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Abstract—The boundary control of vibrations of a plane membrane is considered. A constraint is imposed on
the absolute value of the control function. The goal of the control is to drive the membrane to rest. The proof
technique used in this paper can be applied to a membrane of any dimension, but the two-dimensional case
is considered for simplicity and illustrative purposes.
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The possibility of full stabilization in a finite time
in the case of distributed control was proved in [1].
Additionally, an upper estimate for the optimal control
was given in [1].

The boundary controllability of vibrations of a
plane membrane has been considered by numerous
authors (see, e.g., review articles by Russell [2] and
Lions [3] and references therein). The problem of sta-
bilizing vibrations of a restricted string by means of
boundary control was considered in [4]. Specifically, it
was proved that the string can be driven to rest in a
finite time when the absolute value of the control
function is restricted, and the time required for full
stabilization was estimated. In [5] optimal control
problems for distributed parameter systems were con-
sidered and optimality conditions similar to those for
systems with a finite number of degrees of freedom
were stated. However, this approach often fails to pro-
vide a constructive method for finding an optimal
control. In [3] the problem of stabilizing membrane
vibrations was considered, the existence of a boundary
control was proved, and the time required for driving

the membrane to rest was estimated. In many formu-
lations of problems, the authors rejected the require-
ment of control optimality and considered only the
controllability problem, which considerably simpli-
fied the study. Moreover, no constraint was imposed
on the absolute value of control functions and no
explicit expressions for control functions were found,
but only existence theorems were proved.

The statement of the problem considered in this
paper differs substantially from that considered in [2,
3], since the value of the control function on the
boundary has to satisfy the condition |u(t, x)| ≤ ε. Note
also that we search not for an optimal control, but
rather for an admissible one (i.e., satisfying initial con-
straints).

Consider the following initial–boundary value
problem for the vibration equation of a two-dimen-
sional membrane:

(1)

(2)

(3)

where Ω is a two-dimensional domain with a smooth
boundary, ν is the outward normal to the boundary
of Ω, Σ is the lateral surface of the cylinder QT, the ini-
tial data ϕ(x) and ψ(x) are assumed to be given and are
chosen in what follows from suitable Sobolev spaces,
and u(t, x) is a control function defined on the bound-
ary of Ω.

Let ε > 0 be an arbitrary given number. On the con-
trol function, we impose the constraint

(4)
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The problem is to construct a control u(t, x) satis-
fying inequality (4) such that the corresponding solu-
tion w(t, x) of problem (1)–(3) and its derivative with
respect to t vanish at some time T, i.e.,

(5)

for all x ∈ Ω. If we can obtain a control u(t, x) such that
conditions (5) are satisfied, then system (1)–(3) is
called controllable.

The following theorem is the main result of this
paper.

Theorem 1. Let ϕ(x) ∈ H7(Ω) and ψ(x) ∈ H6(Ω) be
such that

(6)

Then there exists a time T and a control u(t, x) satis-
fying constraint (4) such that system (1)–(3) is control-
lable.

The proof of Theorem 1 consists of two steps. At
the first step, the considered solution and its first
derivative with respect to t are stabilized in a suffi-
ciently small neighborhood of zero in the norm of
C5( ) × C4( ). At the second step, the system in this
small neighborhood is driven to rest.

Below, we describe the basic ideas behind the proof
of this result.

1. THE FIRST STEP OF THE CONTROL
Let us apply the results of [2], where friction is

introduced on the boundary of Ω (or on its portion).
The friction is given by the first derivative of the solu-
tion w(t, x) with respect to t, i.e., the initial–boundary
value problem (1), (2) is considered with boundary
condition

(7)

where k > 0 is the friction coefficient.
Consider the energy of system (1), (2), (7):

It was proved in [2] that friction on the boundary
leads to energy dissipation in the system, namely,

(8)

Moreover, it is true that

(9)

where C(ϕ, ψ) is a constant depending on the initial
data of the system and the friction coefficient k.
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Consider auxiliary system (1), (2), (7) (system with
friction on the boundary). By using estimate (9), we
can prove that the pair

can be made arbitrarily small in the norm of C5( ) ×
C4( ) by choosing a sufficiently large t > 0.

Let w0(t, x) be the solution of (1), (2), (7) corre-
sponding to initial data (ϕ(x), ψ(x)). Substituting w0
only into the right-hand side of condition (7), we
obtain system (1)–(3) with a known boundary condi-
tion:

It is obvious (by the uniqueness theorem) that the
solution w(t, x) of system (1)–(3) is such that the pair
(w(t, x), wt(t, x)) can also be made arbitrarily small in
the norm of C5( ) × C4( ) by choosing a sufficiently
large t > 0.

Using inequality (8), we can prove that

where C1(ϕ, ψ) is independent of k. Therefore, control
constraint (4) can be satisfied by choosing a suffi-
ciently small k.

2. THE SECOND STEP OF THE CONTROL

The pair of functions w = w(T1, x) and  = wt(T1, x)
(T1 is the control time at the first step) is regarded as
new initial data for problem (1)–(3). Recall that, to
according to the above argument, these new initial
conditions are small enough in the norm of C5( ) ×
C4( ). Let us apply the control method consisting in
extending initial data to an unbounded domain. This
method has been applied in many studies (see, e.g., [2]
and references therein).

Let Ωδ be a δ-neighborhood of Ω. Consider an
extension operator E. It is a linear continuous operator
from the space C5( ) × C4( ) to C5( ) × C4( )
such that the support of the extended pair ( (x),

(x)) its derivatives of 5th and 4th orders (respec-
tively) inclusive belongs to . Note that, outside Ωδ, the

functions can be extended by zero to the whole plane. In
a more general case, E was constructed in [6].

Let (w0(x), w1(x)) be an arbitrary element of the
space
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Consider the following Cauchy problem in the
plane:

(10)

(11)

where ( (x), (x)) = E(w0(x), w1(x)) ∈ C5( ) ×
C4( ). Then the solution of this Cauchy problem and
its first time derivative at a sufficiently large t = T2 are

such that (ws(t, x), (t, x)) ∈ #5( ) (since the sup-
port of the initial data is compact). 

Moreover,

(12)

where

We restrict (ws(T2, x) (T2, x)) to Ω and then again
apply the operator E, i.e.,

Now consider the inverse Cauchy problem with
initial conditions

(13)

Let wi(t, x) be its solution.
Since Eq. (1) is reversible in time, we have the esti-

mate

(14)

Let us restrict (wi(0, x), (0, x)) to Ω, i.e.,

Therefore, the pair (wi,r(0, x), (0, x)) is obtained
from (w0(x), w1(x)) by applying a linear continuous
operator, which is denoted by L. Thus,

It follows from (12) and (14) that ||L|| < 1 if T2 is suf-
ficiently large. Thus, the operator I + L is invertible
(I is the identity operator). Therefore, for any initial
condition (w, ) ∈ #5( ), there is a pair (w0(x),
w1(x)) ∈ #5( ) such that

(15)
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Representation (15) determines the control
method used at the second step. Specifically, the pair
(w0(x), w1(x)) is extended to the whole plane by apply-
ing the extension operator E; then the above-
described procedure (the construction of L) is used to
construct the pair (wi(0, x), (0, x)) (the restriction of
which to Ω is L(w0(x), w1(x))). Then the extensions of
the initial data in the original problem (these data are
obtained after applying the first-step control) are
specified by the sum

(16)

Note that (wi(0, x), (0, x)) plays the role of a
“small” perturbation. By the construction of L, the
solution of the Cauchy problem with initial conditions
(16) and its derivative with respect to t obviously van-
ish identically in Ω at t = T2. Then, as a boundary con-
trol, we use the value of the outward normal derivative
of the solution to the Cauchy problem on the bound-
ary of Ω.

To conclude, the control at the second step is rep-
resented in operator form:

where E is the extension operator from Ω to Ωδ, R is

the restriction operator from R2 to Ω, and  and 
are the solution operators of the Cauchy problem
(Poisson’s formula) in direct and reverse time. Note
that the minus sign preceding  is explained by ini-
tial conditions (13).

The initial data (w, ) at the second step of the con-
trol can be made (due to the first step) arbitrarily small
in the norm of #5( ). It is well known that, corre-
sponding to these initial data (after they are extended
to R2 as described above), the solution of the Cauchy
problem for every fixed t > 0 belongs to the space

By using this smoothness property, the energy con-
servation law, and the Sobolev embedding theorem, is
possible is to prove that the restriction of the solution
of the Cauchy problem to  (i.e., the solution of the
original initial–boundary value problem at the second
step) can be made arbitrarily small in the norm of
C1( ) at every t ≥ 0 if (w, ) is previously made suffi-
ciently small. As a result, condition (4) is satisfied.
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