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Abstract
The problem of the exact bounded control of oscillations of the two-dimensional
membrane is considered. Control force is applied to the boundary of the membrane,
which is located in a domain on a plane. The goal of the control is to drive the system
to rest in finite time.

Keywords Controllability to rest · Wave equation · Boundary control · Bounded
control
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1 Introduction

The problem of exact boundary controllability of oscillations of a plane membrane is
considered. Control force has a restriction on its absolute value. We will prove that the
plane membrane can be driven to rest in finite time. Exact mathematical definitions
will be provided. It should be noted that the given method for the proof in this article
can be used in the case of any other dimension, but here the two-dimensional case is
provided for a clear and simple presentation.
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The problem of full stabilization in finite time in case of the distributed control is
described in the article [1]. This reference also contains the upper estimate for optimal
control time.

Previously, the question of the control of oscillations of a planemembrane bymeans
of boundary forces is considered bymany authors (i. g. overviews of Russell [2], Lions
[3] and the monograph [4], as well as the literature provided there). Some results of
these investigations were developed in [5]. The well-known work [6] considers the
equation for the vibration of a string. In this work, it was proved that if the control
is applied to the end of the string, then the system can be driven to rest. The author
used the so-called moment method. A relevant paper is [7] where the L2-norm of the
steering control for large times is studied (but in the simpler case of Dirichlet controls).

In the monograph [4], the problem of exact zero-controllability of a membrane is
considered, the existence of the boundary control is proven and the time estimate is
given which is required for driving to rest. Here authors, while studying the problem
in various formulations, often reject the requirement of optimality of the control and
solve the problem of controllability but the method used in this case, nevertheless,
gives an optimal, in some sense, control. What is more, problems with restrictions of
the force’s absolute value are not considered, explicit forms for control functions are
not found, and only theorems of existence are proven.

The statement of the problem in the article essentially differs from the one in [2,4],
because the value of a control force on the boundary has to satisfy the condition:
|u(t, x)| ≤ ε. Note, here the aim is to find not an optimal control, but the admissible
(satisfying this condition) control.

Moreover the article [8] should be mentioned as it has a result which is similar to
the present one. In [8] a membrane is considered, which has one part of the boundary
fixed and there is a control on the another part. This control function is defined by the
Neumann condition and is bounded. Two parts of the boundary have some important
geometrical restrictions. The aim of the control process is to achieve the system’s state
such as the shift and the velocity are equal to zero.

2 The Statement of the Problem

Let us consider the initial-boundary value problem for the two-dimensional wave
equation:

wt t (t, x) − Δw(t, x) = 0, (t, x) ∈ QT = (0, T ) × Ω, (1)

w|t=0 = ϕ(x), wt |t=0 = ψ(x), x ∈ Ω, (2)
∂w

∂ν
= u(t, x), (t, x) ∈ Σ, (3)

where Ω ⊂ R2 is a bounded, star-shaped relatively some circular disk domain with
an infinitely smooth boundary, ν—the outer normal to the boundary of the domain
Ω , Σ is a lateral surface of a cylinder QT . Initial data ϕ(x) and ψ(x) are given and
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will be chosen in suitable Hilbert spaces, u(t, x) is a control function defined on the
boundary Γ = ∂Ω .

Let ε > 0 be an given arbitrary number. Let us impose the constraint on the control
function:

|u(t, x)| ≤ ε, (4)

The problem is to construct a control u(t, x) satisfying inequality (4) such that the
corresponding solution w(t, x) to the initial-boundary value problem (1)–(3) and its
derivative with respect to t become (C, 0) at some time T , i.e.,

w(T , x) = C, wt (T , x) = 0, (5)

for all x ∈ Ω . In this case, C is some constant. If we obtained a control u(t, x) such
that conditions (5) are achieved, then the system (1)–(3) is called controllable to rest.

Note that the constant C in this case is not arbitrary, but depends on the choice of
the initial data. The nature of this dependence will be indicated below.

The following theorem is the main result of this article.

Theorem 1 Let ϕ(x) ∈ H6(Ω) and ψ(x) ∈ H5(Ω) such that

∂ϕ(x)

∂ν
= Δϕ(x) = ∂Δϕ(x)

∂ν
= Δ2ϕ(x) = ∂Δ2ϕ(x)

∂ν
= 0, x ∈ Γ ,

ψ(x) = ∂ψ(x)

∂ν
= Δψ(x) = ∂Δψ(x)

∂ν
= Δ2ψ(x) = 0, x ∈ Γ . (6)

Then the system (1)–(3) is controllable to rest.

Let us explain the meaning of the smoothness conditions for the initial data and
conditions (6). The proof ofTheorem1consists of two steps. Thefirst step stabilizes the
considered solution and its first derivative with respect to t in a small neighborhood of
equilibrium (C, 0) in the norm ofC4(Ω)×C3(Ω), and the second step allows to drive
to rest the system in this small vicinity. The first stage of the proof (stabilization of the
solution) is connected with the introduction of friction at the boundary of the domain.
This friction creates dissipation of energy, which, in turn, leads to stabilization. This
friction is control. In this case, the constraint (4) will be achieved due to the sufficient
“smallness” of this friction and this “smallness” is caused by variation of a certain
coefficient. Conditions (6) are required in order to the problem statement remained
correct for any selected coefficient of friction.

3 The First Step of the Control

Here, we state the task to stabilize a pair (w(t, x), wt (t, x)) in an arbitrarily small
vicinity of (C, 0) in the norm of the space C4(Ω) = C4(Ω) × C3(Ω) where w(t, x)
is the solution to the system (1)–(3) and wt (t, x) is its first derivative with respect to
t . What is more the control function should satisfy the restriction (4).
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At the first step we state the problem to stabilize (w,wt ) in the small enough
neighborhood of (C, 0) in the norm of H6(Ω) = H6(Ω) × H5(Ω). In this case, we
have the restriction (4) for the control function.

For this purpose, we use [9,10]. In these articles authors consider a friction on Γ

which is defined by wt (t, x). More exactly they consider the initial-boundary value
problem (1)–(2) with a new boundary condition:

∂w(t, x)

∂ν
= −k

∂w(t, x)

∂t
, x ∈ Γ , (7)

where k > 0 is a friction coefficient. Let us illuminate shortly the questions of solv-
ability of this problem.

Let us denote

H = L2(Ω), V = H1(Ω),

Let us define in the space V × H an unbounded operator

A =
(
0 I
Δ 0

)

with the domain

D(A) = {(w1, w2) ∈ H2(Ω) × H1(Ω) : ∂w1

∂ν
= −kw2, x ∈ Γ }.

It is a well-known fact that the norm in the space D(A) can be represent in the
following form:

‖(w1, w2)‖D(A) = ‖(w1, w2)‖V×H + ‖A(w1, w2)‖V×H . (8)

Let us consider the following system of differential equations:

w̄t = Aw̄, (9)

where w̄ = (w1, w2).
It is known (see [9,10]) that an operator A is a generator of strongly continuous

semigroup of linear bounded operators.
It is a well-known fact that if initial data (ϕ, ψ) is an element of D(Ak), k =

0, 1, 2, . . ., then we have:

(w1(t), w2(t)) ∈ C
(
[0, T ]; D(Ak)

)
.

We note that in our case we have (ϕ, ψ) as an element of D(A5).
Let (ϕ, ψ) ∈ V × H . It is proved (see [9,10]) that for the energy of the system, we

have:
E(t) → 0, t → +∞. (10)
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where

E(t) =
∫
Ω

{
w2
1,x1(t, x) + w2

1,x2(t, x) + w2
2(t, x)

}
dx

is an energy of the system.
We introduce:

C = 1

|Γ |
∫
Γ

ϕ(x)dΓ + 1

k|Γ |
∫
Ω

ψ(x)dx, (11)

where |Γ | is a length of Γ . Let w(t, x) = v(t, x) + C and consider a new initial-
boundary value problem for v(t, x) (analogous to1, 2, 7):

v̄t = Av̄, (12)

(v1, v2)|t=0 = (ϕ(x) − C, ψ(x)), x ∈ Ω, (13)

where v̄ = (v1, v2). Obviously in this case v1 = v and v2 = vt .
Using Friedrichs’ (Poincare) inequality (see [11]), we have

∫
Ω

v2(t, x)dx ≤ C3

⎧⎪⎨
⎪⎩
∫
Ω

((
∂v

∂x1

)2

+
(

∂v

∂x2

)2
)
dx +

⎛
⎝∫

Γ

v(t, x)dΓ

⎞
⎠

2
⎫⎪⎬
⎪⎭ .

∫
Γ

v(t, x)dΓ = −1

k

t∫
0

∫
Γ

∂v(s, x)

∂ν
dΓ ds +

∫
Γ

ϕ(x)dΓ − |Γ |C

= −1

k

t∫
0

∫
Ω

Δv(s, x)dxds +
∫
Γ

ϕ(x)dΓ − |Γ |C

= −1

k

t∫
0

∫
Ω

vss(s, x)dxds +
∫
Γ

ϕ(x)dΓ − |Γ |C

= −1

k

∫
Ω

vt (t, x)dx + 1

k

∫
Ω

ψ(x)dx +
∫
Γ

ϕ(x)dΓ − |Γ |C = −1

k

∫
Ω

vt (t, x)dx .

From the last estimations, we obtain

‖w(t, ·) − C‖L2(Ω) → 0, t → +∞. (14)

Let (ϕ − C, ψ) be an element of D(A) and (v1(t), v2(t)) is a corresponding (to
these initial data) solution. We consider now the following Cauchy problem:

d

dt
Av̄(t) = A2v̄(t), Av̄(0) = A(ϕ − C, ψ).

123



930 Journal of Optimization Theory and Applications (2021) 188:925–938

We note that
A(v1(t), v2(t)) = (v2(t),Δv1(t)). (15)

Then from (10) and (15), we obtain
∫
Ω

{
v22,x1(t) + v22,x2(t) + (Δv1(t))

2
}
dx → 0, t → +∞. (16)

Combining (8), (10), (14) and (16), we have:

‖(v1(t), v2(t))‖D(A) → 0, t → +∞. (17)

Let initial condition be an element of D(A) then for the corresponding solution,
we can obtain (using the theory of elliptic boundary value problems (see, for example,
[12] or [13])) the following estimate:

‖v1(t)‖H2(Ω) ≤ N1

(
‖Δv1(t)‖L2(Ω) + k‖v2(t)‖

H
1
2 (Γ1)

+ ‖v1(t)‖L2(Ω)

)
, (18)

where N1 does not depend on (v1, v2). Using (10), (16) and the last estimate one can
easily prove that v1(t) tends to zero when t → +∞ in the norm of H2(Ω).

Consider the space D(A2). Using the theory of elliptic boundary value problems,
we can describe this space effectively:

D(A2) = {(v1, v2) ∈ H3(Ω) × H2(Ω) : ∂v1

∂ν
= −kw2,

∂v2

∂ν
= −kΔv1, x ∈ Γ }.

Let (v1(t), v2(t)) be the solution to (1, 2), (7) then (v1(t), v2(t)) is an element of
C
([0, T ]; D(A2)

)
. We have

A2(v1, v2) = (Δv1,Δv2). (19)

It follows from (19) that
∫
Ω

{
(Δv1,x1(t))

2 + (Δv1,x2(t))
2 + (Δv2(t))

2
}
dx → 0, t → +∞. (20)

Using (17) and (25), we obtain:

‖(v1(t), v2(t))‖D(A2) → 0, t → +∞. (21)

The theory of elliptic boundary value problems gives us the following estimates:

‖v1(t)‖H3(Ω) ≤ N2

(
‖Δv1(t)‖H1(Ω) + k‖v2(t)‖

H
3
2 (Γ1)

+ ‖v1(t)‖L2(Ω)

)
. (22)

‖v2(t)‖H2(Ω) ≤ N3

(
‖Δv2(t)‖L2(Ω) + k‖Δv1(t)‖

H
1
2 (Γ1)

+ ‖v2(t)‖L2(Ω)

)
.(23)
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Using the last estimates one can easily prove that v1(t) tends to zero when t → +∞
in the norm of H3(Ω).

Let us have a look at one more step in detail. Consider the space D(A3). We have:
A3(v1, v2) = (Δv2,Δ

2v1). Hence, we obtain two equations: Δv2 = f1, Δ2v1 = f2,
where ( f1, f2) ∈ H1 × L2, and three boundary conditions at Γ :

a)
∂v1

∂ν
= −kv2, b)

∂v2

∂ν
= −kΔv1, c)

∂Δv1

∂ν
= −kΔv2. (24)

Let us make a substitution Δv1 = h, then the equation Δ2v1 = f2 with the boundary
condition (c) has the form Δh = f2, ∂h

∂ν
= −kΔv2. Hence, the following estimation

takes place

‖h‖H2(Ω) ≤ N4

(
‖Δh‖L2(Ω) + k‖Δv2‖

H
1
2 (Γ )

+ ‖h‖L2(Ω)

)
.

Then, Δv1 ∈ H
3
2 (Γ ) at the boundary of a domain. So from the equation Δv2 = f1

and the boundary condition (b) the following estimation is derived:

‖v2‖H3(Ω) ≤ N5

(
‖Δv2‖H1(Ω) + k‖Δv1‖

H
3
2 (Γ )

+ ‖v2‖L2(Ω)

)
. (25)

Then, we get the equation Δv1 = f3 ∈ H2(Ω) with the boundary condition (a).
Using the previous estimation, we obtain:

‖v1‖H4(Ω) ≤ N6

(
‖Δ2v1‖L2(Ω) + k‖v2‖

H
5
2 (Γ )

+

k‖Δv2‖
H

3
2 (Γ )

+ ‖v1‖L2(Ω)

)
. (26)

Continuing in the analogousway, we can prove that ‖v1(t)‖H6(Ω) and ‖v2(t)‖H5(Ω)

tend to zero when t → +∞. It means that

‖w(t) − C‖H6(Ω), ‖wt (t)‖H5(Ω) → 0 t → +∞.

We solve the problem (1), (2), (7) with the given initial conditions, then this solution
is substituted to the only right part of the equality (7), and we obtain the boundary
condition (3) for the initial-boundary value problem (1)–(3). In other words, we make
the control function of the problem (1)–(3) be equal to

u(1)(t, x) = −k
∂w0(t, x)

∂t
,

where w0 is a solution to the problem (1), (2), (7).
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Therefore, it is proved (here we use Sobolev embedding theorem) that controlling
for a long time, we can make the values

‖w(T1, ·)‖C4(Ω), ‖wt (T1, ·)‖C3(Ω)

arbitrarily close to (C, 0) at some time t = T1.
Now let us show that the boundary control function u(t, x) can be sufficiently small,

i.e., we may satisfy the restriction (4). It is known that

max
t∈[0,+∞)

E(t) = E(0) =
∫
Ω

(
ϕ2
x1(x) + ϕ2

x2(x) + ψ2(x)
)
dx .

Then using S. L. Sobolev theorems of injections and (23), we have:

‖w2(t)‖C(Ω) ≤ C1‖w2(t)‖H2(Ω) ≤ C2‖Δw2(t)‖L2(Ω) +
+kC2‖Δw1(t)‖

H
1
2 (Γ1)

+ C2‖w2(t)‖L2(Ω)

≤ C2‖Δw2(t)‖L2(Ω) + kC3‖Δw1(t)‖H1(Ω) + C2‖w2(t)‖L2(Ω)

≤ C2

√√√√
∫
Ω

{
(Δw1,x1(t))

2 + (Δw1,x2(t))
2 + (Δw2(t))2

}
dx

+ kC3

√√√√
∫
Ω

{
w2
2,x1

(t) + w2
2,x2

(t) + (Δw1(t))2
}
dx

+ kC3

√√√√
∫
Ω

{
(Δw1,x1(t))

2 + (Δw1,x2(t))
2 + (Δw2(t))2

}
dx

+C2

√√√√
∫
Ω

{
w2
1,x1

(t) + w2
1,x2

(t) + w2
2(t)

}
dx

≤ C2

√√√√
∫
Ω

{
(Δϕx1)

2 + (Δϕx2)
2 + (Δψ)2

}
dx

+kC3

√√√√
∫
Ω

{
ψ2
x1 + ψ2

x2 + (Δϕ)2
}
dx

+kC3

√√√√
∫
Ω

{
(Δϕx1)

2 + (Δϕx2)
2 + (Δψ)2

}
dx + C2

√√√√
∫
Ω

{
ϕ2
x1 + ϕ2

x2 + ψ2
}
dx .

Thus, ‖w2(t)‖C(Ω) is uniformly bounded for any t because k is near zero.

By virtue of (6), initial conditions (ϕ, ψ) will be the element of D(A2) for any k.
If the coefficient k is small enough, we achieve condition (4).
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4 The Second Step of the Control

The reasoning in this first step will present D. L. Russell’s method of proving con-
trollability. The main difference is that estimates for solutions are not constructed in
Sobolev spaces, but in spaces of smooth functions. Since at the first stage the solution
was made small enough in the norm of the space of smooth functions, then at the
second stage, as we will see, the solution will remain “small” on the closure of the
domain. Therefore, the control constraint (4) remains satisfied.

Now, we have a task to drive the system to rest. A pair of functions

(w|t=0 = w(T1, x), wt |t=0 = wt (T1, x))

is considered to be new initial data for the problem (1)–(3). Bearing in mind that
according to the fact proven above these initial conditions are sufficiently close to
(C, 0) in the norm of the space C4(Ω). We shift now the solution w (first step of the
control) on the value C , i.e., we change w on w + C and consider the pair

(w|t=0 = w(T1, x), wt |t=0 = wt (T1, x))

that is sufficiently close to (0, 0).
Let us consider the domainΩδ , which is δ-vicinity of the domainΩ . Also let take an

arbitrary pair (w0(x), w1(x)) from the space C4(Ω). Consider an extension operator
E . It is a linear continuous operator from the space C4(Ω) to C4(Ωδ) such that the
support of the extended pair (we

0(x), w
e
1(x)), and its derivatives of fourth and third

orders (respectively) inclusive belongs to Ωδ . Moreover

(we
0(x), w

e
1(x)) = (w0(x), w1(x)), if x ∈ Ω.

Note that, outside Ωδ , the functions can be extended by zero to the whole plane. In a
more general case, E was constructed in [13].

Extended in this way functions are denoted (as above) aswe
0(x) andwe

1(x), accord-
ing to D. L. Russell.

Let us consider the Cauchy problem for the equation of membrane’s oscillations
on a plane R2:

wt t (t, x) − Δw(t, x) = 0, (t, x) ∈ Q = (0,+∞) × R2, (27)

w|t=0 = we
0(x), wt |t=0 = we

1(x), x ∈ R2. (28)

It is known that the solution to the problem (27), (28) has the form (Poisson’s
formula):

w(t, x) = ∂

∂t

⎛
⎜⎝ 1

2π

∫
|y−x |<t

we
0(y)dy√

t2 − |y − x |2

⎞
⎟⎠ + 1

2π

∫
|y−x |<t

we
1(y)dy√

t2 − |y − x |2 . (29)
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We use the formula (29) for estimating the absolute value of the solution w(t, x)
uniformly by the initial data. The absolute value ofw(t, x) is estimated in case x ∈ Ωδ .
We compute the first derivative with respect to t in the right part of (29):

w(t, x) = 1

2π t

∫
|y−x |<t

we
0(y) + (y − x) · ∇we

0(y)√
t2 − |y − x |2 dy

+ 1

2π

∫
|y−x |<t

we
1(y)dy√

t2 − |y − x |2 . (30)

As initial data (we
0(x), w

e
1(x)) have a compact support then there is large enough time

t∗ > 0 such that for any t > t∗ and for any x ∈ Ωδ , we obtain

w(t, x) = 1

2π t

∫
Ωδ

we
0(y) + (y − x) · ∇we

0(y)√
t2 − |y − x |2 dy + 1

2π

∫
Ωδ

we
1(y)dy√

t2 − |y − x |2 . (31)

Note that we choose t such as t2 − |y − x |2 ≥ α > 0 for any x, y ∈ Ωδ .
The following rough evaluation follows from the explicit form of (31):

‖w(t, ·)‖C4(Ωδ)
≤ C1

t
‖we

0‖C4(R2) + C2

t
‖we

1‖C3(R2). (32)

Differentiating w(t, x) with respect to t , we obtain the rough estimate in the space
of the pair of functions C4(Ωδ) = C4(Ωδ) × C3(Ωδ)

‖(w(t, ·), wt (t, ·))‖C4(Ωδ)
≤ M

t
‖(we

0, w
e
1)‖C4(R2), t > t∗, (33)

where a number M does not depend on initial data.
Further, we use themethod described in [2] and applied to problems of the boundary

controllability for a wave equation.
Let us consider some initial conditions w0(x) and w1(x), x ∈ Ω . We extend

them to R2 by means of a linear bounded operator E . Then, we obtain (we
0, w

e
1) =

E(w0, w1). And the Cauchy problem (27), (28) arises. Let ws(t, x) be the solu-
tion to this Cauchy problem. Now consider any large enough time t = T2. We get
(ws(T2, x), ws

t (T2, x)) ∈ C4(Ω). The restriction of the function ws(T2, x) and its
derivative on the domain Ω should be considered. It is obvious that in virtue of (33)
the following estimate is correct for t = T2

‖(ws(T2, ·), ws
t (T2, ·))‖C4(Ω) ≤ M

T2
‖(we

0, w
e
1)‖C4(R2). (34)

Let by definition (w
s,e
0 (T2, x), w

s,e
1 (T2, x)) = E

(
ws(T2, x)|Ω,ws

t (T2, x)|Ω
)
. Now,

let us have a look at the inverse Cauchy problem with initial conditions

w(t, x)|t=T2 = −w
s,e
0 (T2, x) wt (t, x)|t=T2 = −w

s,e
1 (T2, x). (35)
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Let wi (t, x) be the solution to the inverse Cauchy problem with conditions (35). In
virtue of invertibility of Eq. (1) with respect to t the following estimate takes place:

‖(wi (0, ·), wi
t (0, ·))‖C4(Ω) ≤ M

T2
‖(ws,e

0 (T2, x), w
s,e
1 (T2, x))‖C4(R2). (36)

Obviously the solution of the Cauchy problem with initial conditions such as

w|t=0 = we
0(x) + wi (0, x), wt |t=0 = we

1(x) + wi
t (0, x), x ∈ R2, (37)

identically equals zero in Ω as well as its first derivative with respect to t at the time
t = T2. Now let us consider the restriction of the right parts of (37) in the domain Ω .
We regard the initial conditions (the restriction of right parts of (37) in the domain Ω)
in the problem of boundary controllability:

w|t=0 = w0(x) + wi,r (0, x), wt |t=0 = w1(x) + w
i,r
t (0, x), x ∈ Ω. (38)

Note that it is the value of the corresponding solution to the Cauchy problem in R2 with
the initial conditions (37) to determine the required control function on the boundary
of Ω .

A pair (wi,r (0, x), wi,r
t (0, x)) is derived from pair (w0(x), w1(x)) by means of

applying a linear continuous operator, let us denote it as L , with the norm less than
1 (consequence from estimates 34 and 36). Obviously the sums in right parts (38)
generate all elements of the space C4(Ω). Indeed, (38) can be written as:

(I + L)(w0(x), w1(x)) = (w|t=0, wt |t=0), (39)

where I is the identical operator. Hence, as ‖L‖ < 1, so the operator I + L , which
acts from C4(Ω) to itself, is invertible.

Now let us represent the control function (second step) in the following form:

u(2)(t, x) = ∂

∂ν
PK t+

[(
I + (−KT2− )ERKT2+

)
×

E
(
I + R(−KT2− )ERKT2+ E

)−1
(w|t=0, wt |t=0)

]
, x ∈ ∂Ω,

where R is a restriction from R2 to Ω and KT2+ , KT2− are resolving operators of the

Cauchy problem and P is a projection: (a, b) �→ a. We write minus before KT2−
because of (35).

Thus, we have proven that the system with smooth initial conditions can be driven
to rest by means of extending them on the full plane. It is the method to extend which
determines a program of the boundary control. Let us show now that if the initial
conditions have small enough absolute values, we can drive the system to rest by
means of a boundary control which has a small absolute value.
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We regard that in the problem (1)–(3), the value of the solution w(t, x) and the
value of its derivative wt (t, x) at t = T1 are small enough in norms of spaces C4(Ω)

and C3(Ω), respectively.
Let (w|t=0, wt |t=0) be rewritten according to the formula (38). As continuous

operator I + L invertible, so according to Banach’s theorem an invertible operator
is continuous too. Hence, choosing (w|t=0, wt |t=0) sufficiently small, we can make
(w0(x), w1(x)) be sufficiently small as well. Now let consider the sums (38), which
determine data (w|t=0, wt |t=0). Extending these sums on the whole plane by the
method above, we obtain initial data (37).

Bearing inmind that supports of functionswe
0(x) andwe

1(x) are inΩδ , and supports
of their derivatives with respect to all variables (including the third and the second
orders, respectively) are located inΩδ too. The solutionws(t, x) has a compact support
which is located in some bounded domain Gt in R2 at each moment t because of the
finite speed of the wave propagation. Let us take a sufficiently large circle D such as
Gt ⊂ D, t ∈ [0, T2]. In this case function, ws(t, x) is thought as a solution of initial
boundary value problem at the domain D with the homogeneous Dirichlet condition
for t ∈ [0, T2]. In virtue of the corresponding smoothness of initial conditions we
obtain: ws(t, x) ∈ C([0, T2]; H4(D)) and ws

t (t, x) ∈ C([0, T2]; H3(D)). Then, the
energy conservation law takes place:

∫
D

{(
ws
x1(t, x)

)2 + (
ws
x2(t, x)

)2 + (
ws
t (t, x)

)2} dx

=
∫
D

{(
∂we

0(x)

∂x1

)2

+
(

∂we
0(x)

∂x2

)2

+ (
we
1(x)

)2} dx, t ∈ [0, T2]. (40)

Now differentiating Eq. (27) and initial conditions (28) with respect to variables x1,
x2, we obtain the estimate

‖ws(t, ·)‖′
H3(D)

≤ ‖we
0‖H3(Ωδ)

+ ‖we
1‖H2(Ωδ)

,

where ‖ · ‖′
H3(D)

is a seminorm (term

∫
D

(ws(t, x))2dx

is absent). The last statement is true because derivatives (of the second order in this
case) of function ws(t, x) are identically zero at domain D \ Gt , and hence they
are solutions of differentiated initial boundary value problem with the homogeneous
Dirichlet condition at the boundary of the domain D.

Then, the seminorm ‖ · ‖′
H3(D)

is a norm. Therefore, we obtain

‖ws(t, ·)‖H3(D) ≤ CF‖we
0‖H3(Ωδ)

+ CF‖we
1‖H2(Ωδ)

.
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Taking into account the last estimate and the Sobolev embedding theorem, we get

‖ws(t, ·)‖C1(Ω) ≤ CS‖we
0‖H3(Ωδ)

+ CS‖we
1‖H2(Ωδ)

. (41)

Summing up, it is proven that the solutionws(t, x) can bemade sufficiently small in
the normC1(Ω) for any t ∈ [0, T2]. The same argument may be applied to the solution
of the inverse Cauchy problem with initial conditions−w

s,e
0 (T2, x) and−w

s,e
1 (T2, x).

In this case, it is important that functions w
s,e
0 (T2, x) and w

s,e
1 (T2, x) in virtue of

inequality (33) are “small” in C4, ifwe
0(x) andwe

1(x) are “small”. Hence, the restriction
of the normal derivative of the solution to the Cauchy problem (27), (28) on the
boundary of Ω (Neumann condition of the problem of controllability) is less than
given ε with respect to absolute value. The latter means that the required restriction
(4) on the control function u(t, x) is satisfied.

5 Conclusions

According to the explicit form of C (see formula 11) and the formula for u(1)(t, x),
we can conclude that the solution to the problem (1), (2) and (7) at the first stage is
stabilized to this constant that tends to infinity when ε tends to zero. That is, the stricter
the restriction on control, the farther away from zero is the terminal state of the system.
In connection with this fact, a question of transfer of the membrane from rest (with
nonzero shift) to another condition arises. This condition has null shift and velocity.
The point is if it is possible to transfer during limited time and with the help of the
absolute value limited control defined by the Neumann condition and applied to the
boundary. This question still remains.However in case of the one-dimensional problem
(the string equation), it can be solved easy enough. The string in rest with nonzero
shift should be extended to null smoothly on the entire real axis. Then, watching
the fluctuations of the string, after some time, we will see how the segment we are
interested in will come to a state with zero shift and velocity. Obviously, this effect
takes place due to the presence of a back front of fluctuations. The finiteness of control
actions located at the ends of considered segment is provided in virtue of a method to
extend a string profile to zero on the entire real axis. This extension should be “gentle”
enough. Obviously, this technique for amembrane does not give desired result because
there is no back front of fluctuations in the two-dimensional case.

Acknowledgements This paper was partially supported by a grant of the Ministry of Science and Higher
Education of the Russian Federation, Project No. 075-15-2019-1621.

References

1. Chernousko, F.L.: Bounded control in distributed-parameter systems. J. Appl. Math. Mech. 56(5),
707–723 (1992)

2. Russell, D.L.: Controllability and stabilizability theory for linear partial differential equations: recent
progress and open questions. SIAM Rev. 20(4), 639–739 (1978)

3. Lions, J.L.: Exact controllability. Stabilization and perturbations for distributed systems. SIAM Rev.
30(1), 1–68 (1988)

123



938 Journal of Optimization Theory and Applications (2021) 188:925–938

4. Lions, J.L.: Contrôlabilité Exacte, Perturbations et Stabilization de Systèmes Distribués. Tome 1:
Contrôlabilité Exacte, Masson, Paris (1988)

5. Lasiecka, I., Triggiani, R.: Exact controllability of the wave equation with Neumann boundary control.
Appl. Math. Optim. 1, 243–290 (1989)

6. Butkovskiy, A.G.: Distributed control systems. Translated from the Russian by Scripta Technica, Inc.
Translation Editor: George M. Kranc. Modern Analytic and Computational Methods in Science and
Mathematics, No. 11 American Elsevier Publishing Co., Inc., New York (1969)

7. Ivanov, S.: Control norms for large control times. ESAIMControl Optim. Calc. Var. 4, 405–418 (1999)
8. Romanov, I.V., Shamaev, A.S.: On a boundary controllability problem for a system governed by the

two-dimensional wave equation. J. Comput. Syst. Sci. Int. 58(1), 105–112 (2019)
9. Quinn, J.P., Russell, D.L.: Asymptotic stability and energy decay rates for solutions of hyperbolic

equations with boundary damping. Proc. R. Soc. Edinb. Sect. A 77, 97–127 (1977)
10. Lagnese, J.: Decay of solutions of wave equations in a bounded region with boundary dissipation. J.

Differ. Equ. 50, 163–182 (1983)
11. Mikhlin, S.G.: Linear Partial Differential Equations. Higher School, Moscow (1977). in Russian
12. Agranovich, M.S.: Sobolev Spaces, Their Generalizations and Elliptic Problems in Domains with

Smooth and Lipschitz Boundary. MCCME, Moscow (2013). in Russian
13. Lions, J.L., Madgenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. 1.

Springer, New-York (1972)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Exact Bounded Boundary Controllability to Rest for the Two-Dimensional Wave Equation
	Abstract
	1 Introduction
	2 The Statement of the Problem
	3 The First Step of the Control
	4 The Second Step of the Control
	5 Conclusions
	Acknowledgements
	References




