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Abstract In this paper, we examine the controllability problem of a distributed system
governed by the two-dimensional Gurtin–Pipkin equation. We consider a system with
compactly supported distributed control and show that if the memory kernel is a twice
continuously differentiable function, such that its Laplace transformation has at least
one root, then the system cannot be driven to equilibrium in finite time.

Keywords Lack of controllability to rest · Equation with memory · Distributed
control · Moment problems
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1 Introduction

Integrodifferential equations with nonlocal terms of the convolution type often arise in
applications such as mechanics of heterogeneous media, the theory of viscoelasticity,
thermal physics, and kinetic theory of gases.
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For example, it was rigorously proved that in the case of a heterogeneous two-phase
medium, consisting of viscous fluid and elastic inclusions, the effective equation is
integrodifferential, and the corresponding convolution kernel is a finite or infinite sums
of decreasing exponential functions.

If the viscosity of a liquid is small (big), the effective equation contains (does not
contain) third-order terms corresponding to Kelvin–Voigt friction; we refer to [1] for
more details.

In the theory of viscoelasticity, it is a common practice to approximate relaxation
kernels by the sum of exponents.

In thermal physics, the law of heat conduction with integral memory is the subject
of many research papers, in particular [2].

The presence of integral memory in the law of heat conduction may lead to the
appearance of a thermal front, which moves at a finite speed. This makes an important
difference with the heat equation, whose solution propagates at infinite speed.

In this paper, we outline of the results of the existence and uniqueness of solutions
to these systems and consider the problem of controllability.

2 Problem Statement

We consider the problem of noncontrollability of a system governed by the integrod-
ifferential equation

θt (t, x, y) −
t∫

0

K (t − s)Δθ(s, x, y)ds = u(t, x, y),

t > 0, (x, y) ∈ Ω, (1)

θ |t=0 = ξ(x, y), (2)

θ |∂Ω = 0. (3)

Hereinafter, Ω ⊂ R
2 is a bounded domain, K (t) is an arbitrary twice continuously

differentiable function such that K (0) = μ > 0, and u(t, x, y) is a control supported
(in x, y) onΩ . The kernel K (t) can be represented, for example, as a sumof decreasing
exponential functions, i.e.,

K (t) =
N∑

j=1

c je
−γ j t ,

where c j and γ j are given positive constants.
For brevity, we write θ(t) and u(t) instead of θ(t, x, y) and u(t, x, y), respectively.

This also means that θ(t) and u(t) are functions of t with values in some suitable
space.

The goal of the control is to drive this mechanical system to rest in finite time. We
say that the system in (1)–(3) is controllable to rest if for every initial condition ξ ,
it is possible find a control u(t) and a time T > 0 such that u(t) is equal to zero for
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any t > T and the corresponding solution θ(t, u) of problem (1)–(3) equals zero for
any t > T too. Conversely, the system is uncontrollable to rest if there is an initial
condition ξ such that for every control u(t) (u(t) is in the suitable class of functions),
which equals zero identically outside some finite segment [0, T ], the corresponding
solution does not equal zero identically outside any finite segment (in t).

In this article, we prove that the system governed by a two-dimensional Gurtin–
Pipkin equation is uncontrollable to rest if the distributed control is supported on the
subdomain, which is properly contained in an arbitrary bounded domainwith a smooth
boundary. This result is a generalization of an analogous theorem in [3] devoted to a
similar one-dimensional problem. The method used in this paper can also be applied
to the case where the dimension of Ω is greater than two; this will be discussed in
greater detail in Sect. 6.

3 Literature Review

The presence of nonlocal terms of the convolution type in the equations and systems
leads to a number of interesting qualitative effects that are not observed in differen-
tial equations and systems of equations. For instance, systems of this type exhibit
properties of both parabolic and hyperbolic equations. In spectral problems for such
equations and systems, the spectrum is composed of real and complex parts. The
former part corresponds to the energy dissipation in the heat equation, and the later
corresponds to vibrations. Such equations can be solved using a method similar to the
Fourier method.

Moreover, systems of this type are usually uncontrollable to rest, if boundary control
or control, which is distributed on part of the domain, is applied. Here, we recall the
well-known work [4] that considers the equation for the vibration of a string. In this
work, it was proved that if the control is applied to the end of the string, then the
system can be driven to rest. The author used the so-called moment method. These
results were later generalized to the multidimensional case in [5].

If the control distributed on the whole domain is used, then the integral terms of
the convolution type facilitate the process of control. In this case, the control time is
significantly reduced. It should be noted that the spectral method proposed in [6] can
be successfully adapted to the case of systems with nonlocal terms of the convolution
type (we refer to [7] for further details).

The uncontrollability mentioned above was justified in [3] for one-dimensional
systems similar to (1).

In most cases, the property of controllability to rest is not observed. For example,
in [3], it was proved that a solution to the heat equation with memory cannot be driven
to rest in finite time if some auxiliary analytic function has roots. This result is valid
for both boundary and distributed controls. Moreover, the case of distributed control
can be reduced to the case of boundary control. In our paper, we obtain similar results
for the case of two-dimensional domains.

Thework in [8] is also notable because the boundary noncontrollabilitywas justified
for the heat equation with memory.
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Positive results on controllability of a one-dimensional wave equationwithmemory
were obtained in [7]. It was shown that this equation can be driven to rest by applying a
bounded distributed control. In this case, the kernel of the integral term in the equation
is the sum of N decreasing exponential functions.

Problems similar to (1)–(3) for integrodifferential equations have been widely stud-
ied in existing literature. Equation (1) was originally derived in [2]. The questions of
solvability and asymptotic behavior of solutions for equations of this type were inves-
tigated for in [9,10]. In [11], it was proved that the energy for some dissipative system
decays polynomially when the memory kernel decays exponentially.

Problems related to the solvability of system (1)–(3) were considered in [12]. It
was proved that a solution belongs to some Sobolev space on the semi-axis (in t) if
the kernel K (t) is the sum of exponential functions, each of which tends to zero as
t → +∞.

Interesting explicit formulas for the solution to (1)–(3) were obtained in [13] under
the assumption that the kernel K (t) is also the sumof decreasing exponential functions.
It follows from these formulas that solutions tend to zero when t → +∞. All of
these works assumed that the kernels of integral terms in the studied equations are
nonincreasing functions.

4 Preliminaries

Let A := Δ be an operator such that

domA = H2(Ω) ∩ H1
0 (Ω),

where Ω ⊂ R2 is a bounded domain with boundary of class C2. We now consider the
control function u(t) ∈ L loc

2 ([0,+∞[; L2(Ω)) and initial condition ξ ∈ L2(Ω).

Definition 4.1 The function

θ(t) ∈ H1
loc([0,+∞[; L2(Ω)) ∩ L loc

2 ([0,+∞[; H2(Ω) ∩ H1
0 (Ω))

is the solution to problem (1)–(3) if θ(t) satisfies (1):

θt (t) −
t∫

0

K (t − s)Δθ(s)ds = u(t)

and initial condition (2): θ(0) = ξ .

Note that in virtue of smoothness of K (t) problem (1)–(3) is solvable, if we impose
an additional conditions of smoothness on ξ and u(t) (see [14]).

Let PW+ denote the linear space of the Laplace transforms of elements of
L2([0,+∞[) such that they are equal to zero on the set {t : t > T } for some T > 0. It
is a well-known fact that ϕ(λ) ∈ PW+ if and only if it is an entire function, such that
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1. there are real numbers C and T such that |ϕ(λ)| � CeT |λ|. Note that C and T
depend on ϕ(λ).

2. sup
x�0

+∞∫
−∞

|ϕ(x + iy)|2dy < +∞.

5 Main Results

Now, we consider the auxiliary boundary value problem

θt (t, x, y) −
t∫

0

K (t − s)Δθ(s, x, y)ds = 0,

t > 0, (x, y) ∈ Ω0 =
{
(x, y) : x2 + y2 < R2

}
, (4)

θ |t=0 = ξ(x, y), (5)

θ |∂Ω0 = v(t, x, y), (x, y) ∈ ∂Ω0. (6)

Consider the control function v(t) ∈ L loc
2 ([0,+∞[; L2(∂Ω0)) and initial condition

ξ ∈ L2(Ω0).
We formally multiply (in the sense of the inner product in L2(Ω0)) both parts of (4)

by the function ϕ such that ϕ ∈ H2(Ω0) ∩ H1
0 (Ω0). Hereinafter, ν is a normal vector

to the domain boundary ∂Ω0. Next, using Green’s formula, we formally replace the
operator A from θ(t) with ϕ. Then, we obtain

d

dt
〈θ(t), ϕ〉 −

t∫

0

K (t − s)

⎛
⎜⎝〈θ(s),Δϕ〉 −

∫

∂Ω0

v(s)
∂ϕ

∂ν
dσ

⎞
⎟⎠ ds = 0, (7)

where 〈·, ·〉 is the inner product in L2(Ω0).
We say that the function θ(t) ∈ H1

loc([0,+∞[; L2(Ω0)) is the solution to problem
(4)–(6) if the equality in (7) holds for every ϕ ∈ domΔ and θ(0) = ξ .

The orthonormalized system of eigenvectors of A are the functions ϕnm(x, y),
which in polar coordinates (x = r cosα, y = r sin α) have the form

ϕ̃nm(r, α) = Jm
(
μm

n
r
R

)
eimα

√
π R J ′

m(μm
n )

, m = 0, 1, 2, . . . , n = 1, 2, . . . ,

where Jm are Bessel functions and μm
n are positive roots of Jm . It is a well-known fact

that this system is a basis for L2(Ω0). We substitute ϕ = ϕnm in (7). Then, using the
notation θnm(t) = 〈θ(t), ϕnm〉, we obtain
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dθnm(t)

dt
+ λ2nm

t∫

0

K (t − s)θnm(s)dσds = −
t∫

0

K (t − s)

⎛
⎜⎝

∫

∂Ω0

v(s)
∂ϕnm

∂ν

⎞
⎟⎠ dσds,

(8)

where λnm are the corresponding eigenvalues. Using polar coordinates yields

λ2nm =
(
μm

n

)2
R2 .

Next, we take the Laplace transformation of both parts of (8) and express θ̂nm(λ)

as

θ̂nm(λ) =
−K̂ (λ)

∫
∂Ω0

v̂(λ)
∂ϕnm
∂ν

dσ + ξnm

λ + λ2nm K̂ (λ)
, (9)

where K̂ (λ) is the Laplace transform of the kernel K (t):

K̂ (λ) =
+∞∫

0

K (t)e−λtdt.

Lemma 5.1 In problem (4)–(6), if K̂ (λ) has at least one root λ0 in the domain of
holomorphism (we require that this domain exists), then controllability to rest is impos-
sible; that is, there exists an initial condition ξ ∈ L2(Ω0), such that for every control
v ∈ L loc

2 ([0,+∞[; L2(Ω0)), which is equal to zero on the set {t : t > T } for some
T > 0, the corresponding solution cannot be equal to zero identically outside any
finite segment (in t).

Proof By using polar coordinates in the integral of equality (9), equality (9) takes the
form

θ̂nm(λ) =
−μm

n K̂ (λ)
2π∫
0

v̂0(λ, α)eimαdα + ξnm

√
π R

(
λ + λ2nm K̂ (λ)

) , (10)

where v̂0(λ, α) := v̂(λ, R cosα, R sin α).
The system of functions {eimα}m∈Z is an orthogonal basis in L2(0, 2π). Thus, we

can expand

v̂0(λ, α) =
+∞∑

j=−∞
v̂0, j (λ)ei jα,
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where

v̂0, j (λ) = 1

2π

2π∫

0

e−i jαv̂0(λ, α)dα.

Hence, we obtain

θ̂nm(λ) = −μm
n K̂ (λ)2πv̂0,−m(λ) + ξnm√

π R(λ + λ2nm K̂ (λ))
. (11)

Note that if the system is controllable to rest, then θnm(t) and v0,−m(t) are equal to
zero identically outside some finite segment on [0,+∞). Thus θ̂nm(λ) and v̂0,−m(λ)

are in PW+.
If it follows from the definition of PW+ that θ̂nm(λ) is an entire function, then it

cannot have singularities at the roots of the denominator λ + λ2nm K̂ (λ).
If λ0 = 0 is a root of the equation K̂ (λ) = 0, then the equality (11) generally

cannot be satisfied for the values θ̂nm(λ), which correspond to functions from PW+.
Hence, in this case controllability to rest is impossible.

Let λ0 = 0 be not a root of the equation K̂ (λ) = 0. The control function v̂0,−m(λ)

has to satisfy the following equalities:

v̂0,−m(λ) = − 1

2π

λ2nmξnm

μm
n λ

, (12)

when λ �= 0 is a root of the equation λ + λ2nm K̂ (λ) = 0. Since λ2nm = (
μm

n

)2
/R2,

then (12) can be rewritten as

v̂0,−m(λ) = − 1

2π

μm
n ξnm

R2λ
. (13)

Note that the equality in (13) can be presented in the following form:

T∫

0

v0,−m(t)e−λtdt = − 1

2π

μm
n ξnm

R2λ
.

The latter equality is the so-called moment problem.
We now record the index m. Let m, for example, be equal to 1 and n changes from

1 to +∞. We obtain the subsystem of equalities for values of the function v̂0,−1(λ) at
such points λ that λ + λ2n1 K̂ (λ) = 0:

v̂0,−1(λ) = − 1

2π

μ1
nξn1

R2λ
., n = 1, 2, . . . . (14)

Note that K̂ (λ) has a root λ0 �= 0 (if K (t) is a series of decreasing exponentials,
then K̂ (λ) has a countable number of roots, see [15]). Applying the methods used in
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Fig. 1 The illustration to the proof of Theorem 5.1

[3] (in which Rouche’s theorem was used), we can prove that there exists a sequence
{λn �= 0} of zeros of

λ + (μ1
n)2

R2 K̂ (λ).

It is important that this sequence converges to a nonzero complex number. Let us
choose ξ2 j+1,1 = 0; hence, v̂0,−1(λ2n+1) = 0. As the sequence of zeros converges
and v̂0,−1(λ) is an entire function, then v̂0,−1(λ) ≡ 0. Then for any n, all ξ2n,1 must be
zero. However, we can always take some of them to be nonzero numbers. Thus, there
exists an initial condition ξ such that for any control function v(t), controllability to
rest is impossible. �

We now consider problem (1)–(3). Let D be an arbitrary bounded domain such that
D ⊂ Ω . We define L̃2(D) as the space of all elements from L2(D) extended by zero
to the set Ω \ D. The following theorem is the main result of this article.

Theorem 5.1 If the control function u(t) in (1) is an element of

L loc
2 ([0,+∞[; L̃2(D))

and K̂ (λ) has at least one root λ0 in the domain of holomorphism, then controllability
to rest is impossible; that is, there exists an initial condition ξ ∈ L2(Ω) such that for
every control u(t), which is equal to zero on the set {t : t > T } for some T > 0, the
corresponding solution cannot be equal to zero identically outside any finite segment
(in t).

Proof Since D is a closed and bounded subset of Ω , then we can consider a circle
Ω0, which is properly contained in Ω and does not intersect D (see Fig. 1).

Let θ(t) be a corresponding solution to (1)–(3); note that we require the existence
of this solution.
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We restrict the solution θ(t) toΩ0 and consider a new initial boundaryvalue problem
on Ω0. We first prove that this restriction is correct. By means of the definition 4.1 we
obviously have:

θ(t) ∈ H1
loc([0,+∞[; L2(Ω0)) ∩ L loc

2 ([0,+∞[; H2(Ω0)). (15)

We also can easily establish that for θ(t) the integral equality (7) holds for any ϕ ∈
H2(Ω0) ∩ H1

0 (Ω0) and v(s) is a “restriction” of θ(s), s ∈ (0, t), on the boundary of
Ω0.

We can consider the “restriction” of the solution to ∂Ω0 as the control. Thus, we
obtain the boundary control problem on the circle Ω0. The solution to this problem
automatically exists. Using the previous lemma,we have proved that the controllability
to rest of this newproblem is impossible; in this case, it is impossible to stop oscillations
of the origin problem in (1)–(3). �

6 Generalizations and Related Topics

To obtain an analogous result for the Gurtin–Pipkin equationwhen the dimension ofΩ
is greater than two, it is necessary to use the orthonormalized system of eigenvectors
of A defined in Ω0, where Ω0 is a ball. These eigenvectors, for example, in R

3, are
constructed by means of spherical harmonics

Y l
m(α, ϕ), 0 ≤ α ≤ π, 0 ≤ ϕ < 2π, m = 0, 1, . . . , l = 0,±1,±2, . . . ,±m,

while we use functions eimα, 0 ≤ α < 2π, m = 0, 1, . . . , for two-dimensional
domains. Using the orthogonal property of spherical harmonics Y l

m on the unit sphere,
we expand v̂0(λ). After this expansion, all steps of the proof remain unchanged (see
the proof of Lemma 5.1). We choose R2 in the present paper as the clearest and most
evident way to demonstrate the idea of the proof.

It can likely be proved that if

K (t) =
N∑

j=1

c je
−γ j t

and if the control function is not supported only on the subdomain, which is properly
contained in Ω , then the problem in (1)–(3) is controllable to rest. Note that if K (t) =
C > 0, then (1) is a classical wave equation, and K̂ (λ) does not have a null. It is a
well-known fact that the system is controllable to rest if we use a control supported
on a subdomain. If K (t) = qe−γ t and q, γ > 0, then (1) can be reduced to

θt t (t, x, y) − qΔθ(t, x, y) + γ θt (t, x, y) = P(t, x, y),

where

P(t, x, y) = du(t, x, y)

dt
+ γ u(t, x, y).
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In this case, P is considered to be a new control. The latter equation is a damped
wave equation. We now consider the one-dimensional case. In this case, instead of the

Laplace operator Δ, we write the second derivative d2
dx2

:

θt t (t, x) − qθxx (t, x) + γ θt (t, x) = P(t, x). (16)

In a later publication, we will prove that oscillations of the string governed by (16),
where P(t, x) ≡ 0, can be stopped if we apply the control to the end of the string,
the second end being fixed. Using this fact, we are optimistic that it can be proved
that by means of control P(t, x) contained in a subsegment (in x), the system is also
controllable to rest.

Finally, we note a link between stability and controllability for the one-dimensional
case. If we consider the equation

θt t − αθxx + qθxx ∗ e−γ t = 0,

where ∗ is the convolution and α > 0, then solutions of this equation are stable if
q ∈ [0, αγ ] and unstable if q < 0 or q > αγ . Furthermore, if q = 0 or q = αγ , then
the system is controllable to rest if we use the boundary control.

7 Optimization and Controllability

Problems of controllability of systems with memory are important and have been
considered in existing literature. It is advisable for a system to have controllability to
rest, which can be accomplished by selective forcing. This relates to both problems
of controllability of heat flow and viscoelastic systems. However, the result of this
article shows that there are some cases where controllability to rest of a system is
impossible. Therefore, we modify the statement of our task; specifically, our goal is
not to drive the system to a given position, but to minimize the residual (in the norm of
some functional space) between the desirable result and the obtained system’s phase
condition. Herein, we proved that the residual is nonzero; however, the actual value
of the error and how the control function should be chosen to minimize this error are
open research topics. Therefore, these problems serve as possible foundations for our
future research.

8 Conclusions

In this article, we proved that a system governed by the two-dimensional Gurtin–
Pipkin equation is uncontrollable to rest if the distributed control is supported on
the subdomain, which is properly contained in an arbitrary bounded domain with a
smooth boundary. In this case, thememory kernel is a twice continuously differentiable
function such that its Laplace transformation has at least one root.
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