)2

� C8

∞∑
n=1

1

α4
n

t∫

0

|un(s)|2ds � C8

∞∑
n=1

T∫

0

|un(s)|2ds.

Thus, the uniform convergence of the series for θt with respect to t ∈ [0, T ] in the L2(Ω)-norm

is proved.

6 Bringing to Rest

We show that the control constructed in the proof of the theorem brings the system to rest.

For this purpose we use formula (3.2) and the integral equation (3.7). The function u(t, x) can

be extended by zero for t > T . Then the system (3.7) can be written (for t > T ) in the form

t∫

0

un(s)e
−λ+

n sds = an,

t∫

0

un(s)e
−λ−

n sds = an, n = 1, 2, . . . ,

t∫

0

un(s)e
qk,nsds = bk,n, k = 0, 1, 2, . . . , N − 1, n = 1, 2, . . . . (6.1)
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This means that the values of the Laplace transform of un(t) at zeros of the functions ln(λ) are

equal to given numbers. Further, taking t > T in (3.2) and using (6.1), we see that θ(t, x) ≡ 0

for any t > T .

7 Estimate for Time Required to Bring to Rest

Let the control u(t, x) identically vanish. If the initial data ϕ1 in the problem (1.1)–(1.3)

is equal to zero, then from (2.1) it follows that the solution θ of Equation (1.1) converges

exponentially to zero as t → +∞. In a sense, this fact helps the control process, and one can

show that the upper estimate for the time T∗ spent on control (if ϕ1 = 0) has order ln ε−1

provided that the absolute value of u(t, x) is bounded by a parameter ε close to zero, i.e.,

|u(t, x)| � ε. In the case ϕ1 
= 0, the order of T∗ is ε−1, which can be easily seen from the

estimate (3.21).

We note that, in the case ϕ1 
= 0 and u(t, x) ≡ 0, the solution θ(t, x) does not converge (as

t → +∞) to zero, but to the following function (the limit state of the system):

1√
2π

∞∑
n=1

ϕ1n

l
(1)
n (−q0,n)

ψn(x).
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