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1. INTRODUCTION

Integrodifferential equations with integral terms in a form
of convolution often arise in various applications such
as mechanics of heterogeneous medium, the theory of
viscoelasticity, thermophysics, gas kinetic theory. In some
cases the kernel of convolution is a sum (finite of infinite)
of damped exponential functions. For example, theory
of heterogeneous medium proves that a model, which
describes two-phase medium (elastic medium and viscous
fluid), is represented by the integrodifferential system with
kernels of convolution in a form of finite and infinite
sum of damped exponents. The laws of heat conducting
with integral memory are studied in different researches
(see, for example, Gurtin, Pipkin (1968)). Sometimes
the integral memory in heat conducting may lead to
appearance of a heat front, which moves with a finite
velocity. This property is important as the propagation
velocity of classical heat equation is infinite.

The questions of solvability and asymptotic behavior of
solutions for equations of this type were investigated for in
Dafermos (1970), Desh, Miller (1987). In Munoz Rivera,
Naso, Vegni (2003), it was proved that the energy for
some dissipative system decays polynomially when the
memory kernel decays exponentially. The problem of null
controllability is considered in Pandolfi (2005).

This article is devoted to the problems of boundary and
distributed controllability. The aim of it is null controlla-
bility and (or) controllability to rest of considered systems.
Note, that in general these terms are different for systems
with memory because if a solution of this system achieves
a null state then, generally speaking, it leaves this state in
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the future. The article also includes some numerical results
illustrating the obstacles which may arise when the system
with memory is controlled.

We do not focus on theorems of solvability of initial
boundary value problems, here we consider the qualitative
aspects of control theory of systems with memory.

2. CONTROLLABILITY TO REST FOR SOME
DISTRIBUTED SYSTEM WITH MEMORY

Let us consider the problem of distributed controllability
in the form:

θt(t, x)−
t∫

0

K(t− s)θxx(s, x)ds = u(t, x), (1)

t > 0, x ∈ (0, π).

θ|t=0 = ξ(x), (2)

θ(t, 0) = θ(t, π) = 0, (3)

where

K(t) =

N∑
j=1

cje
−γjt, cj , γj > 0, j = 1, ..., N, (4)

and u(t, x) is a control function, distributed (with respect
to x) on the interval (0, π).

For brevity we write θ(t) and u(t) instead of θ(t, x)
and u(t, x) respectively. It means that θ(t) and u(t) are
functions of variable t, values of which are elements of
some Banach space.

We consider an operator of the second derivative with the

minus sign: A = − d2

dx2 and its domain

Dom(A) = H2(0, π) ∩H1
0 (0, π).
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of convolution often arise in various applications such
as mechanics of heterogeneous medium, the theory of
viscoelasticity, thermophysics, gas kinetic theory. In some
cases the kernel of convolution is a sum (finite of infinite)
of damped exponential functions. For example, theory
of heterogeneous medium proves that a model, which
describes two-phase medium (elastic medium and viscous
fluid), is represented by the integrodifferential system with
kernels of convolution in a form of finite and infinite
sum of damped exponents. The laws of heat conducting
with integral memory are studied in different researches
(see, for example, Gurtin, Pipkin (1968)). Sometimes
the integral memory in heat conducting may lead to
appearance of a heat front, which moves with a finite
velocity. This property is important as the propagation
velocity of classical heat equation is infinite.

The questions of solvability and asymptotic behavior of
solutions for equations of this type were investigated for in
Dafermos (1970), Desh, Miller (1987). In Munoz Rivera,
Naso, Vegni (2003), it was proved that the energy for
some dissipative system decays polynomially when the
memory kernel decays exponentially. The problem of null
controllability is considered in Pandolfi (2005).

This article is devoted to the problems of boundary and
distributed controllability. The aim of it is null controlla-
bility and (or) controllability to rest of considered systems.
Note, that in general these terms are different for systems
with memory because if a solution of this system achieves
a null state then, generally speaking, it leaves this state in
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the future. The article also includes some numerical results
illustrating the obstacles which may arise when the system
with memory is controlled.

We do not focus on theorems of solvability of initial
boundary value problems, here we consider the qualitative
aspects of control theory of systems with memory.

2. CONTROLLABILITY TO REST FOR SOME
DISTRIBUTED SYSTEM WITH MEMORY

Let us consider the problem of distributed controllability
in the form:

θt(t, x)−
t∫

0

K(t− s)θxx(s, x)ds = u(t, x), (1)

t > 0, x ∈ (0, π).

θ|t=0 = ξ(x), (2)

θ(t, 0) = θ(t, π) = 0, (3)

where

K(t) =

N∑
j=1

cje
−γjt, cj , γj > 0, j = 1, ..., N, (4)

and u(t, x) is a control function, distributed (with respect
to x) on the interval (0, π).

For brevity we write θ(t) and u(t) instead of θ(t, x)
and u(t, x) respectively. It means that θ(t) and u(t) are
functions of variable t, values of which are elements of
some Banach space.

We consider an operator of the second derivative with the

minus sign: A = − d2

dx2 and its domain

Dom(A) = H2(0, π) ∩H1
0 (0, π).
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Let us expand formally the solution θ(t),the control u(t)
and the initial condition ξ into a series of eigenfunctions
of Dirichlet problem for the second derivative operator:

θ(t, x) =

+∞∑
n=1

θn(t)ϕn(x), u(t, x) =

+∞∑
n=1

un(t)ϕn(x),

ξ(x) =
+∞∑
n=1

ξnϕn(x),

where ϕn(x) =
√

2
π sin(nx).

Then the given problem falls into a countable number of
problems:

θ̇n(t) = −n2

t∫

0

K(t− s)θn(s)ds+ un(t), t > 0, (5)

θn(0) = ξn.

We integrate the left and right parts of equation (5) within
limits from null to t. Hence we get the Volterra equation
of second type:

θn(t) = −n2

t∫

0

Q(t− s)θn(s)ds+ ξn + fn(t), t > 0, (6)

where

Q(s) =

s∫

0

K(τ)dτ,

fn(t) =

t∫

0

un(τ)dτ.

According to Ivanov (2013) we define the space Hs as
a domain of operator A

s
2 , where A is mentioned second

derivative operator, which is taken with a sign minus and
has a domain Dom(A). In this case parameter s is a real
number. It is known that space Hs can be effectively
described by the following construction. Let us consider
the space of series ls, defined as:

ls =

{
{an} :

+∞∑
n=1

|an|2n2s < +∞

}
.

Hence the equality takes place:

Hs =

{
w(x) =

+∞∑
n=1

wnϕn(x) : {wn} ∈ ls

}
.

Now, as in Ivanov (2013), we define Hs,ε as a space of
functions

w(t, x) =
+∞∑
n=1

wn(t)ϕn(x),

supplied by the norm

‖w‖2Hs,ε
=

+∞∑
n=1

n2s‖e−2εtwn(t)‖2L2(0,+∞),

where ε > 0 is some number.

The function θ(t, x) =
∑

θn(t)ϕn(x) from Hs,ε is called a
solution of problem (1)—(3) if all functions θn satisfy the
Volterra equation (6).

The article Ivanov (2013) proves that for any right part
u(t) ∈ L2(0,+∞;Hs), the initial condition ξ ∈ Hs and
ε > 0 the unique solution of problem (1)—(3) exists.

Let us define the term of controllability of system (1)—(3)
to rest. We consider some initial perturbation ξ ∈ L2(0, π).

Definition 1. We say that system (1)—(3) is controllable
to rest for this ξ if there are a time instant T > 0 and
function u(t) ∈ C([0, T ];L2(0, π)) such that u(t) ≡ 0 at
t > T , for which the Fourier coefficients θn(t) of considered
solution θ(t) are equal to zero identically at a set t > T .

Let PW+ denote the linear space of the Laplace transforms
of elements of L2(0,+∞) such that they are equal to zero
on the set {t : t > T} for some T > 0. It is a well-known
fact that ϕ(λ) ∈ PW+ if and only if it is an entire function,
such that

1) there are real numbers C and T such that |ϕ(λ)| �
CeT |λ|. Note that C and T depend on ϕ(λ).

2) sup
x�0

+∞∫
−∞

|ϕ(x+ iy)|2dy < +∞.

Let us define space PWT
+ , which consists of the Laplace

transform of all elements f(t) ∈ L2(0, T ), extended by zero
when t > T .

We make the Laplace transform of equation (5):

λθ̂n(λ)− ξn = −n2K̂(λ)θ̂n(λ) + ûn,

where

θ̂n(λ) =

+∞∫

0

e−λtθn(t)dt.

Hence,

θ̂n(λ) =
ξn + ûn(λ)

λ+ n2K̂(λ)
; K̂(λ) =

N∑
j=1

cj
λ+ γj

.

We obtain:

λ+ n2K̂(λ) = λ+ n2
N∑
j=1

cj
λ+ γj

,

and reduce to a common denominator: (λ+γ1)...(λ+γN ).

In formula for θ̂n(λ) this denominator is multiplied by
numerator of fraction

ξn + ûn(λ)

λ+ n2K̂(λ)
,

Obviously, that equation λ+n2K̂(λ) = 0 hasN+1 roots. It
is proved (see Ivanov, Sheronova (2010)), that these roots
are different and have negative real parts. We denote them
as µ1,n, µ2,n, ..., µN+1,n.

Theorem 1. Suppose that for some initial perturbation ξ
and time instant T there is a control function u(t) ∈
C([0, T ];L2(0, π)) such that u(t) ≡ 0 at t > T and satisfies
the following conditions:

ûn(µi,n) = −ξn, i = 1, 2, ..., N + 1, (7)

for all natural n. Then system (1)—(3) is controllable to
rest for this initial condition ξ.

Proof.
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Note, that conditions (7) for each n is the moments
problem:

T∫

0

un(s)e
−µi,nsds = −ξn, i = 1, 2, ..., N + 1.

We set θ̂n(λ) in a form

θ̂n(λ) =
(ξn + ûn(λ))(λ+ γ1)...(λ+ γN )

(λ− µ1,n)(λ− µ2,n) · · · (λ− µN+1,n)
. (8)

The article Romanov, Shamaev (2016) proves, that func-
tions

ûn(λ) + ξk
λ− µi,n

, i = 1, 2, ..., N + 1,

are in PWT
+ for any natural n. There is the following

lemma

Lemma 2. (The analogue of Levinson theorem) Let func-

tion f̂(λ) be in space PWT
+ , moreover f̂(µ) = 0, µ ∈ C.

Then
f̂(λ)

λ− µ

is also in PWT
+ .

We set the notation:

U1(λ) =
ûk(λ) + ξn
λ− µ1,k

.

There is an obvious equality:

(λ+ γ1)
U1(λ)

λ− µ2,k
= U1(λ) +

µ2,k + γ1
λ− µ2,k

U1(λ).

Lemma 2 and the last equality imply that function

U2(λ) = (λ+ γ1)
U1(λ)

λ− µ2,k

is in space PWT
+ , because for example function U1 has got

a null µ2,n. The following equality is right for function U2:

(λ+ γ2)
U2(λ)

λ− µ3,k
= U2(λ) +

µ3,k + γ2
λ− µ3,k

U2(λ).

Analogously we obtain that θ̂n(λ) is also in space PWT
+ .

Remark 1. If for example initial perturbation ξ has only
finite number of nonzero Fourier coefficients, i. e. it can be

represented in a form ξ(x) =
∑N

n=1 ξnϕn, then conditions
of Theorem 1 are satisfied. It is true, because roots µi,n are
different for each n and corresponding moments problem
(7) is solvable. Here we have to solve finite number of
finite dimensional moments problems. In the case if initial
condition has infinite number of nonzero coefficients then
countable number of finite dimensional moments problems
of N + 1 dimension have to be solved. Methods for such
moments systems and similar problems are considered
in Romanov, Shamaev (2013) and Romanov, Shamaev
(2015).

3. PROBLEM OF BOUNDARY
NONCONTROLLABILITY OF A ROD WITH

MEMORY

We consider the following problem of boundary noncon-
trollability:

θt(t, x) +

t∫

0

G(t− s)θxxxx(s, x)ds = 0, (9)

t > 0, x ∈ (0, π).

θ|t=0 = ξ(x), (10)

θ(t, 0) = θ(t, π) = 0, θxx|x=0 = v(t), θxx|x=π = 0. (11)

If we differentiate equation (9) with respect to t, we obtain
the equation of oscillation of a rod with additional integral
term (”memory”).

Consider the control function v(t) ∈ Lloc
2 (0,+∞) and the

initial condition ξ ∈ L2(0, π). Let

W =
{
ϕ ∈ H4(0, π) : ϕ(0) = ϕ(π) =

= ϕxx(0) = ϕxx(π) = 0} .
We formally multiply (in the sense of the inner product
in L2(0, π)) both parts of (9) by the function ϕ ∈ W .
Next, using integrating by parts, we formally replace the

operator d4

dx4 from θ(t) to ϕ. Then, we obtain

d

dt
〈θ(t), ϕ〉+

t∫

0

G(t− s) (〈θ(s), ϕxxxx〉

+ϕxxx(0)v(s)) ds = 0, (12)

where 〈·, ·〉 is the inner product in L2(0, π).

We say that the function θ(t) ∈ H1
loc([0,+∞);L2(0, π))

is the solution to problem (9)–(11) if the equality in (12)
holds for every ϕ ∈ W and θ(0) = ξ. Formally we do not
know if the solution of problem (9)—(11) exists relatively
to the given definition. The proof of results bellow is
constructed on the assumption that the solution exists.
More exactly, we consider only those initial conditions ξ
and control functions v(t) for which there is the solution
of (9)—(11).

We think that the given definition of solution is ”natural”
in some sense. Also we suppose that it is possible to prove
the theorem of existence under additional conditions of
smoothness of kernel G(t), the control v(t) and the initial
condition ξ.

We set in (12) ϕ = ϕn, which is defined above. Then we
obtain:

θ̇n(t) +

t∫

0

G(t− s)

(
n4θn(s)− n3

√
2

π
v(s)

)
ds = 0. (13)

Next, we take the Laplace transformation of both parts of

(13) and express θ̂n(λ) as

θ̂n(λ) =
ξn + n3

√
2
π Ĝ(λ)v̂(λ)

λ+ n4Ĝ(λ)
, (14)

where Ĝ(λ) is the Laplace transform of the kernel G(t).

Now we state the theorem which is analogous to results
in researches Ivanov, Pandolfi (2009) and Romanov,
Shamaev (2016) for similar problems. It considers the case
when the operator of the second derivative is in the integral
term of the main equation. Note that Romanov, Shamaev
(2016) considers two-dimensional Gurtin-Pipkin equation
and a control, which is distributed on a subdomain, the
boundary of a two-dimensional domain being fixed. The
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π Ĝ(λ)v̂(λ)

λ+ n4Ĝ(λ)
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and a control, which is distributed on a subdomain, the
boundary of a two-dimensional domain being fixed. The
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proof of our theorem is constructed with a help of method
used in Ivanov, Pandolfi (2009).

Theorem 3. In problem (9)—(11), if Ĝ(λ) has at least
one root λ0 in the domain of holomorphism (we require
that this domain exists), then controllability to rest is
impossible; that is, there exists an initial condition ξ ∈
L2(0, π), such that for every control

v ∈ Lloc
2 (0,+∞),

which is equal to zero on the set {t : t > T} for some
T > 0, the corresponding solution can not be equal to
zero identically outside any finite segment (in t).

Proof. If λ0 = 0 is a root of the equation Ĝ(λ) = 0,
then the equality (14) generally cannot be satisfied for the

values θ̂n(λ), which correspond to functions from PW+.
Hence, in this case controllability to rest is impossible.

Let λ0 = 0 be not a root of the equation Ĝ(λ) = 0. The
control function v̂(λ) has to satisfy the following equalities:

v̂(λ) =

√
π

2

n

λ
ξn, (15)

when λ �= 0 is a root of the equation λ+ n4Ĝ(λ) = 0.

Note that the equality in (15) can be presented in the
following form:

T∫

0

v(t)e−λtdt =

√
π

2

n

λ
ξn. (16)

The latter equality is the so-called moments problem.

Note that Ĝ(λ) has a root λ0 �= 0 (if G(t) is a series

of decreasing exponentials, then Ĝ(λ) has a countable
number of roots, see Ivanov, Sheronova (2010)). Applying
the methods used in Ivanov, Pandolfi (2009) (in which
Rouche’s theorem was used), we can prove that there exists
a sequence {λn �= 0} of zeros of

λ+ n4Ĝ(λ).

It is important that this sequence converges to a nonzero
complex number. Let us choose ξ2n+1 = 0; hence,
v̂(λ2n+1) = 0. As the sequence of zeros converges and v̂(λ)
is an entire function, then v̂(λ) ≡ 0. Then for any n, all ξ2n
must be zero. However, we can always take some of them to
be nonzero numbers. Thus, there exists an initial condition
ξ such that for any control function v(t), controllability to
rest is impossible.

Remark 2. If kernel G(t) has the form of (4) and N ≥ 2,
then a solution of system (9)—(11) is not controllable to
rest.

4. THE PROBLEM OF NULL CONTROLLABILITY.
NUMERICAL EXPERIMENTS

The results of the section are nonstrict and experimental.
Consider the problem (9)—(11). Here, as in Section 2,
we concern the kernel in the form (4). Let us formally
differentiate equation (9) with respect to t. Then we
obtain:

θtt(t, x) +G(0)θxxxx(s, x)

+

t∫

0

G′(t− s)θxxxx(s, x)ds = 0. (17)

For this equation we have two initial conditions for θ(0)
and for θt(0). Let

θ|t=0 = ξ(x), θt|t=0 = 0. (18)

Then the solution of (17), (18), (11) is the solution of (9)—
(11). Note that we can define the solution of (17), (18),
(11) in analogous way as we have done it in the previous
section. We state a question whether the last system is null
controllable by means of boundary control v(t). It means
that θ|t=T = 0, θt|t=T = 0 at some T > 0.

Let us expand the solution of (17), (18), (11):

θ(t, x) =

+∞∑
n=1

θn(t)ϕn(x).

Then we obtain equations (for n = 1, 2, ...)

θ̈n(t) +G(0)

(
n4θn(t)− n3

√
2

π
v(t)

)
+

t∫

0

G′(t− s)

(
n4θn(s)− n3

√
2

π
v(s)

)
ds = 0 (19)

and initial conditions

θn(0) = ξn, θ̇n(0) = 0. (20)

Using these initial conditions we can see that equations
(13) and (19) are equivalent.

Let us introduce the following notation:

w(t) =

√
2

π

t∫

0

G(t− s)v(s)ds. (21)

Therefore equations (13) have the form:

θ̇n(t)+n4

t∫

0

G(t−s)θn(s)ds = n3w(t), n = 1, 2, ... (22)

Furthermore, there is the initial condition θn(0) = ξn for
each equation (22). The equation (22) should be solved for
each n. For this purpose we make the Laplace transform
of the both parts of (22) and obtain

θ̂n(λ) =
ξn + n3ŵ(λ)

λ+ n4Ĝ(λ)
, (23)

Introduce the formal notation:

Qn(t) =
1

2πi

δ+i∞∫

δ−i∞

eλt

λ+ n4Ĝ(λ)
dλ.

Then, formally using Mellin’s inverse formula, we get the
solution of the Cauchy problem of equation (22) for any
n:

θn(t) = ξnQn(t) + n3

t∫

0

Qn(t− s)w(s)ds. (24)

Let us define number δ in the formula of Qn(t). It is
obvious that the equation

λ+ n4Ĝ(λ) = 0 (25)

has N + 1 roots. Using methods from Ivanov, Sheronova
(2010) we may show that real parts of roots of the equation
for any natural n are negative and there may be only two
complex-conjugate roots of one multiplicity. Note there are
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no complex roots in some cases, but for given kernel G(t)
in the form (4) there is always a number n1 such that the
equation (25) has mentioned complex roots for any n > n1.
Let us consider homogeneous equation (22) (the right part
is equal to null). The explicit form of

1

λ+ n4Ĝ(λ)

and described above structure of roots of the equation (25)
imply that each solution of this homogeneous equation
tends to zero exponentially when t → +∞. Hence we may
set δ equal to zero in the formula of Qn(t).

Then we get:

Qn(t) =
1

2π

+∞∫

−∞

eiαt

iα+ n4G1(α)
dα,

where

G1(α) =

+∞∫

0

G(t)e−iαtdt.

We use formula (24) in order to drive the solution of
problem (17), (18), (11) to the null state at some instant
T > 0. We have:

t∫

0

Qn(t− s)w(s)ds =

√
2

π
Qn ∗ (G ∗ v) =

√
2

π
(Qn ∗G) ∗ v =

√
2

π

t∫

0

Rn(t− s)v(s)ds,

where

Rn(τ) =

τ∫

0

Qn(τ − p)G(p)dp.

Therefore we obtain:
T∫

0

Rn(T − s)v(s)ds = − 1

n3

√
π

2
ξnQn(T ), n = 1, 2, ...,

(26)
T∫

0

R′
n(T − s)v(s)ds = − 1

n3

√
π

2
ξnQ

′
n(T ), n = 1, 2, ... .

(27)
The system of integral equations (26), (27) is infinite-
dimensional moments problem. We do not know whether
this problem has a solution. Next we try to construct
a function v(s), which is a solution of only N1 first
equations of systems (26) and (27) under the assumption
that perturbation of such control is ”small enough”.

Consider the first N1 equations of systems (26) and (27).
v(s) is seek in the form:

v(s) =

N1∑
n=1

DnRn(T − s) +

N1∑
n=1

LnR
′
n(T − s), (28)

where Dn and Ln — unknown constants. We substitute
(28) to (26), (27). In order to find Dn, Ln we use the first
N1 equations of systems (26), (27). As a result we get a
system of linear algebraic equations: AC = b. Here A is a
matrix:

A =

(
A1 A2

A3 A4

)
,

where Ai, i=1,2,3,4, are matrixes such that

A1 =




T∫

0

Rk(T − s)Rj(T − s)ds




k,j=1,2,...,N1

,

A2 =





T∫

0

Rk(T − s)R′
j(T − s)ds





k,j=1,2,...,N1

,

A3 =




T∫

0

R′
k(T − s)Rj(T − s)ds




k,j=1,2,...,N1

,

A4 =





T∫

0

R′
k(T − s)R′

j(T − s)ds





k,j=1,2,...,N1

and

C =

(
D
L

)
, b =

(
b1
b2

)
,

where
D = {Dn} , L = {Ln} ,

b1 =

{
− 1

n3

√
π

2
ξnQn(T )

}
,

b2 =

{
− 1

n3

√
π

2
ξnQ

′
n(T )

}

are column vectors with indecies n = 1, 2, ..., N1. If
determinant of matrix A is nonzero, then C is uniquely
determined.

Now let us observe the numerical experiments. For sim-
plicity we use kernel G(t) as a sum of two exponential
finctions:

G(t) = e−t + e−2t.

For numerical experiments we replace the expansion of
solution θ(t, x) into series by the finite sum:

N∗∑
n=1

θn(t)ϕn(x).

As the initial condition we use a function ξ(x) = 10ϕ1(x).
Fig. 1 illustrates the solution of the problem without
control and Fig. 2 shows the solution with the control
function.

The numerical experiments show that constructed type
of control, which reduces oscillations of the rod without
memory, does not give the same results in case when the
equation has memory term. The amplitude of oscillations
decreases a little, not essentially. That is why the impor-
tant question arises what a control function should be in
order to minimize the amplitude of oscillations and their
velocity if there is an integral term in the equation (time
for control is given). It is the aim of further research.
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that perturbation of such control is ”small enough”.

Consider the first N1 equations of systems (26) and (27).
v(s) is seek in the form:
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Fig. 1. The solution without control at t = T (N∗ = 20,
T = 2.5, v = 0)

Fig. 2. The solution with control at t = T (N∗ = 20,
N1 = 5, T = 2.5, v �= 0)
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