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Abstract⎯The problem of distributed controllability for the Gurtin–Pipkin equation with a kernel
represented by some series of decreasing exponential functions is considered, while certain conditions
are imposed on the coefficients and exponents. It is proved that this system cannot be brought to rest
even if the control action is applied to the entire region.
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INTRODUCTION
This study is devoted to the problems of the distributed control of oscillations of a system described by

the Gurtin–Pipkin equation. This equation contains a convolutional (variable in time) term, often
referred to as memory. For the first time this equation appears in the article [1]. The question is raised
about the possibility of bringing such systems to a state of rest. Note that, generally speaking, this concept
for systems with memory is not equivalent to bringing the system to the zero state. As will be made clear
below, controllability at rest is not always possible for such models, even if the control action is applied to
the entire area occupied by the mechanical system. In the course of the proof, we will not observe due rigor
in the part concerning the solvability of the initial boundary value problems, but will pay more attention
to the qualitative side of the controllability issue.

We consider an important class of kernels that has the form of a series of a countably series of decreas-
ing exponential functions. We will also mention the abelian-type kernel (a kernel with a singularity). These
kernels are used in various models of mechanics, in particular, to describe some oscillatory processes.

1. THE PROBLEM OF IRREDUCIBILITY TO A STATE OF REST OF A SYSTEM DESCRIBED 
BY THE GURTIN–PIPKIN EQUATION AND THE KERNEL IN THE FORM 

OF A SERIES OF DECREASING EXPONENTIAL FUNCTIONS 
We consider the initial boundary value problem
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In this case Ω is a limited singly connected area in  with an infinitely smooth border and Δ is the
Laplace operator with domain

and  is the control function. The existence and uniqueness of a solution to problem (1.1)–(1.3) under
the additional conditions imposed on the kernel  and the right-hand side of  were proved in [2].

For equations similar to (1.1) and in a number of particular cases (for example, [3–5]), it is possible to
prove that the oscillations of the system can be completely stopped in a finite time if the control is applied
to the entire domain Ω. In [6], it is proved that a mechanical system described by the Gurtin–Pipkin equa-
tion for two-dimensional domains and a wide class of continuous kernels cannot be brought to rest by the
control being applied only to a subdomain whose closure is contained in Ω. Note that  is an example
of such a kernel.

Now let the kernel have the form

(1.4)

where  is the gamma function. This is the Abel kernel. In [7], for a one-dimensional heat equation
with integral memory and kernel (1.4), it is proved that the given system is uncontrollable at rest if the con-
trol is applied to one end of the segment and the other end is fixed. Note that controllability at rest in this
case is unattainable even if we control the entire region [8].

Hereinafter, for the kernel , we require the following condition to be satisfied:

(1.5)

Equation (1.1) is the Gurtin–Pipkin integrodifferential equation that describes the process of heat
propagation in media with memory and the process of sound propagation in viscoelastic media; it also
arises in averaging problems in perforated media (Darcy’s law). Note that in some models the derivative

 from the kernel has a singularity at t = 0, i.e.,

(1.6)

A detailed description of models for conditions (1.5) and (1.6), as well as physical laws, can be found
in the article [2].

We will consider the system to be manageable at rest, if for all the initial conditions ϕ there is a control
 and point in time  such that  is identically zero for  and the corresponding solution

 of problem (1.1)–(1.3) is also identically zero for . Note that for systems with memory, the
concepts of controllability in the state of rest and controllability in the zero state are not identical. In many
cases, the solution, having reached the zero value at some point in time can then exit from this value.

For equations of form (1.1) and various types of kernels, we can pose, for example, the following con-
trol problems: bring to rest a moving compact or for the entire domain Ω by controlling a fixed subdomain.
It is also possible to pose a problem of boundary control, as is done, for example, in [6, 7]. This article will
show that for the kernel  there is no controllability at rest for system (1.1)–(1.3) even if the control is
performed over the entire domain. Questions remain about the possibility of bring some other types of ker-
nels to a state of rest. For similar equations, it is sometimes possible to achieve controllability at rest if the
control is applied to a compact moving according to a certain law (there is no controllability beyond a
fixed subdomain). For example, the problem of controllability at rest for the one-dimensional equation
of the oscillation of a string with memory was considered in [9]. In this case, the kernel in the integral term
of the equation is identically equal to unity, and the control is concentrated on a subsegment (part of the
string) that moves at a constant speed.

Let us show that in the control problem (1.1)–(1.3) for the kernel  it is (generally speaking) impos-
sible to bring the system to rest. We consider the control
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continued by zero at . Next, we prove that there exists such an initial condition  at which the
motion of the system cannot be stopped. More precisely, there is an initial condition , such that for
each control function , which is identically equal to zero for  for some , and the corre-
sponding solution cannot be identically equal to zero outside the bounded segment (with respect to the
variable t).

Definition. The following number is called the convergence index of a sequence of complex num-
bers {zk},

Theorem. Let us assume that condition (1.5) is also satisfied for the sequence of exponents  of the kernel
 . Then controllability in the state of rest for the system (1.1)–(1.3) does not take place.

Proof. We consider the orthonormal system of eigenfunctions  and eigenvalues  ( ) of
the operator Δ with respect to the boundary condition (1.3). Let

where . Let us decompose the solution  and control action  into Fourier series in the
mentioned system of eigenfunctions (this is the basis in ). The result is a countable system of inte-
grodifferential equations:

(1.7)

Obviously, due to the choice of ϕ, only the first equation in system (1.7) has a nonzero initial condition.
Let us make the Laplace transform of both parts in equality (1.7) for n = 1:

(1.8)

Recall the definition of space  as a linear space of images of the Laplace transforms from elements
from  such that they are zero on the set  for some T > 0. It is known that 
if and only if it is an entire function such that

(1) there are real numbers C and T, such that  (note that C and T depend on );

(2) .

Assume that system (1.1)–(1.3) is controllable in a state of rest, then the functions  and  are
elements of space . Therefore, these are entire functions of the exponential type.

We now consider the roots of the equation

(1.9)

It is proved in [2] that Eq. (1.9) has (among other things) a countable number of real roots , for
which the following inequalities hold:

(1.10)
It follows from (1.10) and the conditions of the theorem that the convergence index τ for a sequence of

roots  is greater than one.
By definition, an entire function  has a finite order of growth if there is a number  such that

(1.11)

At the same time, the order of growth ρ of the entire function  is called the lower bound those
 for which (1.11) is true.

Obviously, for an entire function of the exponential type, the order of growth ρ is 1. It is well known in
complex analysis that the index of convergence of a sequence of zeros of an entire function does not exceed
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its order of growth . It follows from (1.8) that the sequence  is a null function . How-
ever, this is an entire function of the exponential type; hence, its growth order is 1 and the convergence
index of the sequence of its zeros does not exceed 1. It was established above that for  number τ is
greater than one. The established contradiction proves the theorem.

CONCLUSIONS
The instability of controllability for a kernel consisting of a finite number of exponentials. If the kernel in

Eq. (1.1) consists of only a finite number of decreasing exponential functions, then, using the methods of
[3, 4], we can prove that the considered mechanical system can be brought to rest in finite time if the con-
trol is applied to the entire region. Therefore, from the proved theorem, we can obtain an important cor-
ollary about the instability of the controllability of this system. Note that this instability is related to the
addition of a small disturbance to the new kernel; i.e., according to the proved theorem, controllability is
lost if this disturbance is the remainder of the series .

FUNDING
This work was supported by the Russian Science Foundation, project no. 21-11-00151.

CONFLICT OF INTEREST
The authors declare that they have no conflicts of interest.

REFERENCES
1. M. E. Gurtin and A. C. Pipkin, “Theory of heat conduction with finite wave speed,” Arch. Ration. Mech. Anal.,

No. 31, 113–126 (1968).
2. V. V. Vlasov, N. A. Rautian, and A. S. Shamaev, “Spectral analysis and correct solvability of abstract integro-

differential equations arising in thermophysics and acoustics,” Sovrem. Mat. Fundam. Napravl. 39, 36–65
(2011).

3. I. Romanov and A. Shamaev, “Exact controllability of the distributed system, governed by string equation with
memory,” J. Dyn. Control Syst. 18, 611–623 (2013).

4. I. Romanov and A. Shamaev, “Exact controllability of the distributed system governed by the wave equation
with memory,” arXiv: 1503.04461.

5. I. Romanov and A. Romanova, “Some problems of controllability of distributed systems governed by integro-
differential equations,” IFAC-Papers OnLine 51, 132–137 (2018).

6. I. Romanov and A. Shamaev, “Non-controllability to rest of the two-dimensional distributed system governed
by the integrodifferential equation,” J. Optimiz. Theory Appl. 170, 772–782 (2016).

7. S. Ivanov and L. Pandofi, “Heat equations with memory: Lack of controllability to rest,” J. Math. Anal. Appl.
355, 1–11 (2009).

8. A. V. Romanova and I. V. Romanov, “On the problems of controllability and uncontrollability for some me-
chanical systems described by the equations of vibrations of plates and beams with integral memory,” IOP Conf.
Ser.: Mater. Sci. Eng. 1083, 012041-1–9 (2021).

9. U. Biccaria and U. Micu, “Null-controllability properties of the wave equation with a second order memory
term,” J. Differ. Equat. 267, 1376–1422 (2019).

τ ≤ ρ( ) λ{ }k ξ + λ1 1̂( )u

λ{ }k

1( )K t
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 61  No. 2  2022


	INTRODUCTION
	1. THE PROBLEM OF IRREDUCIBILITY TO A STATE OF REST OF A SYSTEM DESCRIBED BY THE GURTIN–PIPKIN EQUATION AND THE KERNEL IN THE FORM OF A SERIES OF DECREASING EXPONENTIAL FUNCTIONS
	CONCLUSIONS
	REFERENCES

		2022-04-11T10:22:30+0300
	Preflight Ticket Signature




