
1 23

Journal of Dynamical and Control
Systems
 
ISSN 1079-2724
Volume 19
Number 4
 
J Dyn Control Syst (2013) 19:611-623
DOI 10.1007/s10883-013-9199-y

Exact Controllability of the Distributed
System, Governed by String Equation with
Memory

Igor Romanov & Alexey Shamaev



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



J Dyn Control Syst (2013) 19:611–623
DOI 10.1007/s10883-013-9199-y

Exact Controllability of the Distributed System,
Governed by String Equation with Memory

Igor Romanov · Alexey Shamaev

Received: 19 March 2013 / Revised: 7 April 2013 /
Published online: 28 September 2013
© Springer Science+Business Media New York 2013

Abstract We will consider the exact controllability of the distributed system, gov-
erned by string equation with memory. It will be proved that this mechanical system
can be driven to an equilibrium point in a finite time, the absolute value of the
distributed control function being bounded. In this case, the memory kernel is a
linear combination of exponentials.
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1 Introduction

In this article, we will consider the problem of exact controllability of a system,
governed by the integro-differential equation

�tt(t, x) − K(0)�xx(t, x) −
t∫

0

K′(t − s)�xx(s, x)ds = u(t, x), x ∈ (0;π), t > 0. (1)

�|t=0 = ϕ0(x), �t|t=0 = ϕ1(x), (2)

�|x=0 = 0, �|x=π = 0. (3)
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612 Igor Romanov and Alexey Shamaev

Here,

K(t) =
N∑

j=1

c j

γ j
e−γ j t,

where c j and γ j are given positive constant numbers, u(t, x) is a control supported
(in x) on an interval (0, π) and |u(t, x)| ≤ M, M > 0 is a given constant number. The
goal of the control is to drive this mechanical system to rest in a finite time. We say
that a system is controllable to rest when for every initial conditions ϕ0, ϕ1, we can
find a control u such that the corresponding solution �(t, x) of problem (1)–(3) and
its first derivative of t �t(t, x) hit zero at t = T.

Similar problems for membranes and plates were studied earlier in monograph [1].
It was proved that the vibrations of these mechanical systems can be driven to rest by
applying bounded (in absolute value) and volume-distributed control functions. The
existence of a bounded (in absolute value) boundary control that drives a string to
rest was proved in [2]. In this case, the so-called moment problem was effectively
applied. An overview of the results concerning the boundary controllability of
distributed systems can be found in [3]. Problems of controllability of systems similar
to Eq. 1 were considered in [4]. A condition under which a solution to the heat
equation with memory cannot be driven to rest in a finite time was formulated. This
condition is there are roots of some analytic functions of a complex variable in the
domain of holomorphism.

Let us prove now that system (1) is uncontrollable if u(t, x) is supported (in x), as
well as in [4], on an interval [a, b ] which is properly contained in [0, π]. It is clear that
Eq. 1 can be written in the following form:

∂

∂t

⎛
⎝�t(t, x) −

t∫

0

K(t − s)�xx(s, x)ds −
t∫

0

u(s, x)ds

⎞
⎠ = 0.

Obviously, function �(t, x) is a solution of Eq. 1 if and only if this function is a
solution of the following equation:

�t(t, x) −
t∫

0

K(t − s)�xx(s, x)ds −
t∫

0

u(s, x)ds = f (x), (4)

where f (x) is an arbitrary function. Let t in Eq. 4 be equal to zero; then, we obtain

f (x) = ϕ1(x).

Let ϕ1(x) ≡ 0. We introduce

P(t, x) =
t∫

0

u(s, x)ds.

Thus, problem (1)–(3) reduce to the problem

�t(t, x) −
t∫

0

K(t − s)�xx(s, x)ds = P(t, x), x ∈ (0;π), t > 0. (5)

�|t=0 = ϕ0(x), (6)

�|x=0 = 0, �|x=π = 0. (7)
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Exact Controllability of the Distributed System 613

Note that the support of P(t, x) is the subset of supp{u(t, x)}. Consequently, if
supp{u(t, x)} ⊂ [a, b ] that in its turn is properly contained in [0, π], then the same
is true for supp{P(t, x)}. It is the problem considered in [4]. If K(t) is a linear
combination of two exponentials, then systems (5)–(7) are uncontrollable to rest.
It means that there is an initial condition ϕ0 such that for any control P(t, x), where
P(t, x) belongs to the corresponding space, the solution of Eqs. 5–7 cannot be driven
to rest.

Using arguments similar to those discussed above, it can be proved that system
(1)–(3) is uncontrollable to rest if K(t) is a linear combination of N exponentials,
where N ≥ 2.

2 Preliminaries

Let A := − ∂2

∂x2 be an operator acting on a Sobolev space H := H2(0, π) with bound-
ary condition (3).

We denote by W2
2,γ (R+, A) the linear space of functions f : R+ = (0,+∞) → H

equipped with the norm

‖�‖W2
2,γ (R+,A) =

⎛
⎝

+∞∫

0

e−2γ t
(∥∥�(2)(t)

∥∥2

H + ‖A�(t)‖2
H

)
dt

⎞
⎠

1
2

, γ ≥ 0.

For more details about W2
2,γ (R+, A), see chapter 1 of the monograph [5].

Definition 2.1 A function �(t, x) is called a strong solution of problem (1)–(3) if for
some γ ≥ 0, this function belongs to the space W2

2,γ (R+, A), satisfies Eq. 1 almost
everywhere (in t) on the positive semiaxis R+ and satisfies the initial condition (2).

Let us denote the function of a complex variable λ by

ln(λ) := λ2 + n2λK̂(λ),

where

K̂(λ) =
N∑

k=1

ck

γk(λ + γk)
.

Now, we formulate two theorems (see [6]) which are devoted to correct solvability
of the initial boundary value problem (1)–(3).

Theorem 2.2 Let the function �(t, x) ∈ W2
2,γ (R+, A), γ > 0, be a strong solution

of problem (1)–(3) with u(t, x) ≡ 0, t ∈ R+. Then, for any t ∈ R+, the following
representation is true:

�(t, x) = 1√
2π

∞∑
n=1

(ϕ1n + λ+
n ϕ0n)eλ+

n tsin nx

l(1)
n (λ+

n )
+ 1√

2π

∞∑
n=1

(ϕ1n + λ−
n ϕ0n)eλ−

n tsin nx

l(1)
n (λ−

n )

+ 1√
2π

∞∑
n=1

(
N−1∑
k=1

(ϕ1n − qk,nϕ0n)e−qk,nt

l(1)
n (−qk,n)

)
sin nx, (8)
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614 Igor Romanov and Alexey Shamaev

where −qk,n is real zeros of the function ln(λ) (qk,n > 0), λ±
n is a pair of complex

conjugate zeros of ln(λ) and series (8) converges in the norm of the space H.

Theorem 2.3 Suppose that u(t, x) ∈ C([0, T], H) for any T > 0; �(t, x) ∈
W2

2,γ (R+, A) is a strong solution of problem (1)–(3) for some γ > 0, ϕ0 = ϕ1 = 0.
Then, for any t ∈ R+, the following representation holds:

�(t, x) = 1√
2π

∞∑
n=1

ωn(t, λ+
n )sin nx + 1√

2π

∞∑
n=1

ωn(t, λ−
n )sin nx

+ 1√
2π

∞∑
n=1

(
N−1∑
k=1

ωn(t,−qk,n)

)
sin nx, (9)

where

ωn(t, λ) =

t∫
0

un(s)eλ(t−s)ds

l(1)
n (λ)

, un(t) = 2

π

π∫

0

u(t, x)sin nxdx

and series (9) converges in the norm of the space H.

The following lemma should be stated:

Lemma 2.4 For any natural number n, the equality holds

1

l(1)
n (λ+

n )
+ 1

l(1)
n (λ−

n )
+

N−1∑
k=1

1

l(1)
n (−qk,n)

= 0.

Proof We shall deal with the solution of problem (1)–(3) in the case of ϕ0 = ϕ1 =
0. According to Theorem 2.3, this solution has the form Eq. 9, with u(t, x) being
arbitrary and satisfying theorem conditions. Taking the partial derivative of �(t, x)

with respect to t, we obtain

∂�(t, x)

∂t
= 1√

2π

∞∑
n=1

(
1

l(1)
n (λ+

n )
+ 1

l(1)
n (λ−

n )
+

N−1∑
k=1

1

l(1)
n (−qk,n)

)
un(t) sin nx

+ 1√
2π

∞∑
n=1

λ+
n ωn(t, λ+

n ) sin nx + 1√
2π

∞∑
n=1

λ−
n ωn(t, λ−

n ) sin nx

+ 1√
2π

∞∑
n=1

(
N−1∑
k=1

(−qk,n)ωn(t,−qk,n)

)
sin nx. (10)
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Since �t(t, x)|t=0 = 0, then for any natural number n from Eq. 10 arises

(
1

l(1)
n (λ+

n )
+ 1

l(1)
n (λ−

n )
+

N−1∑
k=1

1

l(1)
n (−qk,n)

)
un(0) = 0. (11)

By virtue of the fact that u(t, x) is arbitrary, it is chosen in such a way that all its
Fourier coefficients un(t) with respect to t = 0 are non-zero. Thus, dividing Eq. 11 by
un(0), we obtain the required statement. Lemma is proved. �

3 The Main Results

It is the following theorem which presents the main result of the article:

Theorem 3.1 Let ϕ0 ∈ C3[0, π] and ϕ0(0) = ϕ0(π) = ϕ′′
0 (0) = ϕ′′

0 (π) = 0,
ϕ1 ∈ C3[0, π] and ϕ1(0) = ϕ1(π) = ϕ′′

1 (0) = ϕ′′
1 (π) = 0; M > 0 is a certain constant.

Then, there are a time point T > 0 and a control u(t, x) ∈ C([0, T], H) depending on
the value of M, such that the solution � of problem (1)–(3) satisf ies the equalities

�(T, x) = �′
t(T, x) = 0, ∀x ∈ (0, π) (12)

and the restriction

|u(t, x)| ≤ M, ∀t ∈ (0, T], x ∈ (0, π).

Proof Let u(t, x) be the function satisfying the theorem conditions and T is some
instant of time. According to Theorems 2.2 and 2.3, the solution of problem (1)–(3)
could be represented as Eqs. 8 and 9. Hence, we obtain

�(t, x)= 1√
2π

∞∑
n=1

(ϕ1n + λ+
n ϕ0n)eλ+

n t sin nx

l(1)
n (λ+

n )
+ 1√

2π

∞∑
n=1

(ϕ1n + λ−
n ϕ0n)eλ−

n t sin nx

l(1)
n (λ−

n )

+ 1√
2π

∞∑
n=1

N−1∑
k=1

(
(ϕ1n − qk,nϕ0n)e−qk,nt

l(1)
n (−qk,n)

)
sin nx + 1√

2π

∞∑
n=1

t∫
0

un(s)eλ+
n (t−s)ds

l(1)
n (λ+

n )
sin nx

+ 1√
2π

∞∑
n=1

t∫
0

un(s)eλ−
n (t−s)ds

l(1)
n (λ−

n )
sin nx + 1√

2π

∞∑
n=1

N−1∑
k=1

⎛
⎜⎜⎜⎝

t∫
0

un(s)e−qk,n(t−s)ds

l(1)
n (−qk,n)

⎞
⎟⎟⎟⎠sin nx.

(13)
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Therefore,

∂�(t, x)

∂t
= 1√

2π

∞∑
n=1

λ+
n (ϕ1n + λ+

n ϕ0n)eλ+
n t sin nx

l(1)
n (λ+

n )

+ 1√
2π

∞∑
n=1

λ−
n (ϕ1n + λ−

n ϕ0n)eλ−
n t sin nx

l(1)
n (λ−

n )

+ 1√
2π

∞∑
n=1

N−1∑
k=1

(
(−qk,n)(ϕ1n − qk,nϕ0n)e−qk,nt

l(1)
n (−qk,n)

)
sin nx

+ 1√
2π

∞∑
n=1

(
1

l(1)
n (λ+

n )
+ 1

l(1)
n (λ−

n )
+ 1

l(1)
n (−qn)

)
un(t) sin nx

+ 1√
2π

∞∑
n=1

λ+
n

t∫
0

un(s)eλ+
n (t−s)ds

l(1)
n (λ+

n )
sin nx+ 1√

2π

∞∑
n=1

λ−
n

t∫
0

un(s)eλ−
n (t−s)ds

l(1)
n (λ−

n )
sin nx

+ 1√
2π

∞∑
n=1

N−1∑
k=1

⎛
⎜⎜⎜⎝

(−qk,n)
t∫

0
un(s)e−qk,n(t−s)ds

l(1)
n (−qk,n)

⎞
⎟⎟⎟⎠ sin nx. (14)

Note that the fourth summand in Eq. 14 is equal to zero, by Lemma 2.4. Using
condition (12) and formulas (13) and (14), we obtain

−
(

(ϕ1n + λ+
n ϕ0n)eλ+

n T

l(1)
n (λ+

n )
+ (ϕ1n + λ−

n ϕ0n)eλ−
n T

l(1)
n (λ−

n )
+

N−1∑
k=1

(ϕ1n − qk,nϕ0n)e−qk,nT

l(1)
n (−qk,n)

)

=

T∫
0

un(s)eλ+
n (T−s)ds

l(1)
n (λ+

n )
+

T∫
0

un(s)eλ−
n (T−s)ds

l(1)
n (λ−

n )

+
N−1∑
k=1

T∫
0

un(s)e−qk,n(T−s)ds

l(1)
n (−qk,n)

, n = 1, 2, ..., (15)

−λ+
n (ϕ1n + λ+

n ϕ0n)eλ+
n T

l(1)
n (λ+

n )
− λ−

n (ϕ1n + λ−
n ϕ0n)eλ−

n T

l(1)
n (λ−

n )

−
N−1∑
k=1

(−qk,n)(ϕ1n − qk,nϕ0n)e−qk,nT

l(1)
n (−qk,n)

=
λ+

n

T∫
0

un(s)eλ+
n (T−s)ds

l(1)
n (λ+

n )
+

λ−
n

T∫
0

un(s)eλ−
n (T−s)ds

l(1)
n (λ−

n )

+
N−1∑
k=1

(−qk,n)
T∫
0

un(s)e−qk,n(T−s)ds

l(1)
n (−qk,n)

, n = 1, 2, ... . (16)
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Exact Controllability of the Distributed System 617

We introduce

an = −(ϕ1n + λ+
n ϕ0n), ān = −(ϕ1n + λ−

n ϕ0n),

b k,n = −(ϕ1n + (−qk,n)ϕ0n), k = 1, 2, ..., N − 1.

Let us set equal coefficients preceding

1

l(1)
n (λ+

n )
,

1

l(1)
n (λ−

n )
,

1

l(1)
n (−qk,n)

, k = 1, 2, ..., N − 1.

in the right and left parts of Eqs. 15 and 16. Thus, a new moment problem occurs:

T∫

0

un(s)eλ+
n (T−s)ds = aneλ+

n T ,

T∫

0

un(s)eλ−
n (T−s)ds = āneλ−

n T , n = 1, 2, ...,

T∫

0

un(s)e−qk,n(T−s)ds = b k,ne−qk,n T , k = 1, 2, ..., N − 1, n = 1, 2, ... . (17)

Obviously, if moment problem (17) is solvable, then moment problems (15) and
(16) are solvable as well. Elimination of common factors in both parts (Eq. 17) allows
to represent this system as follows:

T∫

0

un(s)e−λ+
n sds = an,

T∫

0

un(s)e−λ−
n sds = ān, n = 1, 2, ...,

T∫

0

un(s)eqk,nsds = b k,n, k = 1, 2, ..., N − 1, n = 1, 2, ... . (18)

Due to the fact that the complex numbers λ+
n and λ−

n , and an and ān are conjugate,
the first and the second equations in problem (18) are equivalent. This means that if
the function un(s) is a solution of the first equation, then it is a solution of the second
one. Therefore, it is possible to eliminate one of the equations in Eq. 18, for instance,
the second one (actually the countable number of equations is excluded). Thus, the
moment problem can be rewritten as follows:

T∫

0

un(s)e−λ+
n sds = an,

T∫

0

un(s)eqk,nsds = b k,n,

k = 1, 2, ..., N − 1, n = 1, 2... . (19)

Let us replace −λ+
n = λn in Eq. 19. Notice that Reλn > 0 and qk,n > 0 (see [6]).

Finally, we obtain the system of N moments for each natural number n:

T∫

0

un(s)eλnsds = an,

T∫

0

un(s)eqk,nsds = b k,n, k = 1, 2, ..., N − 1. (20)
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618 Igor Romanov and Alexey Shamaev

The solution of Eq. 20 is sought in the following form:

un(s) = C0,neλns +
N−1∑
k=1

Ck,neqk,ns, n = 1, 2, ... . (21)

Set C0,n and Ck,n as some unknown constants. Substituting Eq. 21 in Eq. 20, we get
the system of N algebraic equations for each natural number n:

C0,n

T∫

0

e2λnsds +
N−1∑
k=1

Ck,n

T∫

0

e(λn+qk,n)sds = an,

C0,n

T∫

0

e(λn+qk,n)sds +
N−1∑
k=1

Ck,n

T∫

0

e2qk,nsds = b k,n, k = 1, 2, ..., N − 1. (22)

Let us find the determinant 	n of problem (22).

	n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T∫
0

e2λnsds
T∫
0

e(λn+q1,n)sds . . .
T∫
0

e(λn+qN−1,n)sds

T∫
0

e(q1,n+λn)sds
T∫
0

e2q1,nsds . . .
T∫
0

e(q1,n+qN−1,n)sds

...
...

. . .
...

T∫
0

e(qN−1,n+λn)sds
T∫
0

e(qN−1,n+q1,n)sds . . .
T∫
0

e2qN−1,nsds

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

As far as

T∫

0

e(qi,n+q j,n)sds = 1

qi,n + q j,n
e(qi,n+q j,n)T − 1

qi,n + q j,n
, (23)

then using equality (23) and the well-known property of determinants
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

b i1 + ci1 b i2 + ci2 . . . b in + cin
...

...
. . .

...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

b i1 b i2 . . . b in
...

...
. . .

...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

ci1 ci2 . . . cin
...

...
. . .

...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (24)
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we obtain

	n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

e2λn T

2λn

e(λn+q1,n)T

λn+q1,n
. . . e(λn+qN−1,n)T

λn+qN−1,n

e(q1,n+λn)T

q1,n+λn

e2q1,n T

2q1,n
. . . e(q1,n+qN−1,n)T

q1,n+qN−1,n

...
...

. . .
...

e(qN−1,n+λn)T

qN−1,n+λn

e(qN−1,n+q1,n)T

qN−1,n+q1,n
. . . e2qN−1,nT

2qN−1,n

∣∣∣∣∣∣∣∣∣∣∣∣∣

+ βn(T), (25)

where βn(T) is the sum of all other determinants, which are the result of N-fold
application of property (24) to each row of the determinant 	n.

Let us factor out eλnT from the first row of the determinant in the right side of
Eq. 25 and then take out the same factor from the first column; now, similar action
can be made for the second row and column with the factor eq1,nT and so on.

Thus, we get

	n = e2λn T
N−1∏
j=1

e2q j,nT

∣∣∣∣∣∣∣∣∣∣

1
2λn

1
λn+q1,n

. . . 1
λn+qN−1,n

1
q1,n+λn

1
2q1,n

. . . 1
q1,n+qN−1,n

...
...

. . .
...

1
qN−1,n+λn

1
qN−1,n+q1,n

. . . 1
2qN−1,n

∣∣∣∣∣∣∣∣∣∣
+ βn(T). (26)

Denote

	̄n =

∣∣∣∣∣∣∣∣∣∣

1
2λn

1
λn+q1,n

. . . 1
λn+qN−1,n

1
q1,n+λn

1
2q1,n

. . . 1
q1,n+qN−1,n

...
...

. . .
...

1
qN−1,n+λn

1
qN−1,n+q1,n

. . . 1
2qN−1,n

∣∣∣∣∣∣∣∣∣∣
.

Then,

	n = e2λn T
N−1∏
j=1

e2q j,nT

⎛
⎝	̄n + e−2λn T

N−1∏
j=1

e−2q j,nTβn(T)

⎞
⎠ .

In virtue of the definition of βn(T), the following relation is true:
∣∣∣∣∣∣e

−2λnT
N−1∏
j=1

e−2q j,nTβn(T)

∣∣∣∣∣∣ → 0, as T → +∞.

Let us decompose the determinant 	̄n by the first row.

	̄n = 1

2λn

∣∣∣∣∣∣∣∣∣∣

1
2q1,n

1
q1,n+q2,n

. . . 1
q1,n+qN−1,n

1
q2,n+q1,n

1
2q2,n

. . . 1
q2,n+qN−1,n

...
...

. . .
...

1
qN−1,n+q1,n

1
qN−1,n+q2,n

. . . 1
2qN−1,n

∣∣∣∣∣∣∣∣∣∣
+ �n, (27)

where �n is the sum of all other determinants, occurred after the decomposition.
Notice that there is λ2

n in all summands in the denominator after the expansion of
these determinants, i.e. �n ∼ 1

λ2
n
.
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Let us make the following notation:

Pn =

∣∣∣∣∣∣∣∣∣∣

1
2q1,n

1
q1,n+q2,n

. . . 1
q1,n+qN−1,n

1
q2,n+q1,n

1
2q2,n

. . . 1
q2,n+qN−1,n

...
...

. . .
...

1
qN−1,n+q1,n

1
qN−1,n+q2,n

. . . 1
2qN−1,n

∣∣∣∣∣∣∣∣∣∣
.

Pn is the Cauchy determinant. It is a well-known fact that

Pn =

∏
N−1≥i> j≥1

(qi,n − q j,n)
2

N−1∏
i, j=1

(qi,n + q j,n)

.

As far as qi,n, i = 1, 2, ..., N − 1 is a pairwise different for any n (see [6, 7]); then,
Pn is non-zero.

Hence,

	n = e2λnT
N−1∏
j=1

e2q j,nT

⎛
⎝ 1

2λn
Pn + �n + e−2λn T

N−1∏
j=1

e−2q j,nTβn(T)

⎞
⎠

= 1

2λn
Pne2λnT

N−1∏
j=1

e2q j,nT

⎛
⎝1 + 2λn

Pn
�n + 2λn

Pn
e−2λnT

N−1∏
j=1

e−2q j,nTβn(T)

⎞
⎠ .

Let us denote

�̄n = 2λn

Pn
�n, β̄n(T) = 2λn

Pn
e−2λnT

N−1∏
j=1

e−2q j,nTβn(T).

It leads to the following equation:

	n = 1

2λn
Pne2λnT

N−1∏
j=1

e2q j,nT (1 + �̄n + β̄n(T)
)
. (28)

Notice that �̄n ∼ 1
λn

, β̄n(T) → 0 as T → +∞, the sequence of the modules of
complex roots {|λn|}, tends to +∞ as n → +∞, but the sequence of real numbers
{qk,n}∞n=1 converges to some positive numbers qk; actually, qk,n = qk + o(n−2) (see
[6, 7]). Thus, due to the asymptotic properties of λn and qk,n, there is T such that all
determinants 	n are non-zero for any natural index n.

Let us determine 	0,n by the following formula:

	0,n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an

T∫
0

e(λn+q1,n)sds . . .
T∫
0

e(λn+qN−1,n)sds

b 1,n

T∫
0

e2q1,nsds . . .
T∫
0

e(q1,n+qN−1,n)sds

...
...

. . .
...

b N−1,n

T∫
0

e(qN−1,n+q1,n)sds . . .
T∫
0

e2qN−1,nsds

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Set likewise 	k,n, where k = 1, 2, ..., N − 1:

	k,n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T∫
0

e2λnsds
T∫
0

e(λn+q1,n)sds . . . an . . .
T∫
0

e(λn+qN−1,n)sds

T∫
0

e(q1,n+λn)sds
T∫
0

e2q1,nsds . . . b 1,n . . .
T∫
0

e(q1,n+qN−1,n)sds

...
...

...
...

T∫
0

e(qN−1,n+λn)sds
T∫
0

e(qN−1,n+q1,n)sds . . . b N−1,n . . .
T∫
0

e2qN−1,nsds

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where the column {an, b 1,n, ..., b N−1,n} takes the kth place.
Applying Cramer’s rule, we obtain

C0,n = 	0,n

	n
, Ck,n = 	k,n

	n
, k = 1, 2, ..., N − 1.

Thus, the solution of Eq. 20 at the instant of time t has the following form:

un(t) = 	0,n

	n
eλnt +

N−1∑
k=1

	k,n

	n
eqk,nt.

Let λn = μn − iνn. In [6], it has been proved that μn, νn > 0 for any natural index n.
The estimation of modulus of the function un(t) for any natural n should be provided.
So we have

|un(t)| ≤ |	0,n|
|	n| eλnT +

N−1∑
k=1

|	k,n|
|	n| eqk,nT . (29)

Expanding the determinants 	0,n, 	k,n, k = 1, 2, ..., N − 1, it is clear that the part
of the summands consists of the different exponential products. Notice that the
exponential product with the largest number of factors in the determinant 	0,n has
the form

e2q1,nTe2q2,nT · · · e2qN−1,nT or eλn Te2q1,nTe2q2,nT · · · eq j,nT · · · e2qN−1,nT ,

and in 	k,n

eλnT e2q1,nT e2q2,nT · · · eqk,nT · · · e2qN−1,nT or

e2λnTe2q1,nT e2q2,nT · · · e2qk−1,nTe2qk+1,nT · · · e2qN−1,nT or

e2λnT e2q1,nT e2q2,nT · · · eqk,nT · · · eq j,nT · · · e2qN−1,nT , k �= j .

Thus, there is at least one exponent with a positive index in the denominator of
all summands in the right side of estimation (29). It means that it is possible to make

Author's personal copy



622 Igor Romanov and Alexey Shamaev

the modulus of the function un(t), and hence of the control u(t), be indefinitely small
by means of increasing the time control. Using Eq. 28, we obtain

|un(t)| ≤ 2|λn||	0,n|
|Pn|e2μnT

N−1∏
j=1

e2q j,nT
(
1 − |�̄n| − |β̄n(T)|)

eλn T

+
N−1∑
k=1

2|λn||	k,n|
|Pn|e2μnT

N−1∏
j=1

e2q j,nT
(
1 − |�̄n| − |β̄n(T)|)

eqk,nT . (30)

Now, it is obvious that

|u(t, x)| ≤
∞∑

n=1

|un(t)|. (31)

Using Eqs. 29 and 30, let us estimate the time required to stabilize the system,
providing that the function u(t, x) satisfies the condition

|u(t, x)| ≤ ε, (32)

where ε is an arbitrary constant.
As far as the sequences of real numbers {μn}, {νn}, {qk,n} are such that μn =

μ + o(n−2), νn = Dn and qk,n = qk + o(n−2), where μ, D and qk are some positive
numbers (see [6, 7]), and moreover the sequences {|an|}, {|b k,n|}, {|�n|} tend to zero,
then the following estimations take place:

|u(t, x)| ≤ c
ec1T

( ∞∑
n=1

|λn||an| +
∞∑

n=1

|λn|
(

N−1∑
k=1

|b k,n|
))

≤ c2

ec1T
≤ ε, (33)

where c, c1 and c2 are certain constants and T is great enough. Notice that the conver-
gence of the numerical series in Eq. 33 is caused by the fact that the initial conditions
belong to the corresponding class of functions (see the theorem statement). Thus, the
time T required to drive the system to rest is a solution of the equation

c2

ec1T
= ε.

Finally, we obtain

T = − 1

c1
ln

ε

c2
. (34)

Equality (34) shows that in the case of the system with “memory”, the time
required to stabilize is essentially smaller and then the time for driving to rest the
string without the integral delays, if

T ∼ c
ε

(see [2]). At the same time, controllability of the system with “memory” is lost
during the transition from the control distributed on the segment [a, b ] to the one
distributed on the subsegment. �
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There is a coefficient preceding the function �xx(t, x) corresponding to the kernel
K′(t − s) in the integral part of Eq. 1. Since this coefficient can be arbitrary, there is
no loss of generality in the current form of the equation. In order to perform it, the
arbitrary constant should be added to K(t). This constant is read as the exponential
function with zero index. It can be verified that if a new kernel K1(t) has the form

K1(t) = K(t) + C,

then the results [6] remain valid, and hence, the results of this article about the
controllability still stand. In addition, if K1(t) = C1e−λ1 t + C2, then according to [4]
about the lack of controllability to rest, it is proposed that systems (1)–(3) are not
controlled in case when the control function u(t, x) is supported on a subsegment.
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