
ISSN 0005-1179, Automation and Remote Control, 2013, Vol. 74, No. 11, pp. 1810–1819. © Pleiades Publishing, Ltd., 2013.
Original Russian Text © I.V. Romanov, A.S. Shamaev, 2013, published in Avtomatika i Telemekhanika, 2013, No. 11, pp. 49–61.

NONLINEAR SYSTEMS

On the Problem of Precise Control of the System

Obeying the Delay String Equation

I. V. Romanov∗,∗∗ and A. S. Shamaev∗∗∗,∗∗∗∗

∗National Research University “Higher School of Economics,” Moscow, Russia
∗∗Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia

∗∗∗Ishlinskii Institute for Mechanics Research, Russian Academy of Sciences, Moscow, Russia
∗∗∗∗Lomonosov Moscow State University, Moscow, Russia

Received November 21, 2012

Abstract—Consideration was given to the problem of precise control of a system obeying the
equation of string with integral “memory.” This system was proved to be reducible to the
quiescent state in a finite time with the use of a distributed action bound in magnitude. The
time to stop oscillations was also estimated.
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1. INTRODUCTION

The present paper considers precise control of a system obeying the following equation:

Θtt(t, x)−K(0)Θxx(t, x)−
t∫

0

K ′(t− s)Θxx(s, x)ds = u(t, x),

x ∈ (0;π), t > 0,

(1)

Θ|t=0 = ϕ0(x), Θt|t=0 = ϕ1(x), (2)

Θ|x=0 = 0, Θ|x=π = 0. (3)

At that,

K(t) =
c1
γ1

e−γ1t +
c2
γ2

e−γ2t,

where c1,2 and γ1,2 are positive constants, u(t, x) is the control distributed in the variable x over the
interval (0, π), and |u(t, x)| � M , M > 0. The control is aimed to drive the system to the quiescent
state in a finite time. The system is said to be reducible to the complete quiescent state if for any
initial conditions one can determine a control such that the corresponding problem solution and its
derivative with respect to t vanish in a finite time.

Similar problems were considered previously in the monograph [1] for the two-dimensional mem-
branes and plates. It was proved that the oscillations of such systems can be stopped in a finite
time with the use of a control action distributed over the entire surface of the plant under con-
sideration. The problem of optimization of the boundary control of string oscillations was first
considered in [2]. In this case, the method of moments was used to advantage. The results of
numerous authors concerning the boundary controllability of membranes and plates with the use
of various boundary conditions were compiled in the review paper [3]. The issues of controllability
of system similar to (1) were considered in [4] where a condition was given under which the heat-
conductivity equation with integral “memory” cannot be reduced to the complete quiescent state
in a finite time. This condition lies in the presence of roots of some complex-analytical function in
its holomorphy domain.
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ON THE PROBLEM OF PRECISE CONTROL 1811

We are going to prove that the complete controllability of the system obeying Eq. (1) is lost
if the carrier of the function u(t, x) in x is concentrated as in [4] over the interval [a, b] contained
completely in [0, π]. We represent Eq. (1) as

∂

∂t

⎛
⎝Θt(t, x)−

t∫

0

K(t− s)Θxx(s, x)ds −
t∫

0

u(s, x)ds

⎞
⎠ = 0.

The function Θ(t, x) is, obviously, the solution of Eq. (1) if and only if it is the solution of the
equation

Θt(t, x)−
t∫

0

K(t− s)Θxx(s, x)ds −
t∫

0

u(s, x)ds = f(x),

where f(x) is an arbitrary function. By substituting t = 0 in the above equation and using the
second initial condition of (2), we get

f(x) = ϕ1(x).

Let now ϕ1(x) ≡ 0. By assuming that

P (t, x) =

t∫

0

u(s, x)ds,

we reduce (1)–(3) to the problem

Θt(t, x)−
t∫

0

K(t− s)Θxx(s, x)ds = P (t, x), x ∈ (0;π), t > 0, (1∗)

Θ|t=0 = ϕ0(x), (2∗)
Θ|x=0 = 0, Θ|x=π = 0. (3∗)

We notice that the carrier of the function P (t, x) belongs to the carrier of the function u(t, x).
Consequently, if supp{u(t, x)} is contained in [a, b] which in turn is completely contained in [0, π],
then this is also true for supp{P (t, x)}. Namely the same problem was considered in [4]. If the
functionK(t) is the sum of two exponents, the condition for no complete controllability is knowingly
satisfied. Then, there is an initial function ϕ0 such that the solution of problem (1∗)–(3∗) cannot
be reduced to the complete quiescent state by any control action P (t, x) from the corresponding
functional class.

By reasoning as above, one can prove that controllability of problem (1)–(3) is impossible if
K(t) is the sum of N exponential functions where N � 2.

Now, we consider the case where the kernel K(t) is given by

K(t) =
c

γ
e−γt.

Then,

Θtt(t, x)− c

γ
Θxx(t, x) + c

t∫

0

e−γ(t−s)Θxx(s, x)ds = u(t, x), x ∈ (0;π), t > 0.
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This equation is representable as

Θt(t, x)− c

γ

t∫

0

e−γ(t−s)Θxx(s, x)ds −
t∫

0

u(s, x)ds = ϕ1(x).

By eliminating the integral term from the two last equations, we establish that

Θtt(t, x)− c

γ
Θxx(t, x) + γΘt(t, x) = U(t, x),

where

U(t, x) = u(t, x) + γ

t∫

0

u(s, x)ds + γϕ1(x).

In the case of K(t) = c
γ e

−γt, problem (1)–(3) is equivalent to that of control of oscillations of a
string with external friction. Using the results and methods of [3], one can readily demonstrate
controllability of the system obeying the equations of oscillations of a string with friction. As the
result, in the case where the kernel K(t) has the form of one exponential function, system (1)–(3)
is controllable as well.

2. BASIC DEFINITIONS AND AUXILIARY STATEMENTS

Let A := − ∂2

∂x2 be the differential operator defined over the elements of the Sobolev space
H := H2(0, π) with the boundary conditions (3). We denote by W 2

2,γ(R+, A) the space of functions
on the semiaxis R+ = (0,+∞) having values in H and endowed with the norm

‖Θ‖W 2
2,γ (R+,A) =

⎛
⎝

+∞∫

0

e−2γt
(∥∥∥Θ(2)(t)

∥∥∥2
H
+ ‖AΘ(t)‖2H

)
dt

⎞
⎠

1
2

, γ � 0.

For more details about the space W 2
2,γ(R+, A) see Ch. I of the monograph [5].

Definition. The function Θ is called the strong solution of problem (1)–(3) if for some γ � 0
it belongs to the space W 2

2,γ(R+, A) and satisfies almost everywhere on the semiaxis R+ Eq. (1),
as well as the initial conditions (2).

We define the function of complex variable λ

ln(λ) := λ2 + n2λK̂(λ),

where
K̂(λ) =

c1
γ1(λ+ γ1)

+
c2

γ2(λ+ γ2)

and give two theorems (see [6]) devoted to representation of the solution of problem (1)–(3) as
series.

Theorem 1. Let u(t, x) = 0 for t ∈ R+, and the function Θ(t, x) ∈ W 2
2,γ(R+, A), γ > 0 be strong

solution of problem (1)–(3). Then, for any t ∈ R+ the solution Θ(t, x) of problem (1)–(3) is repre-
sentable as the sum of the series

Θ(t, x) =
1√
2π

∞∑
n=1

(ϕ1n + λ+
nϕ0n)e

λ+
n t sinnx

l
(1)
n (λ+

n )

+
1√
2π

∞∑
n=1

(ϕ1n + λ−
nϕ0n)e

λ−
n t sinnx

l
(1)
n (λ−

n )

+
1√
2π

∞∑
n=1

(ϕ1n − qnϕ0n)e
−qnt sinnx

l
(1)
n (−qn)

, (4)
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converging in norm of the space H, where −qn are the real zeros of the meromorphic function ln(λ)

(qn > 0), λ±
n is a pair of the complex-conjugate zeros, and l

(1)
n (λ) is the derivative of the func-

tion ln(λ).

Theorem 2. Let u(t, x) ∈ C([0, T ],H) for any T > 0, the function Θ(t, x) ∈ W 2
2,γ(R+, A) be

strong solution of problem (1)–(3) for some γ > 0, and ϕ0 = ϕ1 = 0. Then, for any t ∈ R+ the
solution Θ(t, x) of problem (1)–(3) is representable as the sum of the series

Θ(t, x) =
1√
2π

∞∑
n=1

ωn(t, λ
+
n ) sinnx

+
1√
2π

∞∑
n=1

ωn(t, λ
−
n ) sinnx

+
1√
2π

∞∑
n=1

ωn(t,−qn) sin nx,

(5)

converging in norm of the space H, where

ωn(t, λ) =

t∫
0
un(s)e

λ(t−s)ds

l
(1)
n (λ)

and un(t) is the nth coefficient at the expansion of the function u(t, x) in the Fourier series with
respect to sines.

Theorems 1 and 2 are used in what follows. Now, we formulate and prove an auxiliary statement.

Lemma. The equality
1

l
(1)
n (λ+

n )
+

1

l
(1)
n (λ−

n )
+

1

l
(1)
n (−qn)

= 0

is satisfied for any natural index n.

Proof. Let us consider the solution of problem (1)–(3) in the case where ϕ0 = ϕ1 = 0. Under
Theorem 2, this solution has the form (5), the function u(t, x) being arbitrary and satisfying the
theorem conditions. We determine the partial derivative of Θ(t, x) with respect to the variable t:

∂Θ(t, x)

∂t
=

1√
2π

∞∑
n=1

(
1

l
(1)
n (λ+

n )
+

1

l
(1)
n (λ−

n )
+

1

l
(1)
n (−qn)

)
un(t) sinnx

+
1√
2π

∞∑
n=1

λ+
nωn(t, λ

+
n ) sinnx+

1√
2π

∞∑
n=1

λ−
nωn(t, λ

−
n ) sinnx

+
1√
2π

∞∑
n=1

(−qn)ωn(t,−qn) sinnx. (6)

Since Θt(t, x)|t=0 = 0, with the use of (6) we establish for any natural index n that

(
1

l
(1)
n (λ+

n )
+

1

l
(1)
n (λ−

n )
+

1

l
(1)
n (−qn)

)
un(0) = 0. (7)

In virtue of arbitrariness of the function u(t, x), we select it so as to have all its Fourier coeffi-
cient un(t) other than zero for t = 0. Then, the division by un(0) in equality (7) provides what we
desired and proves the lemma.
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3. MAIN RESULTS

The following theorem represents the main result of the present paper.

Theorem 3. Let ϕ0 ∈ C3[0, π] and ϕ0(0) = ϕ0(π) = ϕ′′
0(0) = ϕ′′

0(π) = 0, ϕ1 ∈ C3[0, π] and
ϕ1(0) = ϕ1(π) = ϕ′′

1(0) = ϕ′′
1(π) = 0, and M > 0 be an arbitrary constant number. Then, there

exists a time instant T > 0 and control u(t, x) ∈ C([0, T ],H) depending on the choice of the con-
stant M such that the equalities

Θ(T, x) = Θ′
t(T, x) = 0 (8)

are satisfied for the corresponding solution of problem (1)–(3) for any x ∈ (0, π), as well as the
constraint

|u(t, x)| � M

for any t ∈ (0, T ] and x ∈ (0, π).

Proof. Let u(t, x) be some function satisfying the theorem conditions, and T be some time
instant. It follows from Theorems 1 and 2 that the solution of problem (1)–(3) is representable as
series (4) and (5). Thus, we get

Θ(t, x) =
1√
2π

∞∑
n=1

(ϕ1n + λ+
nϕ0n)e

λ+
n t sinnx

l
(1)
n (λ+

n )
+

1√
2π

∞∑
n=1

(ϕ1n + λ−
nϕ0n)e

λ−
n t sinnx

l
(1)
n (λ−

n )

+
1√
2π

∞∑
n=1

(ϕ1n − qnϕ0n)e
−qnt sinnx

l
(1)
n (−qn)

+
1√
2π

∞∑
n=1

t∫
0
un(s)e

λ+
n (t−s)ds

l
(1)
n (λ+

n )
sinnx

+
1√
2π

∞∑
n=1

t∫
0
un(s)e

λ−
n (t−s)ds

l
(1)
n (λ−

n )
sinnx+

1√
2π

∞∑
n=1

t∫
0
un(s)e

−qn(t−s)ds

l
(1)
n (−qn)

sinnx. (9)

Now,

∂Θ(t, x)

∂t
=

1√
2π

∞∑
n=1

λ+
n (ϕ1n + λ+

nϕ0n)e
λ+
n t sinnx

l
(1)
n (λ+

n )

+
1√
2π

∞∑
n=1

λ−
n (ϕ1n + λ−

nϕ0n)e
λ−
n t sinnx

l
(1)
n (λ−

n )
+

1√
2π

∞∑
n=1

(−qn)(ϕ1n − qnϕ0n)e
−qnt sinnx

l
(1)
n (−qn)

+
1√
2π

∞∑
n=1

(
1

l
(1)
n (λ+

n )
+

1

l
(1)
n (λ−

n )
+

1

l
(1)
n (−qn)

)
un(t) sinnx

+
1√
2π

∞∑
n=1

λ+
n

t∫
0
un(s)e

λ+
n (t−s)ds

l
(1)
n (λ+

n )
sinnx

+
1√
2π

∞∑
n=1

λ−
n

t∫
0
un(s)e

λ−
n (t−s)ds

l
(1)
n (λ−

n )
sinnx

+
1√
2π

∞∑
n=1

(−qn)
t∫
0
un(s)e

−qn(t−s)ds

l
(1)
n (−qn)

sinnx. (10)
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By using conditions (8) and taking into consideration that the fourth addend in (10) vanishes
in virtue of the lemma, we establish from (9) and (10) that

−
(
(ϕ1n + λ+

nϕ0n)e
λ+
n T

l
(1)
n (λ+

n )
+

(ϕ1n + λ−
nϕ0n)e

λ−
n T

l
(1)
n (λ−

n )
+

(ϕ1n − qnϕ0n)e
−qnT

l
(1)
n (−qn)

)

=

T∫
0
un(s)e

λ+
n (T−s)ds

l
(1)
n (λ+

n )
+

T∫
0
un(s)e

λ−
n (T−s)ds

l
(1)
n (λ−

n )

+

T∫
0
un(s)e

−qn(T−s)ds

l
(1)
n (−qn)

, n = 1, 2 . . . , (11)

−
(
λ+
n (ϕ1n + λ+

nϕ0n)e
λ+
n T

l
(1)
n (λ+

n )
+

λ−
n (ϕ1nv + λ−

nϕ0n)e
λ−
n T

l
(1)
n (λ−

n )
+

(−qn)(ϕ1n − qnϕ0n)e
−qnT

l
(1)
n (−qn)

)

=

λ+
n

T∫
0
un(s)e

λ+
n (T−s)ds

l
(1)
n (λ+

n )
+

λ−
n

T∫
0
un(s)e

λ−
n (T−s)ds

l
(1)
n (λ−

n )

+

(−qn)
T∫
0
un(s)e

−qn(T−s)ds

l
(1)
n (−qn)

, n = 1, 2 . . . . (12)

We denote

an = −(ϕ1n + λ+
nϕ0n), ān = −(ϕ1n + λ−

nϕ0n), bn = −(ϕ1n + (−qn)ϕ0n).

To satisfy equalities (11) and (12), in the left and right sides we equate the coefficients at the
numbers

1

l
(1)
n (λ+

n )
,

1

l
(1)
n (λ−

n )
,

1

l
(1)
n (−qn)

and obtain a new system of moments

T∫

0

un(s)e
λ+
n (T−s)ds = ane

λ+
n T ,

T∫

0

un(s)e
λ−
n (T−s)ds = āne

λ−
n T , n = 1, 2 . . . ,

T∫

0

un(s)e
−qn(T−s)ds = bne

−qnT , n = 1, 2 . . . . (13)

We notice that the solvability of the system of moments (11), (12) follows from the solvability of
the system of moments (13). We reduce the identical factors in both sides of equalities (13), and,
as the result, the system of moments (13) is given by

T∫

0

un(s)e
−λ+

n sds = an,

T∫

0

un(s)e
−λ−

n sds = ān, n = 1, 2 . . . ,

T∫

0

un(s)e
qnsds = bn, n = 1, 2 . . . . (14)
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In virtue of conjugacy of the complex numbers λ+
n and λ−

n , as well as the numbers an and ān,
the first and second equations in system (14) are equivalent, that is, if the function un(s) is the
solution of the first equation, then it also satisfies the second equation and vice versa. This enables
us to eliminate one of the equations—second, for example,—from system (14). In fact, eliminated
is a countable number of equations. Therefore, the system of moments is given by

T∫

0

un(s)e
−λ+

n sds = an,

T∫

0

un(s)e
qnsds = bn, n = 1, 2 . . . . (15)

We perform in (15) the replacement −λ+
n = λn and notice that Reλn > 0 and qn > 0 (see [6, 7]).

Finally, we get the countable system of moment pairs

T∫

0

un(s)e
λnsds = an,

T∫

0

un(s)e
qnsds = bn, n = 1, 2 . . . . (16)

Solution of system (16) is sought in the form

un(s) = C1,ne
λns + C2,ne

qns, n = 1, 2, . . . , (17)

where C1,n and C2,n are some unknown constants. By substituting (17) in (16), we get a countable
system of pairs of algebraic equations

C1,n

T∫

0

e2λnsds + C2,n

T∫

0

e(λn+qn)sds = an, n = 1, 2 . . . ,

C1,n

T∫

0

e(λn+qn)sds+ C2,n

T∫

0

e2qnsds = bn, n = 1, 2 . . . . (18)

Let us find the determinant Δn of system (18). Since

T∫

0

e2λnsds =
1

2λn
e2λnT − 1

2λn
, (19)

we establish with the use of equality (19) that

Δn =
1

4λnqn

(
e2λnT − 1

) (
e2qnT − 1

)
− 1

(λn + qn)2

(
e(λn+qn)T − 1

)2

=
1

4λnqn

(
e2(λn+qn)T − e2qnT − e2λnT + 1

)

− 1

(λn + qn)2

(
e2(λn+qn)T − 2e(λn+qn)T + 1

)

= e2(λn+qn)T
(

1

4λnqn
− 1

(λn + qn)2

)
+

(
1

4λnqn
− 1

(λn + qn)2

)

− 1

4λnqn

(
e2qnT + e2λnT

)
+

2

(λn + qn)2
e(λn+qn)T

=
e2(λn+qn)T

4λnqn

[
1− e−2λnT − e−2qnT + e−2(λn+qn)T

− 4λnqn
(λn + qn)2

− 4λnqn
(λn + qn)2

e−2(λn+qn)T +
8λnqn

(λn + qn)2
e−(λn+qn)T

]
. (20)
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We note that the sequence of magnitudes of the complex roots {|λn|} tends to +∞ for n → +∞,
and the sequence of the real numbers {qn} tends to some positive number q (see [6, 7]). Therefore,
in virtue of the asymptotic behavior of the numbers λn and qn, there exists a time instant T such
that all determinants Δn are other than zero for any natural index n.

We establish the determinant Δ1,n:

Δ1,n = an

T∫

0

e(λn+qn)sds− bn

T∫

0

e2qnsds

=
an

λn + qn
e(λn+qn)T − an

λn + qn
− bn

2qn
e2qnT +

bn
2qn

and similarly find Δ2,n:

Δ2,n = bn

T∫

0

e2λnsds − an

T∫

0

e(λn+qn)sds

=
bn
2λn

e2λnT − bn
2λn

− an
λn + qn

e(λn+qn)T +
an

λn + qn
.

By using the Cramer formulas, we obtain

C1,n =
Δ1,n

Δn
, C2,n =

Δ2,n

Δn
.

Consequently, the solution of system (16) at the time instant t is given by

un(t) = 4λnqn

an
λn+qn

e(λn+qn)T − an
λn+qn

− bn
2qn

e2qnT + bn
2qn

e2(λn+qn)T
(
1− e−2λnT − e−2qnT + e−2(λn+qn)T − αn(λn, qn, T )

)eλnt

+4λnqn

bn
2λn

e2λnT − bn
2λn

− an
λn+qn

e(λn+qn)T + an
λn+qn

e2(λn+qn)T
(
1− e−2λnT − e−2qnT + e−2(λn+qn)T − αn(λn, qn, T )

)eqnt,

where

αn(λn, qn, T ) =
4λnqn

(λn + qn)2
+

4λnqn
(λn + qn)2

e−2(λn+qn)T − 8λnqn
(λn + qn)2

e−(λn+qn)T .

Let λn = μn − iνn. It was proved in [6, 7] that μn, νn > 0 for any natural index n. Let us
estimate the magnitude of the functions un(t) for any natural n. It is given by

|un(t)| � 4qn|λn||an|
|λn + qn|eqnT (1− βn(T )− |αn|) +

4qn|λn||an|
|λn + qn|e(μn+2qn)T (1− βn(T )− |αn|)

+
4qn|λn||bn|

|2qn|eμnT (1− βn(T )− |αn|) +
4qn|λn||bn|

|2qn|e(μn+2qn)T (1− βn(T )− |αn|)
+

4qn|λn||bn|
|2λn|eqnT (1− βn(T )− |αn|) +

4qn|λn||bn|
|2λn|e(2μn+qn)T (1− βn(T )− |αn|)

+
4qn|λn||an|

|λn + qn|eμnT (1− βn(T )− |αn|) +
4qn|λn||an|

|λn + qn|e(2μn+qn)T (1− βn(T )− |αn|)
, (21)

where βn(T ) = e−2μnT + e−2qnT + e−2(μn+qn)T . We also estimate the magnitude of the desired
control. Obviously,

|u(t, x)| �
∞∑
n=1

|un(t)|. (22)
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By means of (21) and (22) we estimate the time required to stop the system, provided that the
function u(t, x) is constrained by

|u(t, x)| � ε, (23)

where ε is an arbitrary constant.

Since the sequences of the real numbers {μn}, {νn}, {qn} are such that μn = μ + o(n−2),
νn = Dn and qn = q + o(n−2), where μ, D, q are some positive constant numbers (see [6, 7]), and
the sequences {|an|}, {|bn|}, and {|αn|} tend to zero, the following estimates are true:

|u(t, x)| � c

ec1T

( ∞∑
n=1

|an|+
∞∑
n=1

|λn||bn|
)

� c2
ec1T

� ε, (24)

where c, c1, and c2 are some constants and T is sufficiently great. We note that the numerical
series in estimate (24) converge in virtue of the initial data selected from the corresponding classes
of functions (see the formulation of the theorem).

Consequently, the time T of oscillation damping can be established from the equation

c2
ec1T

= ε.

Finally, we obtain

T = − 1

c1
ln

ε

c2
. (25)

4. CONCLUSIONS

As can be seen from equality (25), in the case of a system with “memory” the time to stop
oscillations is much less than the time that suffices to stop a string without the integral delay
where

T ∼ c

ε

(see [2]). At the same time, in the problem with “memory” its complete controllability is lost at
passing from the control distributed over the entire interval [a, b] to a subinterval.

Remark 1. For N > 2, there also exists a result on controllability and estimation of the time of
driving the solution to the complete quiescent state. The present paper confined itself to the case
of N = 2 to avoid cumbersome calculations.

Remark 2. In Eq. (1), the function Θxx(t, x) is preceded by a coefficient coordinated with the
kernel K ′(t− s) in the integral term of the equation. Nevertheless, this form of the equation does
not restrain generality because this coefficient can be arbitrary. For that, an arbitrary constant
must be added to K(t). It can be understood as the number multiplied by an exponential function
with the zero exponent. It is possible to verify that if the modified kernel K1(t) has the form

K1(t) = K(t) + C,

then the results of [6] remain valid and, consequently, the controllability results of this work retain
their validity. At that, if K1(t) = C1e

−λ1t + C2, then on the basis of the findings of [4] on no con-
trollability one can state that system (1)–(3) is not controllable if the carrier of the function u(t, x)
is concentrated on a subinterval.
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