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Abstract—The boundary controllability of oscillations of a plane membrane is studied. The magnitude
of the control is bounded. The controllability problem of driving the membrane to rest is considered.
The method of proof proposed in this paper can be applied to any dimension but only the two-dimen-
sional case is considered for simplicity.
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INTRODUCTION
The problem of driving a two dimensional membrane to rest using a bounded control force applied on

the membrane boundary in a finite amount of time is solved. In the statement of the control problem, the
initial data (displacement and velocity) are assumed to be smooth and satisfy certain boundary conditions.
The force boundary control is determined by the inhomogeneous Neumann condition. The smoothness
conditions imposed on the initial data in this paper are significantly weaker than the conditions used
in [1].

The solution of the problem is divided into two phases. In the first phase, the solution is stabilized in a
small neighborhood of the state of rest using the friction applied on the domain boundary. By choosing a
small friction coefficient, we ensure that the control is small. We use the results obtained in [2–4] con-
cerning the stabilization of membrane energy using boundary conditions of a special form. In the second
phase of control, the membrane oscillations are completely suppressed. Here an important role is played
by the method used to extend the initial data to a bounded domain and the consideration of a special ini-
tial-boundary value problem for the two-dimensional wave equation in this domain. In this case, the con-
trol is the normal derivative of the solution to this initial-boundary value problem on the boundary of the
domain occupied by the membrane. Note that the control in this phase is actually determined by the
method used to continue the initial data to the bounded domain mentioned above. In this construct, the
key role is played by the time reversibility of the classical wave equation. Such a control was used in works
by many authors in the 1970–1990s. In this case, the absolute value of the control force is bounded
because the solution to the original problem was in the first phase driven to a small neighborhood in the
norm of a Sobolev space. The rigorous mathematical definitions will be given below.

Note that the method of proof presented in this paper can be used for any dimension, but we consider
only the two-dimensional case for the clearness and simplicity of presentation.

The controllability to rest in finite time for the case of distributed control was proved in [5]. In that
paper, an upper bound on the optimal control time was also obtained.

Earlier, the control of membrane vibrations using boundary forces was studied by many authors (e.g.,
see reviews [2, 6] and references therein). In [7], the problem of damping the oscillations of a bounded
string using boundary control is studied. It is proved that the oscillations of the string can be completely
damped in a finite amount of time using bounded control, and the time needed for complete damping is
estimated. In [8], the optimal control of systems with distributed parameters and a finite number of
degrees of freedom is considered, and optimality conditions that are similar to Pontryagin’s maximum
principle are formulated. However, these conditions do not always give a constructive way for building the
105
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optimal control. In [6], the problem of driving an oscillating membrane to rest is studied, the existence of
the corresponding boundary control is proved, and the time needed to stop the oscillations is estimated.
In many problem statements, the authors drop the optimality conditions and consider only the controlla-
bility problem, which significantly simplifies the analysis. In [6], only existence theorems are proved with-
out imposing constraints on the absolute value of the control forces, and no explicit expressions for the
controls are obtained.

The statement of the problem considered in this paper is significantly different from the statement pre-
sented in [2, 6] because the magnitude of the control force on the boundary of the domain must satisfy
the condition . Note that we do not seek the optimal control but rather a feasible (i.e., satisfying
the given constraints) control.

1. STATEMENT OF THE PROBLEM

Let  be a bounded domain in  with an infinitely smooth boundary,  be the unit outward normal
to the boundary of , and  be the lateral surface of the cylinder . Let the boundary of 
consist of two parts  and , i.e.,

We also assume that

Therefore,  must be the boundary of a bounded domain  such that  (see Fig. 1).
Introduce the notation

Consider the initial-boundary value problem for the equation of membrane oscillations

(1.1)

(1.2)

(1.3)

(1.4)

Let  be an arbitrary number. The problem is to construct a control u satisfying the inequality

(1.5)

, ≤ ε| ( )|u t x

Ω 2R ν
Ω Σ = , × Ω(0 )TQ T Ω
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, = , , ∈ Σ ,0( ) 0 ( )w t x t x

∂ = , , , ∈ Σ .
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ON A BOUNDARY CONTROLLABILITY PROBLEM FOR A SYSTEM 107
such that the corresponding solution  and its derivative with respect to t vanish at a certain time T, i.e.,
 and  for all . If this problem has a solution, then system (1.1)–(1.3) is said to

be controllable.
Consider the space

The following theorem is the main result of this paper.

Theorem. Let the boundary  additionally satisfy the following condition: there exists a point 
such that

(1) , ,

(2) , ; moreover, let  and

(1.6)

Then system (1.1)–(1.3) is controllable.
The proof of this theorem consists of two phases. In the first phase, the solution and its time derivative

are driven to a small neighborhood of zero in the norm of ; in the second phase, the system is driven
to rest from this neighborhood.

Note that the initial data in the control problem must be sufficiently smooth. This is explained by the
fact that the proof uses Sobolev’s embedding theorem for replacing Sobolev’s norm by the norm in the
space of smooth functions. In this case, the order of smoothness is decreased.

2. FIRST PHASE OF CONTROL
In the first phase, we drive the solution to system (1.1)–(1.4) and its first derivative with respect to t to

an arbitrarily small neighborhood of zero in the norm of the space . The control used for this pur-
pose must satisfy constraint (1.5).

For this purpose, we use the results obtained in [3, 4]. The idea underlying these results is that friction
determined by the derivative of  with respect to t is introduced on ; i.e., the initial-boundary value
problem (1.1)–(1.3) subject to the boundary condition

(2.1)

where  is the friction coefficient, is considered. Let us briefly discuss the solvability issues of this ini-
tial-boundary value problem and the regularization of its solution.

Introduce the notation

where

In the space , we define the unbounded operator

with the domain

It is known that the norm in the space  squared can be determined by

(2.2)

w
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Consider the system of differential equations

(2.3)

where .
It is known (e.g., see [4] and work [9] cited therein) that  is the generating operator of the contraction

semigroup , i.e. of the semigroup for which

Note that  is a dissipative operator. Indeed, for any , we have

which implies dissipativity.
It is known from the theory of continuous semigroups that, if the pair of initial data  is an element

in the space  ( ), then the corresponding solution to system (2.3) satisfies the relation

Assume that . It was proved (see [3] or [4] but for weaker conditions on the domain
boundary) that the energy of the system satisfies the inequality

(2.4)

where

is the energy of the system and the positive constants M and  are independent of the initial data.
Let  and  be the solution corresponding to this initial data. Apply the operator 

to Eq. (2.3) and the initial data (1.2). Then we obtain

Note that

(2.5)

Then, (2.4) and (2.5) imply

(2.6)

Combining (2.2), (2.4), and (2.6), we obtain

(2.7)

Let the initial data belong to . Then, the theory of elliptic boundary value problems (see [10,
p. 98]) implies that the corresponding solution satisfies the bound

(2.8)

where the constant N1 is independent of w1. This bound, (2.4), and (2.6) imply that  tends to zero as

 in the norm of  because w1 is fixed on a part of the boundary.
A consequence of these bounds and reasoning is the equivalence of norms in the spaces  and
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ON A BOUNDARY CONTROLLABILITY PROBLEM FOR A SYSTEM 109
Now consider the space . As before, we use the theory of solvability of elliptic boundary value
problems to effectively describe this space by

Let  be the solution to problem (1.1)–(1.3), (2.1); then, it lies in the space .
We have

(2.9)

Equality (2.9) and [4] imply that

(2.10)

By combining (2.7) and (2.10), we obtain

(2.11)

Using the theory of elliptic boundary value problems (see [10, p. 98]), we obtain

(2.12)

(2.13)

where the constants  and  are independent of .

Now (2.6) and (2.10) imply that  tends to zero (as ) in the norm of . Therefore, by

Sobolev’s trace theorem,  tends to zero also in the norm of . Then, using (2.4), (2.13), and
again (2.10), we conclude that  tends to zero (as ) in norm in . Therefore, bound (2.12)
implies that  tends to zero as  in norm of  because  is fixed on a part of the boundary.

These bounds and reasoning imply that the norms in the spaces  and  are equivalent.
For the given initial conditions, we solve problem (1.1)–(1.3), (2.1), then substitute this solution only

into the right-hand side of (2.1), and obtain the boundary condition (1.5) for the initial-boundary value
problem (1.1)–(1.4). In other words in the first phase we use the control

on  in problem (1.1)–(1.4). Here  is the solution of problem (1.1)–(1.3), (2.1).
Therefore, we have proved that, if the control is applied for sufficiently long time, we can make the

quantity

arbitrarily small at time . Note that the functions  and  must satisfy the conditions

(2.14)

Due to (1.6), condition (2.14) is satisfied for any k.
Let us now show that the control  can also be made arbitrarily small; i.e., we can satisfy con-

dition (1.5). To this end note that, due to the contraction property of the semigroup generated by the oper-
ator , it holds that
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Therefore, we have

Thus, using Sobolev’s embedding theorems and (2.13), we obtain

Since the coefficient k can be chosen arbitrarily small,  is bounded due to the last bound.

We also note that, due to the boundary conditions (1.6), the initial data  lie in the space  for
any k. By choosing the friction coefficient k sufficiently small, we conclude that condition (1.5) is fulfilled.

3. SECOND PHASE OF CONTROL

Now we want to drive the system to complete rest. We consider the functions  and
 as the new initial data in problem (1.1)–(1.4). Recall that, as has been proved above, these

initial data (the pair of functions) are sufficiently small in the norm of the space .
Consider the domain  that by definition is the -neighborhood of the domain  without the points

of the domain  (Fig. 1). The domain  is constructed such that the exterior contour of its boundary
(it is called ) satisfies condition (2) in the formulation of the theorem. Let  be the outward normal to
the boundary of .

Define the space

We also consider an arbitrary pair of functions

in the space . We extend this pair to zero (the linear continuation operator

exists and is bounded) to the domain  while preserving smoothness. The construction of the continu-
ation operator E is well known and is thoroughly described in [11].

Following Russell, we will denote the initial data functions thus continued by  and .
Consider the initial-boundary value problem for the membrane oscillation equation in the domain :

(3.1)

(3.2)

(3.3)

(3.4)

Similarly to the preceding section, the solution to problem (3.1)–(3.4) satisfies the bound

(3.5)

where

Below, we use the method (in a modified form) described in [2] and applied in boundary control prob-
lems for the wave equation.
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Let the initial conditions  and  for  be given. We extend these functions to  using
the linear bounded operator E. Then . Thus, we obtain the initial-boundary value
problem (3.1)–(3.4). Let  be the solution to this problem. For the domain , we consider the
operator  that is constructed by complete analogy with the operator  for the domain . Then, we have
the bound

(3.6)

Due to the equivalence of norms, it holds that

(3.7)

Consider a sufficiently large time  and the constraint on the solution together with its time deriv-
ative at  in . It is clear that at , due to (3.7) and the continuity of the operator , it holds that

(3.8)

Let, by definition,

Let us formulate the initial-boundary value problem in reverse time (i.e., for ) for the same equa-
tion
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Let  be the solution of the initial-boundary value problem (3.3) and (3.9)–(3.11) in reverse
time. As before, we have the bound
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This sum satisfies Eq. (1.1), and the restriction of the outward normal derivative of  to the lateral
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operator (we denote it by L) with the norm less than unity (a consequence of bounds (3.8) and (3.12)). It is
clear that the sums on the right-hand sides in (3.14) give all the elements of the space . Indeed,
(3.14) can be written in the form
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Now, we represent the control function that should be found (in the second phase of control) in the
form

(3.16)

, where R is the restriction operator from  to ,  and  are the resolving operators
of the dissipative problem in forward and reverse time, respectively, P is the projection , and

Thus, we have proved that the system with arbitrary smooth initial data can be driven to rest. Now we
show that, by choosing sufficiently small initial data, we can drive the system to rest using a small (in abso-
lute value) boundary control.

Let the pair  be sufficiently small in the norm of the space . Formula (3.16) imme-

diately implies the smallness of the control  because all the operators involved in this formula are
continuous.

Therefore, the restriction of the normal derivative of the solution to the initial-boundary value problem
to the boundary of  (the Neumann condition in the control problem) can be made smaller (in absolute
value) than any given  if the control time is sufficiently large. Therefore, the desired constraint on the
control  is satisfied, which completes the proof of the theorem.

CONCLUSIONS
The existence of a boundary control completely damping oscillations of a membrane in a finite amount

of time is proved. This control must satisfy a constraint on its absolute value. In the formulation of the
main theorem, the initial velocity and the shape of the membrane boundary satisfy certain conditions.
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