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SOME PROBLEMS OF DISTRIBUTED AND BOUNDARY CONTROL
FOR SYSTEMS WITH INTEGRAL AFTEREFFECT

I. V. Romanov and A. S. Shamaev UDC 517.958

Abstract. We consider the problem of exact control for a system described by an equation with integral
“memory.” It is shown that, under certain conditions, this system can be brought to rest in finite time by
distributed control bounded in absolute value, and, in a special one-dimensional case, by control applied to
an end-point of the interval. We consider different types of kernels in the integral term of the equation and
describe some relationships between problems of controllability of some hyperbolic and parabolic systems.

1. Introduction

Consider the following problem of distributed control:

θt(t, x) −
t∫

0

K(t − s)Δθ(s, x) ds = u(t, x), t > 0, x ∈ Ω, (1)

θ|t=0 = ξ(x), (2)

θ|∂Ω = 0. (3)

Here and in what follows, Ω ⊂ R
n is a bounded domain with an infinitely smooth boundary; K(t) is

a twice continuously differentiable function K(0) = p > 0; u(t, x) is the control distributed (with respect
to x) over Ω. Without loss of generality, we can ssume that p = 1.

For the sake of brevity, we use the symbols θ(t) and u(t) instead of θ(t, x) and u(t, x), respectively,
implying thereby that θ(t) and u(t) are functions of t with values in certain Banach spaces.

The problem is to bring the mechanical system under consideration to a state of rest over a finite
time interval by means of the control, which is bounded in absolute value.

System (1)–(3) is said to be controllable, if for any initial value ξ we can find an instant T > 0 and
control u(t) such that u(t) ≡ 0 for t > T ; |u(t, x)| ≤ ε, t > 0, x ∈ Ω; and θu(t) ≡ 0 for t > T , where θu(t)
is the corresponding solution of problem (1)–(3).

Integro-differential equations with nonlocal terms of convolution type occur in various applications,
such as mechanics of heterogeneous media, theory of viscoelasticity, thermal physics, kinetic theory of
gases, etc. The authors’ interest in integro-differential operators of this type originates in studies of
heterogeneous media, of which several should be mentioned here. Thus, the monographs [1–3] are aimed
at developing strict mathematical methods for the construction of effective characteristics of strongly
nonhomogeneous media and the investigation of closeness of the solutions and eigenvalues of the boundary
value problems for such media to the corresponding effective (homogenized) characteristics. Spectral
problems for the effective (homogenized) models of continua consisting of several phases with distinct
rheological characteristics (elastic material — viscous fluid) are studied in [4]. In [5], the method of two-
scale convergence was applied for the first time to spectral problems for strongly inhomogeneous media
and the convergence of their spectra to that of the limit problem was examined.

A convolution kernel often happens to be represented by a finite or infinite sum of decaying exponents.
In the theory of heterogeneous media, for instance, there is a strict mathematical justification of the fact
that the effective model of a two-phase medium consisting of an elastic material and a viscous fluid is
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described by a system with such convolution kernels. The viscosity of the fluid being small or finite
determines, in the effective model, the absence or the presence of a term with third-order derivatives
modeling the Kelvin–Voigt friction [1]. In models of viscoelastic materials, experimental values obtained
for relaxation or creep kernels are often approximated by sums of exponents. In thermal physics, heat
conductivity laws with integral aftereffects have been studied in many publications, for instance, [6]. In
some cases, integral aftereffects in heat conductivity laws give rise to a thermal front moving with a finite
velocity. This fact is important, because it allows one to overcome the paradoxical situation of heat
propagation velocity being infinite for the heat equation.

The present paper contains a brief review of the works on the existence and the uniqueness of solutions
of the said systems, as well as the controllability of such systems. Nonlocal terms of convolution type in
equations and systems bring about some interesting qualitative effects, which are absent in the case of
equations and systems containing only differential terms. Systems of this type exhibit some properties
of parabolic systems describing dissipation phenomena, as well as hyperbolic systems associated with
vibrations and wave propagation. In spectral problems for such equations and systems, the spectrum
consists of two parts: real and complex, the first corresponding to pure dissipation of energy, and the
second pertaining to vibration processes [7]. For obtaining solutions of such problems, there is an analogue
of the Fourier method [8].

As a rule, systems of the said type are uncontrollable in the following sense: there are initial states
from which it is impossible to bring the system to a given state (for instance, complete rest) by applying
control to a part of the domain or its boundary. In this connection, we should recall the results of [9]
for the vibrating string equation and the heat equation: by applying control at one end of a string or
a warm rod, the system can be brought to rest or zero temperature. These results have been extended to
multi-dimensional cases in [10].

On the other hand, if control is applied to the entire domain, then the presence of integral terms
of convolution type has positive effect: the time of bringing a system to a desired state is much shorter
than that for the system without the nonlocal terms. In order to prove this property, one can use the
spectral method proposed in [11] for the construction of control, which has been done in [12] for systems
with nonlocal terms of convolution type. Initially, the said loss of complete controllability was noticed
in [15] with regard to systems with a single spatial variable. The results of this paper indicate that
systems with the property of complete controllability, in the case of control applied to a part of the
domain or its boundary, are an exception among integro-differential systems; in most cases, complete
controllability is absent. On can say that completely controllable systems form a set of “zero measure”
among integro-differential equations with nonlocal terms of convolution type.

Similar problems for equations without integral terms, which describe two-dimensional membranes
and plates, were previously studied in [11], where it was shown that vibrations of such systems can be
stopped on a finite time interval by applying control distributed over the whole surface of the object under
consideration. In monograph [9], optimization of boundary control of string vibrations was addressed for
the first time and, in this case, the method of moments was effectively applied. The review [10] describes
the results obtained by many authors regarding boundary controllability of plates and membranes by
means of boundary conditions of various types. Some problems of controllability for systems similar
to (1) were addressed in [15], where a condition was found ensuring that the solution of the heat equation
with integral “memory” cannot be brought to rest on a finite time interval. This condition amounts to
the existence of roots of a certain complex-analytic function in its domain of holomorphy.

Let us consider some simple but important examples.
(1) K(t) ≡ 1. Then (1) is obviously reduced to the wave equation by differentiating in t.
(2) K(t) ≡ e−γt, γ > 0. In this case, (1) reduces to the wave equation with friction against the

external medium. This equation is also referred to as “telegraph equation.”
(3) Let us replace the integral term in equation (1) by the expression K(t) ∗ Δθ(t, x), where the

convolution kernel K(t) can be a distribution, in general. Let K(t) = δ(t) be the Dirac delta-
function. Thus (1) becomes the classical heat equation.
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(4) K(t) ≡
N∑

j=1
cje

−γjt, cj , γj > 0. Equations with such kernels occur in problems of thermal physics,

viscoelasticity, and mechanics of heterogeneous media.
(5) K(t) ≡ t−γ , where 0 < γ < 1 or −∞ < γ < 0. These are the so-called kernels of the Abelian

type, which occur, for instance, in the theory of creep. In general, such kernels do not belong to
the class C2.

Obviously, systems with kernels from examples (1)–(3) can be brought to complete rest by an arbi-
trarily small (in absolute value) distributed control. The case of example (4) is more difficult. Complete
bounded controllability of a system whose kernel is a sum of finitely many decaying exponents is estab-
lished in [12] and [13] for one-dimensional and multi-dimensional domains, respectively.

In what follows, we are going to use well-known definitions and notions. By PW+ we denote the
linear space of Laplace transforms of all square-summable functions on (0, +∞) with a compact support
in [0, +∞). It is well known that ϕ(λ) ∈ PW+, if and only if it is an entire function satisfying the following
conditions:

(1) there are positive constants C and T such that |ϕ(λ)| ≤ CeT |λ|. Note that C and T depend on
ϕ(λ);

(2) sup
x≥0

+∞∫
−∞

|ϕ(x + iy)|2 dy < +∞.

By PWT
+ we denote the space of the Laplace transforms of all f(t) ∈ L2(0, T ) extended by zero for

t > T .
Let A := Δ be the Laplace operator with the domain D(A) = H2(Ω)∩H1

0 (Ω). Let {ϕk(x)}+∞
k=1 be an

orthonormal system of eigenfunctions of the Dirichlet problem for the Laplace operator A in the domain
Ω, with the corresponding system of eigenvalues {λ2

k}+∞
k=1, so that Δϕk + λ2

kϕk = 0.
Let lα be the space of all sequences {ck}+∞

k=1 for which the series

+∞∑
k=1

|ck|2λ2α
k

is convergent. We introduce the space

D(Aα) =
{

f(x) =
+∞∑
k=1

fkϕk(x) : {fk}+∞
k=1 ∈ lα

}
.

2. Definition of a Solution. Existence and Uniqueness Theorems

Following [16], we define a solution of problem (1)–(3) with the help of an integral equation. To this
end, consider the square root of the Laplace operator, B = i(−Δ)1/2, with the domain H1

0 (Ω). Consider
the semi-group eBt, t ∈ R, generated by B. As in [16], we introduce the “cosine operator”

R+(t) =
1
2
(eBt + e−Bt).

Let u ∈ L2

(
0, T ; L2(Ω)

)
, where T > 0 is arbitrary, and let ξ ∈ L2(Ω).

Definition 1 (see [16]). A function
θ(t) ∈ C

(
[0, T ]; L2(Ω)

)
is called a solution of problem (1)–(3) if it satisfies the following integral equation:

θ(t) = R+(t)ξ +

t∫

0

R+(t − s)u(s) ds +

t∫

0

L(t − s)θ(s) ds, (4)
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where the operator L(t) (with t fixed) maps z ∈ L2(Ω) to

L(t)z = R+(t)K ′(0)z − K ′(t)z +

t∫

0

R+(t − ζ)K ′′(ζ)z dζ.

As we know (see [16]), under the above assumptions on the right-hand side and the initial value,
a solution of problem (1)–(3), as defined above, exists and is unique in the said class.

3. Bounded Distribulted Control

The system of eigenfunctions {ϕk(x)}+∞
k=1 forms a basis in L2(Ω). It is well known that the action of

the semi-group eAt on a function ψ ∈ D(A) is defined by

eAtψ(x) =
+∞∑
k=1

ψke
−λ2

ktϕk(x),

where ψk are the coefficients in the Fourier expansion of ψ(x). Then, the action of the semigroup eBt on
ψ ∈ H1

0 (Ω) is expressed by

eBtψ(x) =
+∞∑
k=1

ψke
iλktϕk(x),

which immediately implies that

R+(t)ψ(x) =
+∞∑
k=1

ψk cos λktϕk(x).

We seek a solution of problem (1)–(3) as an expansion into series with respect to the above eigen-
functions:

θ(t, x) =
+∞∑
k=1

θk(t)ϕk(x). (5)

It is assumed that the solution is defined for all t ∈ [0, +∞), while the control u is also defined for all t
and identically vanishes on the set {t : t > T}.

Then, substituting (5) into (4) and expanding u(t, x) into series with respect to the eigenfunctions,
we obtain

θk(t) = ξk cos λkt +

t∫

0

K ′(0)θk(s) cos λk(t − s) ds −
t∫

0

K ′(t − s)θk(s) ds

+

t∫

0

θk(s)

t−s∫

0

K ′′(ζ) cos λk(t − s − ζ)dζ ds +

t−s∫

0

uk(s) cos λk(t − s) ds, (6)

where {uk(t)}+∞
k=1 and {ξk}+∞

k=1 are the Fourier coefficients of control u(t, x) and the initial value ξ(x),
respectively. Integrating by parts (twice) in the fourth term on the right-hand side of (6) (thereby getting
rid of the second derivative K ′′(ζ)), we obtain

θk(t) = ξk cos λkt − λ2
k

t∫

0

θk(s)

t−s∫

0

K(ζ) cos λk(t − s − ζ)dζ ds + λk

t∫

0

uk(s) sin λk(t − s) ds. (7)

Taking the Laplace transforms of both sides of equation (7) and expressing θ̂k(λ), we get

θ̂k(λ) =
ûk(λ) + ξk

λ + λ2
kK̂(λ)

. (8)
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First, consider the simplest case when the function λ + λ2
kK̂(λ) of the complex variable λ, for each k,

has only a single simple root μk, i.e.,

λ + λ2
kK̂(λ) = (λ − μk)Lk(λ),

where Lk(μk) 
= 0 and Re μk ≤ 0. Then, in order for θ̂k(λ) to be holomorphic, we must have

ûk(μk) = −ξk. (9)

Relation (9) can be written in integral form as follows:
T∫

0

uk(t)e−μktdt = −ξk. (10)

Theorem 1. Let ξ ∈ D(Aα), where α > n/2, and let the function Lk(λ) be such that

F (λ)
1

Lk(λ)
∈ PWT

+

for any F (λ) ∈ PWT
+, where T is an arbitrary number greater than some T0 > 0. Then there is an instant

T = T ′ and control u(t, x) ∈ C([0, T ′] × Ω) such that u(t, x) identically vanishes for t > T ′, satisfies the
inequality |u(t, x)| ≤ ε for any t > 0, x ∈ Ω, and the support (in t) of θu(t) belongs to [0, T ′] .

Proof. Let

uk(t) = −ξk

T
eμkt, t ∈ [0, T ]. (11)

Obviously, this function is a solution of the simplest integral equation (10). For uk(t) of the form (11),
all θ̂k(λ) are entire functions. It remains to show that they belong to PW+. We have

ûk(λ) =
ξk

T

1 − eT (μk−λ)

μk − λ
.

Clearly, ûk(λ) ∈ PWT
+ by construction. Let us show that the function

ûk(λ) + ξk

λ − μk

is also an element of PWT
+. To this end, consider the following auxiliary differential equation and boundary

condition:
ẏ(t) − μky(t) = uk(t), y(0) = ξk.

The solution of this simple Cauchy problem obviously has the form

y(t) = ξke
μkt +

t∫

0

uk(s)eμk(t−s) ds.

For uk(t) given by (11), we clearly have y(T ) = 0. Therefore, ŷ(λ) ∈ PWT
+, and it is easy to see that ŷ(λ)

is equal to (ûk(λ)+ ξk)/(λ−μk). Actually, any control uk(t) ∈ L2(0, T ) realizing a solution of the integral
equation (10) is such that the corresponding function (ûk(λ) + ξk)/(λ− μk) belongs to PWT

+. Our choice
of control in the form (11) is due merely to the requirement that the desired control should be bounded
in absolute value. Now, using the assumptions of the theorem, we find that

ûk(λ) + ξk

λ − μk

1
Lk(λ)

∈ PW T
+ .

Taking into account the inequalities Reμk ≤ 0 for all k and the explicit form (11) of the Fourier
coefficients of u(t, x), we obtain

|uk(t)| ≤ 1
T
|ξk|. (12)
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Further, using the Cauchy inequality, we get

|u(t, x)|2 ≤ 1
T 2

+∞∑
k=1

λ−2α
k ϕ2

k(x)
+∞∑
k=1

λ2α
k |ξk|2.

It is known (see [17]) that the series
∑

λ−2α
k ϕ2

k(x) is uniformly bounded if α > n/2. Moreover,

+∞∑
k=1

λ2α
k |ξk|2 =

∫

Ω

(
Aαξ(x)

)2
dx.

Our assumptions on ξ in the statement of this theorem obviously ensure that the series for u(t, x) is
convergent. Therefore, the last estimate for u shows that for T = T ′ sufficiently large, the control function
can be made arbitrarily small in absolute value. The theorem is proved.

Now, consider a more difficult case of the function λ + λ2
kK̂(λ) having precisely two distinct simple

roots μ1,k and μ2,k with nonpositive real parts.
In this case, (8) takes the form

θ̂k(λ) =
ûk(λ) + ξk

(λ − μ1,k)(λ − μ2,k)Lk(λ)
. (13)

In order for the function θ̂k to be holomorphic, it is necessary that

ûk(μ1,k) = −ξk, ûk(μ2,k) = −ξk. (14)

Relations (14) can be written in integral form,
T∫

0

uk(t)e−μ1,kt dt = −ξk,

T∫

0

uk(t)e−μ2,kt dt = −ξk. (15)

Theorem 2. Let |μ1,k − μ2,k| ≥ δ > 0 for any k, ξ ∈ D(Aα) with α > n/2, and let the function Lk(λ)
satisfy the condition

F (λ)
λ − a

1
Lk(λ)

∈ PWT
+

for any F (λ) ∈ PWT
+ such that a is its root and T is an arbitrary number greater than some T0 > 0. Then

there exist an instant T = T ′ and control u(t, x) ∈ C([0, T ′]×Ω) such that u(t, x) identically vanishes for
t > T ′ and satisfies the inequality |u(t, x)| ≤ ε for any t > 0, x ∈ Ω, and the support of θu(t) belongs to
[0, T ′].

Proof. A solution of system (15) can be constructed in the form

uk(t) = C1,ke
μ1,kt + C2,ke

μ2,kt. (16)

It is not difficult to show that this choice of control ensures that the function u(t, x) is bounded in absolute
value. For this purpose, it suffices to substitute (16) into (15) and use Cramer’s rule to find a solution of
the resulting system with respect to the unknown C1,k and C2,k. Simple estimates for the determinants
yield

|uk(t)| ≤ TM |ξk|
T 2 − 4/δ2

,

where M > 0 is a constant independent of k.
Now, let us show that

ûk(λ) + ξk

(λ − μ1,k)(λ − μ2,k)
∈ PWT

+.
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To this end, consider the following auxiliary system of differential equations with initial conditions:

ẏ1(t) − μ1,ky1(t) = uk(t), y1(0) = ξk,

ẏ2(t) − μ2,ky2(t) = uk(t), y2(0) = ξk.

Obviously, the solution of this simple system has the form

y1(t) = ξke
μ1,kt +

t∫

0

uk(s)eμ1,k(t−s) ds,

y2(t) = ξke
μ2,kt +

t∫

0

uk(s)eμ2,k(t−s) ds.

For uk(t) defined by (16), we obviously have y1(T ) = 0 and y2(T ) = 0. Therefore, just as in the case of
a single zero, we find that the functions

ûk(λ) + ξk

λ − μ1,k
,

ûk(λ) + ξk

λ − μ2,k

belong to PWT
+. Now, let us prove a simple lemma.

Lemma 1 (an analogue of Levinson’s theorem [19]). Let f̂(λ) belong to PWT
+ and f̂(μ) = 0, μ ∈ C. Then

f̂(λ)
λ − μ

also belongs to PWT
+.

Proof. Let f(t) be the inverse image of the Laplace transform f̂(λ). The support of f(t) lies on the
interval [0, T ]. Consider the convolution of f(t) with eμt,

g(t) =

+∞∫

0

f(s)eμ(t−s) ds =

T∫

0

f(s)eμ(t−s) ds.

Note that the inverse image of f̂(λ)/(λ − μ) coincides with g(t). For t > T , we have

g(t) = eμt

T∫

0

f(s)e−μs ds = eμtf̂(μ) = 0,

and therefore, the support of g(t) belongs to [0, T ]. The lemma is proved.

By Lemma 1, we have
ûk(λ) + ξk

(λ − μ1,k)(λ − μ2,k)
∈ PWT

+,

since μ2,k is a null-point of the function (ûk(λ) − ξk)/(λ − μ1,k). Now, using the assumptions of the
theorem, we find that

ûk(λ) + ξk

(λ − μ1,k)(λ − μ2,k)
1

Lk(λ)
∈ PW T

+ .

The theorem is proved.

To illustrate how Theorem 2 can be applied, consider the kernel from example (2), i.e., K(t) = e−γt,
γ > 0. Then, K̂(λ) = 1/(λ + γ) and

λ + λ2
kK̂(λ) = λ + λ2

k

1
(λ + γ)

= (λ2 + γλ + λ2
k)

1
(λ + γ)

.
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Therefore, in this case, Lk(λ) = 1/(λ + γ) does not depend on k. Since the sequence of eigenvalues λ2
k

tends to infinity as k → +∞, it follows that, for all large enough k, both roots μ1,k and μ2,k of the
quadratic equation λ2 + γλ + λ2

k = 0 are complex with negative real parts. Let us verify the conditions
of the theorem. Consider an arbitrary function F (λ) ∈ PW T

+ such that F (a) = 0 for some a ∈ C. Then

(λ + γ)
F (λ)
λ − a

= F (λ) +
a + γ

λ − a
F (λ).

Hence we obtain the desired result.
The case of λ + λ2

kK̂(λ) having precisely N mutually distinct complex roots is more difficult. This
happens, for instance, if K(t) is a sum of finitely many decaying exponential functions (example (4)). The
structure of the set of zeroes and their asymptotic behavior are thoroughly examined in [7,20]. In the case
of N zeroes, one has to solve countably many finite-dimensional problems for N -dimensional moments.
Then, the control function can be constructed in a form similar to (16), but the sum will contain N terms.
Some methods for finding solutions of such systems for moments, in a similar case, have been described
in [12,13].

4. Boundary Control

In this section, we consider a one-dimensional problem of boundary control concentrated on one end
of an interval. In [15], a sufficient condition was obtained for a system to be noncontrollable by one
end. As a consequence, it is impossible to bring the system to rest by applying control on an arbitrary
subinterval. In [14], this result was generalized for a two-dimensional case. More precisely, it was shown
that if the control function u(t, x) in system (1)–(3) identically vanishes outside a domain D such that
D̄ ⊂ Ω and K̂(λ) has at least one root λ0, then the system is noncontrollable. This means that there is
an initial value ξ such that for any control u(t) identically vanishing for t > T , the corresponding solution
θu(t) does not identically vanish outside any finite interval (with respect to t). Systems noncontrollable
by one end (and therefore, by a subinterval) include those whose kernels K(t) can be represented as sums
of two or more decaying exponents. In this connection, it should be said that the condition that K̂(λ) has
no zeroes is insufficient for the controllability of a system (for instance, the Abelian kernel with γ ∈ (0, 1);
see [15]).

Consider the following one-dimensional problem of boundary control:

θt(t, x) −
t∫

0

K(t − s)θxx(s, x) ds = 0, t > 0, x ∈ (0, π). (17)

θ|t=0 = ξ(x), (18)

θ(t, 0) = v(t), θ(t, π) = 0. (19)

The aim is to find the control v(t) ∈ L2(0, +∞) applied to the left end-point of the segment [0, π] such
that v(t) identically vanishes on the set {t : t > T} for some T > 0 and ensures that the corresponding
solution θv(t) also identically vanishes on {t : t > T}.

Recall the well-known definition of the so-called Dirichlet mapping, denoted by D. In a domain Ω,
consider the boundary value problem for the Laplace equation with a nonzero Dirichlet condition for the
trace on the boundary Γ. If this trace is an element of L2(Γ), then the solution of this problem exists
and is an element of H1/2(Ω). Thus, we have a mapping from L2(Γ) to H1/2(Ω). In the one-dimensional
case, say Ω = (0, π), the Laplace operator coincides with double differentiation, while the trace on the
boundary is just the “value” of the solution at the end-points of the interval. Taking zero as the boundary
value at the right end-point and an arbitrary v at the left, we obviously have

Dv =
(
1 − x

π

)
v.

Let v ∈ L2(0, T ) with an arbitrary T > 0, and ξ ∈ L2(0, π).
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Definition 2 (see [16]). A function

θ(t) ∈ C
(
[0, T ]; L2(0, π)

)
is called a solution of problem (17)–(19), if θ(t) satisfies the integral equation

θ(t) = R+(t)ξ − B

t∫

0

R−(t − s)Dv(s) ds −
t∫

0

L(t − s)Dv(s) ds +

t∫

0

L(t − s)θ(s) ds, (20)

where

R−(t) =
1
2
(eBt − e−Bt),

the operators R+(t) and L(t) are defined in Sec. 2.

It is known that under the above assumptions about the boundary and the initial conditions, a solution
of problem (17)–(19) exists and is unique in the specified class.

Definition 3. A system of functions {eμjt}+∞
j=1, μj ∈ C, j = 1, 2, . . . , is called minimal in L2(0, T ) if none

of these functions can be approximated, with any given accuracy in the norm of this space, by linear
combinations of the rest.

Among such systems, an important role is played by the so-called uniformly minimal systems. A sys-
tem {eμjt}+∞

j=1 is called uniformly minimal (see [19]) in L2(0, T ) if

dist
(
eμjt, span{eμit}i�=j

) ≥ α‖eμjt‖L2(0,T ).

It is well known that the eigenfunctions of the Dirichlet problem for the operator

A = − ∂2

∂x2

have the form

ϕk(x) =

√
2
π

sin kx.

Since these eigenfunctions form a basis in L2(0, π), we seek a solution of problem (17)–(19) in the form
of a series:

θ(t, x) =
+∞∑
k=1

θk(t)ϕk(x). (21)

Substituting (21) into (20), we get

θk(t) = ξk cos kt +

t∫

0

K ′(0)θk(s) cos k(t − s) ds −
t∫

0

K ′(t − s)θk(s) ds

+

t∫

0

θk(s)

t−s∫

0

K ′′(ζ) cos k(t − s − ζ)dζ ds +

√
2
π

t∫

0

v(s) sin k(t − s) ds

−
√

2
π

1
k

t∫

0

K ′(0)v(s) cos k(t − s) ds +

√
2
π

1
k

t∫

0

K ′(t − s)v(s) ds

−
√

2
π

1
k

t∫

0

v(s)

t−s∫

0

K ′′(ζ) cos k(t − s − ζ) dζ ds. (22)
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Passing to the Laplace transforms of both sides of (22) and expressing θ̂k(λ), we find that

θ̂k(λ) =
√

πξk +
√

2kK̂(λ)v̂(λ)√
π
(
λ + k2K̂(λ)

) . (23)

If λ = 0 is a root of the equation K̂(λ) = 0, then (23) cannot hold, in general, for the quantities θ̂k(λ)
corresponding to functions of class PW+, and therefore, system (17)–(19) cannot be brought to rest.

In order that θ̂k ∈ PW+, it is necessary (but not sufficient) that

T∫

0

v(t)e−λt dt =
√

πkξk√
2λ

, (24)

for λ 
= 0 satisfying the equation λ + k2K̂(λ) = 0. If K̂(λ) has at least one zero, then the problem for the
moments (24) has no solutions, in general (see [15]), and therefore, the system is noncontrollable.

Let Λ = {μj} be the set of all roots of the equation λ+k2K̂(λ) = 0 for each k, and let μj 
= 0 for any j.
Here j ∈ J , where J is a set of indexes. Note that the set {μj} coincides with the spectrum of the original
problem, i.e., the set of all λ for which there is a nontrivial solution of the equation λθ̂ + K̂(λ)θ̂xx = 0
with the corresponding homogeneous boundary conditions.

Denote by nΛ(t) the number of points of the spectrum Λ belonging to the circle of radius t with center
at the origin. We introduce a parameter a∗ describing the “density” of the spectrum:

a∗ = lim
r→+∞

π

r

r∫

0

nΛ(t)
t

dt.

In examples (4) and (5) (for γ ∈ (−∞, 0)), we have a∗ = ∞ and the corresponding systems are
noncontrollable, because of the presence of accumulation points in the spectrum and the “slow” conver-
gence of |μj | to infinity (i.e.,

∑
j

1/|μj |σ = +∞ for some σ > 1). On the other hand, in example (5) for

0 < γ < 1, the points of the spectrum tend to infinity at “a sufficiently fast” rate and a∗ = 0. This fact
indicates that control might be possible within an arbitrarily short time interval, but it is shown in [15]
that a system with such a kernel is noncontrollable. For the heat equation (example (3)), the quantities
|μj | tend to infinity as j2, the spectrum Λ is “rarefied,” and a∗ = 0, which, as in the previous case,
suggests the possibility of control over an arbitrarily short time. This fact has indeed been established
in [18] for a more general two-dimensional equation, and it seems that those methods are applicable in
the one-dimensional case. In examples (1) and (2), the parameter a∗ is finite and it can also be shown
that a∗ = T ∗, where T ∗ is the time of the optimal speed-in-action. Moreover, in these cases, one can find
explicit expressions for the optimal control yielding the solution of the speed-in-action problem.

Our next statement follows from (24).

Theorem 3. Suppose that the speed-in-action problem for system (17)–(19) has a solution. Then the
time of the optimal speed-in-action T ∗ is not less than a∗.

Proof. Suppose that for the control time we have T < a∗. Let us show that in this case the system cannot
be brought to rest. As shown in [19, p. 131], if {λj} is a system of complex values, 0 
∈ {λj}, and

lim
r→+∞

( r∫

0

n{λj}(t)
t

dt − T

π
r − 1

2
log r

)
> −∞,

then the system of exponents {eiλjt} is non-minimal in L2(−T/2, T/2).
Since e−μjt = ei(iμj)t and nΛ(t) ≡ n{iμj}(t), the above statement ensures that the system {e−μjt} is

non-minimal in L2(−T/2, T/2). It is not difficult to show that the system is also non-minimal in L2(0, T ).
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Let us show that the set {e−μjt} is dense in L2(0, T ) for T < a∗. We are going to use the following
result established in [21]. If {λj} is a system of complex values, 0 
∈ {λj}, and

lim
r→+∞

( r∫

0

n{λj}(t)
t

dt − T

π
r +

1
2

log r

)
> −∞,

then the system of exponents {eiλjt} is dense in L2(0, T ). This statement immediately implies that the
system {e−μjt} is dense in L2(0, T ) for T < a∗.

To simplify our further exposition, we assume, without loss of generality, that for each k, the equation
λ + λ2

kK̂(λ) = 0 has just one root μk. Therefore, from (24), we obtain the system of moments

T∫

0

v(t)e−μkt dt =
√

πkξk√
2μk

. (25)

As we have shown, the system {e−μkt} is dense and non-minimal in L2(0, T ), and thus, there is an element
e−μrt without which the system remains dense in this space. Set ξk = 0 for all k 
= r, and ξr = 1. Then,
in view of the density of the system {e−μkt}k �=r, we have v(t) ≡ 0, which is impossible. The theorem is
proved.

Remark. Suppose that T ∗ = a∗ and the following conditions hold:

(1) the equation λ + k2K̂(λ) = 0 has precisely N mutually disjoint complex roots {μi
k}, μi

k 
= 0,
i = 1, . . . , N , for each k. Recall that instead of {μi

k} we also write {μj}, where j ∈ J (in our case,
J the set of all positive integers);

(2) the corresponding system of exponents {e−μjt}, supplemented by the identical unity (i.e. e0), is
dense and uniformly minimal on the interval [0, a∗];

(3) all roots {μj} satisfy the condition ‖e−μjt‖L2(0,a∗) ≥ α with α > 0 independent of j.

Then the optimal control has the form

v(t) = Cf0(t) +
+∞∑
j=1

fj(t)dj ,

where {fj(t)}+∞
j=0 is a system biorthogonal to {1} ∪ {e−μjt} on the interval [0, a∗], dj are certain known

numbers (the right-hand sides of system (24)), and C is an unknown constant.
Indeed, the existence of the biorthogonal system and the L2-convergence of the series for v(t) follow

from the fact that the system {1}∪ {e−μjt} is uniformly minimal on the interval [0, a∗], together with the
condition

‖e−μjt‖L2(0,a∗) ≥ α.

Of course, it is assumed here that the initial values are sufficiently smooth (see Sec. 2), in order to ensure
a sufficiently fast decay of the Fourier coefficients ξk.

Next, we give an example of a kernel whose Laplace transform has no zeroes, its corresponding system
being noncontrollable. Let K(t) = e−2γt (see example (2)) with a sufficiently small γ. The equation with
this kernel is equivalent to the telegraph equation. In this case, K̂(λ) has no zeroes and Theorem 3 can
be applied. Equation (17) takes the form

θt(t, x) −
t∫

0

e−2γ(t−s)θxx(s, x) ds = 0. (26)
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Since the eigenfunctions form a basis, we can use the expansion (21), which gives us the countable system
of equations

θ̇k(t) −
t∫

0

e−2γ(t−s)

(
−k2θn(s) +

√
2
π

kv(s)

)
ds = 0, θk(0) = ξk. (27)

Differentiating the last equation and eliminating the integral term, we find that the Cauchy problem (27)
is equivalent to the problem

θ̈k(t) + 2γθ̇k(t) + k2θk(t) =

√
2
π

kv(t), θk(0) = ξk, θ̇k(0) = 0. (28)

The solution of the Cauchy problem (28) has the form

θk(t) = ξke
−γt cos αkt +

γ

αk
ξke

−γt sinαkt + hk

t∫

0

v(s)e−γ(t−s) sinαk(t − s) ds, (29)

where

αk =
√

k2 − γ2, hk =
k

αk

√
2
π

.

Differentiating (29), we get

θ̇k(t) = −ξk

(
αk +

γ2

αk

)
e−γt sin αkt

− hkγ

t∫

0

v(s)e−γ(t−s) sinαk(t − s) ds + hkαk

t∫

0

v(s)e−γ(t−s) cos αk(t − s) ds. (30)

The conditions of rest, θk(T ) = 0 and θ̇k(T ) = 0, yield

− ξk

(
αk +

γ2

αk

)
sin αkT − hkγ

T∫

0

v(s)eγs sinαk(T − s) ds + hkαk

T∫

0

v(s)eγs cos αk(T − s) ds = 0,

ξk cos αkT +
γ

αk
ξk sin αkT + hk

T∫

0

v(s)eγs sinαk(T − s) ds = 0.

Multiplying the second equation by γ and adding to the first, we obtain the equivalent system

T∫

0

v(s)eγs cos αk(T − s) ds =
ξk

hk
sinαkT,

T∫

0

v(s)eγs sin αk(T − s) ds = − ξk

hk
cos αkT − γ

hkαk
ξk sinαkT.

(31)
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Taking T = 2π in the system for moments (31), changing the variable to t = 2π − s, and setting
w(t) = v(2π − t), we obtain

2π∫

0

w(t)e−γt cos(αkt) dt = e−2πγ ξk

hk
sin(2παk),

2π∫

0

w(t)e−γt sin(αkt) dt = −e−2πγ ξk

hk
cos(2παk) − γe−2πγ

hkαk
ξk sin(2παk).

(32)

Let us multiply the second equation of system (32) by i and add the result to the first equation.
Doing the same with this system, after multiplying the second equation by −i, we obtain the equivalent
system

2π∫

0

w(t)e(−γ+iαk)t dt = qk,

2π∫

0

w(t)e(−γ−iαk)t dt = q̄k,

(33)

where

qk = e−2πγ ξk

hk
sin(2παk) − ie−2πγ ξk

hk

(
cos(2παk) +

γ

αk
sin(2παk)

)
.

Consider the system of exponents {e±iαkt}+∞
k=1 (here, i is the imaginary unit) and set e±k(t) = e±iαkt.

Let us supplement this system with the element e0 = 1 and show that the resulting system is uniformly
minimal in L2(0, 2π). Note that

√
k2 − γ2 = k + O

(
1
k

)
.

We have

αk = k + O

(
1
k

)
.

It is known that this is a system of equiconvergence (see [19, p. 170]), and therefore, it is minimal. It has
also been shown (see [19, p. 137, Theorem 2.15]) that in this case, equiconvergence is equivalent to uniform
minimality, since the system is dense in L2(0, 2π) for sufficiently small γ. Then there is a biorthogonal
system {f±k(t)}+∞

k=0 (see [19]) such that

2π∫

0

fk(t)ej(t) dt = δkj , k, j = 0,±1,±2, . . . ,

and this biorthogonal system is uniformly bounded in the norm of L2(0, 2π). Let us represent the control
function w(t), which is a solution of system (33), in the form of a series with respect to the biorthogonal
system:

w(t) = eγt
∑

k=±1,±2,...

fk(t)qk, (34)

where q−k = q̄k, by definition.
In conclusion, we present a scheme that gives a general idea of the questions considered in this paper.
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K̂(λ)

has roots has no roots

no controllability
over a subdomain

λ + λ2
kK̂(λ) has precisely

N mutually distinct simple

roots {μi
k} with

nonpositive real parts, for
each k = 1, 2, . . .

for N = 2[
(λ−μ1

k)(λ−μ2
k)

λ+λ2
k

K̂(λ)

]
F (λ)
λ−a

∈ PW T
+ for any

F (λ) ∈ PWT
+ such that F (a) = 0 with some

additional conditions (asymptotics of roots)

K(t) =
N−1∑
i=1

cie−γit,

N > 1, ci > 0, γi > 0

bounded controllability over
the entire interval

(domain), but not its part!

λ + λ2
kK̂(λ) has

roots {μn},
n = 1, 2, . . .

system {eμnt}
such that

+∞∑
n=1

1
|μn|γ =

+∞, for some
γ > 1

system {eμnt} is
uniformly
minimal

no controllability
by the end-point
of the interval

(one-dimensional
case) or

a subdomain
(multi-

dimensional
case)

there are examples
of controllability

by an end-point of
an interval

(one-dimensional
case): K(t) = 1;

e−γt, γ > 0 is
sufficiently small

Conclusion

ConclusionConclusion

Conclusion Conclusion
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