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Abstract

This note presents a study of a four-satellite tetrahedral formation to collect, process, and exchange multipoint measurements of geo-
magnetic field in a near-polar orbit. The study is conducted as a series of numerical experiments based on simulated spacecraft orbits and
corresponding geomagnetic field models output. The four satellites are assumed to move in near-circular orbits specifically chosen to
maintain the tetrahedron quality. The satellites exchange their simulated magnetometers readings and the collected multipoint measure-
ments are processed on board of any of them thus creating an instantaneous interpolated map of the geomagnetic field in the interior of
the tetrahedron. Interpolation is carried out with the use of Kriging algorithms, known in geostatistics for capturing spatial correlation of
the data and taking into account statistical properties of the interpolated variables. We propose a concept of a servicing formation, and
analyze interpolation accuracy for different formation sizes. It is then discussed how the processed multipoint measurements can be pro-
vided as a service to other nearby satellites. Finally, we show that using the existing COTS magnetometers it is possible to obtain real-
time interpolation data, which are more precise at a given point and time than a conventional onboard magnetic field model, thus ensur-
ing better attitude determination routines performance in the serviced spacecraft.
� 2021 COSPAR. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The use of distributed space systems, comprising multi-
ple spacecraft that interact, cooperate and communicate
with each other in orbit is an enabler of a large variety of
space applications such as synthetic aperture radars
(SAR) and optical interferometry, on-orbit inspection
and servicing of other spacecraft, spatial gradients mea-
surements of environmental data. Some of these applica-
tions, such as distributed SAR (Grasso et al., 2020), are
still discussed theoretically, others, such as the Afternoon
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Train constellation (Stephens et al., 2002) to monitor the
Earth’s atmosphere and provide 3D reconstructions of cli-
mate and weather patterns, have a long success story. For-
mation flying missions, such as TanDEM-X (Krieger et al.,
2007) and PRISMA (Loizzo et al., 2018) proved successful
in autonomous relative navigation and control. CanX-4&5
mission (Bonin et al., 2015) demonstrated a projected cir-
cular orbit (PCO) formation and maintenance for two
satellites of 50 m semi-major axis of the PCO ellipse with
sub-meter accuracy. The Swarm-mission (Friis-
Christensen et al., 2006) provided multipoint measure-
ments of the geomagnetic field and its temporal evolution
that helped to improve our understanding of the Earth’s
interior and its effect on Geospace.

Satellite formations are often discussed in connection
with multipoint electromagnetic or ionospheric plasma
hedral satellite formation: Geomagnetic measurements exchange and
021.02.012

https://doi.org/10.1016/j.asr.2021.02.012
mailto:Anton.Afanasev@skoltech.ru
https://doi.org/10.1016/j.asr.2021.02.012
https://doi.org/10.1016/j.asr.2021.02.012


A. Afanasev et al. Advances in Space Research xxx (xxxx) xxx
measurements (Roscoe et al., 2011; Fish et al., 2014;
Nicholas et al., 2019), where it is required to distinguish
between temporal and spatial variations of the measured
quantity. This latter requirement calls for use of a three-
dimensional formation of satellites, the simplest of which
is tetrahedral formation such as brought up in Sadeghi
and Emami (2017). Speaking of specific needs of iono-
spheric studies, it is speculated in Chernyshov et al.
(2016) that there is a demand for simultaneous measure-
ments of the ionospheric plasma parameters at different
spatial scales with a high temporal resolution. The authors
propose a tentative orbital configuration for a group of
spacecraft, in which a number of satellites follow one
another in the same orbit (a train formation), being sepa-
rated by distances determined by free paths of various ions,
with two groups of satellites separated by a distance signif-
icantly exceeding 500 m. In order to be able to conduct
simultaneous measurements at different distances and in
different directions from a reference point moving along
the train orbit, the train formation is complemented by
two more satellites with slightly different orbital planes to
make the formation three-dimensional. It is also discussed
that using radiophysical methods (Chernyshov et al., 2020)
to measure ionospheric plasma density requires intersatel-
lite distances greater than 1 km.

With this in mind, we start our study by considering a
three-dimensional formation, whose structure is similar to
the one proposed in Chernyshov et al. (2016), but clusters
of closely located satellites are substituted by single points
of measurement, thus making the formation a group of
four satellites. Two of the satellites are to orbit the Earth
in the leader–follower configuration in a near-circular
near-polar orbit while the other two must keep the three-
dimensional formation nondegenerate. It was stated during
the design of the famous Magnetospheric Multiscale mis-
sion (Guzman and Edery, 2004) that the best quality of
the measurements is achieved by maintaining the shape
of the tetrahedron as close to regular as possible. The
requirements to the tetrahedron quality can be formalized
as a scalar quality parameter (Daly, 1994; Paschmann
and Daly, 1998), which is taken into account during the
orbit design phase. Following many researchers (e.g.
Vaddi et al., 2005; Shestakov et al., 2019), we choose the
reference orbits for the formations satellites that ensure
the quality of the proposed tetrahedron, which is to be
maintained with relatively low fuel consumption.

Having established the orbital motion of the formation
spacecraft we proceed with the interpolation of the simu-
lated geomagnetic field multipoint measurements in the
interior points of the tetrahedron composed of the four
satellites. The main contribution of this study is an example
of the multipoint measurements real-time processing and
usage. We exemplify it by the four satellites onboard mag-
netometer data exchange to construct a local geomagnetic
field map, which can be provided as a service to any other
nearby satellite. To this end we employ the Kriging inter-
polation technique (Wackernagel, 1995), which originated
2

in geostatistical analysis, and to the best of our knowledge
has not been extensively used in space applications. One of
its indisputable advantages over other interpolators is the
ability to capture a certain degree of continuity inherent
in the spatially distributed properties to be measured. This
algorithm relies on auto-correlation and variance informa-
tion about the environment of the magnetic field, which is
of utmost importance for nonhomogeneous and noisy
fields. We consider various implementations of the interpo-
lator with the use of different semivariogram models con-
structed for the geomagnetic field on the base of IGRF-
13 model by sampling in regions, comparable with the size
of the formation.

We propose a four-spacecraft tetrahedral formation that
is not only used to collect the data measured by the
onboard instruments, but also to processes such data and
provide a real-time service to any other satellite in the
neighbourhood of such formation. One could envision that
such service could be provided even to a larger swarm mis-
sion, whose satellites are distributed over the interior of the
servicing formation. As an example of such service the
interpolation of geomagnetic field in the interior points of
the four-satellite tetrahedral formation is considered. The
serviced data can be employed in the attitude determina-
tion (and control) loop instead of the onboard geomagnetic
field model. Our preliminary studies (Mahfouz et al., 2019;
Afanasev et al., 2020) have shown that such coordinated
data exchange across a group of satellites under certain
assumptions leads to the overall enhancement of
magnetometer-based attitude determination routines in
each individual spacecraft in the group. The data-
exchanging swarm satellites (Mahfouz et al., 2019) exhib-
ited certain features of self-organization by determining
and controlling their individual attitude. However, the
prior studies were lacking in the interpolation quality, as
only the simplest inverse-distance weights interpolator
was employed.

Let us note here, that no data that has been obtained in
a real space mission is used in the article. In our numerical
experiments, we use geomagnetic field models to simulate
the ‘‘actual” magnetic field (external for spacecraft), we
use the same models with noise added to them to simulate
onboard magnetometers ‘‘measurements”, and we derive
all the statistical properties of the geomagnetic field by ana-
lyzing the same models.

The paper has the following structure. Section one
establishes the orbits of the four spacecraft that comprise
the required formation. Section two introduces the Kriging
interpolation algorithms and describes the construction of
the necessary statistical framework (empirical semivari-
ograms and models to fit them). Section three, describes
the interpolation quality, shows how it can be improved
by using the historical measurements, and provides the
example of using the interpolated data in the attitude deter-
mination loop of a serviced spacecraft. Finally, the conclu-
sion wraps up the paper by discussing the results and
prospects of their application.
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2. Orbital configuration

As we consider an example of ionospheric mission (such
as to study ionospheric polar plasma irregularities), the for-
mation will be deployed at a near polar circular orbit with
altitude of 500 km and inclination of 87�. We shall assume
that a certain reference point is traveling along this orbit,
whereas the four satellites occupy specially constructed
near circular relative orbits such that the four spacecraft
positions are in the vertices of a non-degenerate
tetrahedron.

Relative motion of two closely orbiting satellites in the
central gravity field in near circular orbits is described by
the Hill-Clohessy-Wiltshire equations, which are exten-
sively used in formation flying studies (Wiltshire and
Clohessy, 1960; Hill, 1878). This implies consideration of
the relative spacecraft dynamics with respect to the orbital
reference, whose origin moves along the circular orbit of
radius r0 and the mean motion n. In this reference frame,
z-axis is aligned with the local vertical, y-axis coincides
with the normal to the orbital plane, and x-axis (along
track) completes the reference frame to the right-handed
triad (see Fig. 1a).

The linearized equations describing spacecraft relative
motion in near circular orbits are given by

€xþ 2n_z ¼ ux;

€y þ n2y ¼ uy ;

€z� 2n _x� 3n2z ¼ uz;

8><>: ð1Þ

where u ¼ Df =m, m is the mass of the spacecraft, and Df is
the linearized resultant force acting on the spacecraft,
which can include a control force or any disturbing forces.
In the case of free motion, i.e. if Df ¼ 0, Eq. (1) admit
bounded periodic solutions given by

x tð Þ ¼ c1 cos nt þ a0ð Þ þ c3;

y tð Þ ¼ c2 sin nt þ b0ð Þ;
z tð Þ ¼ c1

2
sin nt þ a0ð Þ;

8><>: ð2Þ
Fig. 1. Orbital reference frame and the orbital c
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where the constants c1; c2; c3; a0;b0 are determined by the
initial conditions.

It is discussed in Vaddi et al. (2005), Di Mauro et al.
(2019), Biktimirov et al. (2020) how the periodic relative
trajectories obtained from the solutions in Eq. (2) can be
maintained in the presence of disturbing forces, which
include any forces acting on the spacecraft apart from
the central Newtonian gravity force. As our paper is not
focused on the formation maintenance control algorithms,
we shall model the orbital motion of the four spacecraft
comprising the tetrahedron formation in the central gravity
field, assuming that the disturbances are rejected according
to the algorithms proposed in Di Mauro et al. (2019),
Biktimirov et al. (2020). However, in spite of orbit correc-
tions we shall introduce variations of the distances between
the satellites in our formation by the special choice of ini-
tial conditions so as to see that proposed interpolation
algorithms are applicable under realistic conditions when
the formation maintenance is not carried out with ideal
accuracy, which could ensure, for instance, a perfectly con-
stant distance between satellites 1 and 2.

The initial conditions determining the reference trajecto-
ries are provided in Table 1. Given two options specified in
Chernyshov et al. (2016) for the intersatellite distances
(500 m or greater than 1 km), we chose the latter, because
we aim to use interpolation algorithms that have advantage
at greater distances. Hence, we chose the initial conditions
such that during one orbital period the intersatellite dis-
tances vary from 2 to 5 km (as shown in the plot of
Fig. 2a). This entails the value of the parameter q, which
is an auxiliary quantity responsible for intersatellite dis-
tances (as seen from the Table 1 and Eqs. (2)), to be
q ¼ 1430 m. This value is used in all subsequent simula-
tions. Let us note that the average edge length of the tetra-
hedron as it orbits the Earth equals about 3 km. This
distance is further referred to as the characteristic or aver-
age intersatellite distance.

The relative trajectories are shown in Fig. 1b. Thus, two
spacecraft out of the four are sent to move in almost the
onfiguration of the four-satellite formation.



Table 1
Initial conditions for the tetrahedron vertices reference trajectories.

Tetrahedron Formation Initial Conditions

Satellite c1 c2 c3 a0 b0

Satellite 1 0 0 0 0 0
Satellite 2 2q=5 0 2q

ffiffiffiffiffiffiffiffi
5=3

p
0 0

Satellite 3 2q q
ffiffiffi
5

p
q

ffiffiffiffiffiffiffiffi
5=3

p � arctan 1=
ffiffiffi
2
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arctan

ffiffiffi
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p� �� p
Satellite 4 2q q
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p
q

ffiffiffiffiffiffiffiffi
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p
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ffiffiffi
2

p� �

(a) Intersatellite distances (b) Tetrahedron Quality

Fig. 2. Distances between the formation satellites and the formation quality.
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leader–follower formation keeping to the same circular
orbit (perturbed by a non-zero value of the 2nd satellite
c1 constant), whereas the other two spacecraft are sent to
a relative orbit shown in Fig. 1b (these two satellites move
along the same relative orbit separated only by a phase dif-
ference). Note that as satellite 1 moves in the circular orbit
and coincides with the origin of the orbital reference frame,
in which all relative trajectories are described, its relative
trajectory is a stationary point (the origin of the orbital ref-
erence frame), as seen from the constants given for its ini-
tial conditions in Table 1.

The measure of the resulting tetrahedron quality is
introduced as (Daly, 1994; Paschmann and Daly, 1998):

Q ¼ 12
3Vð Þ2=3
L

; ð3Þ

where V is the volume of the tetrahedron and L is the sum
of squared lengths of all tetrahedron’s edges. The value of
Q varies from 0 for any degenerate configuration (when all
four vertices belong to the same plane) to 1 for any regular
tetrahedron. It is shown in Shestakov et al. (2019) that
maximizing the minimum quality along the orbit in the

central gravity field, one obtains Q ¼ 1=
ffiffiffi
53

p � 0:585. Let
us note here that the constants in Table 1 correspond to
the initial conditions derived for the maximum quality case
(Shestakov et al., 2019) except c1 for satellite 2 (non-zero
value of c1 is actually responsible for the relative orbit of
the second satellite shown in Fig. 1b, which would have
been a stationary point for c1 ¼ 0). The choice of non-
zero c1 value for spacecraft 2 slightly degrades the quality
of tetrahedron (see Fig. 2b) as compared to the optimal
case (Shestakov et al., 2019).
4

3. Interpolation algorithms

Kriging. Kriging algorithms (Wackernagel, 1995) are a
family of Gaussian process regression methods to interpo-
late any quantities to be estimated at any unobserved loca-
tion within a given region, for which some observations are
available. Unlike inverse distance weights (IDW) interpola-
tor and splines, which use predetermined analytical formu-
lae defining the smoothness of the resulting curves and
dependent only on the measurements obtained at a number
of points in the vicinity of the interpolated location, Krig-
ing is based on statistical models and properties of the esti-
mated quantity such as spatial autocorrelation. Thus,
Kriging not only constructs the surface of estimated values,
but also provides representation of the reliability or accu-
racy of the obtained solution. This section briefly intro-
duces the Kriging algorithm we shall employ for in-orbit
geomagnetic field estimation in our numerical experiments.

Let us denote a vector to a point in the region of interest
by R, and the vector of the magnetic field measured at this

point by B
�
Rð Þ.

Similar to IDW, the estimate is computed the weighted
sum of measurements in the vicinity of the interpolated
point:

bB R0ð Þ ¼
XN
j¼1

jj B
�

Rj

� � ð4Þ

where R0 is the point where interpolation is computed, bB is
the predicted value of the magnetic field, Rj are the avail-
able data points in the vicinity of R0;jj are the weights,
N is the number of available data points. However, unlike
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IDW, the weights jj are calculated to reflect the spatial cor-
relation between Rj and R0.

The measured function B
�
Rð Þ is assumed to be station-

ary, which implies the translation-invariance of the
mean b1

8R : E B
�
Rð Þ

h i
¼ b ð5Þ

where E is the expected value, and the covariance C hð Þ (for
Ordinary Kriging (OK) algorithm it is the scalar distance
that is taken into account, other Kriging algorithms are
based upon direction between points):

8Ri;Rj : Ri � Rj

�� �� ¼ h

cov B
�
Rið Þ;B

�
Rj

� �� �
¼ C Ri � Rj

� � ¼OKC hð Þ ð6Þ

where Ri and Rj are radius-vectors to the data points

(i; j 2 1;N
� 	

), h is the distance between those points, which

is also called lag distance, C hð Þ is the translation-invariant
function of covariance.

Variance minimization. Ordinary Kriging is known as
the best linear unbiased estimator (Wackernagel, 1995).
The unbiasedness is achieved by setting the 1-norm of the
coefficients vector j from Eq. (4) equal to 1:

E bB R0ð Þ
h i

¼ E B
�
R0ð Þ

h i
¼ b ()

XN
i¼1

ji ¼ 1 ð7Þ

Then the best estimate is guaranteed by minimizing the
variance of the estimator prediction, using Eq. (7), which
yields the following system of iþ 1 equations (one equation
for each respective vector Ri, and one is the constraint
imposed on jj) for the weights jj:PN

j¼1jjc Ri � Rj

� �þ , ¼ c Ri � R0ð Þ;PN
j¼1jj ¼ 1;

(
ð8Þ

where positions of measurement points Ri and Rj are con-
sidered to be known, , is the Lagrangian multiplier of the
minimization problem constraint, c Ri � R0ð Þ is the so-
called semivariance defined as half of the variance between
adjacent measurements. Semivariance and covariance
(semivariances are also translation-invariant) are related
as follows:

c Ri � Rj

� � ¼ 1
2
D B

�
Rið Þ � B

�
Rj

� �h i
¼

¼ r2 � C Ri � Rj

� �Þ; ð9Þ

where D denotes variance.
The weights j are obtained as a solution to the system of

Eqs. (8), however, prior to solving this system, semivari-
ances c hð Þ need to be computed. This is usually done with
the use of available data sets, which are believed to reflect
1 Let us note here that this assumption can be weakened by introducing
trends as it is done in the Universal Kriging (UK) algorithm. This study is
conducted with the Ordinary Kriging (OK) algorithm, which does rely on
the translation-invariance hypothesis.

5

the statistical properties of the interpolated quantity. The
steps to compute c hð Þ are (Wackernagel, 1995):

� use available data points to plot the differences in the
interpolated quantity versus their lag distance h;

� construct the so-called experimental or empirical semi-
variogram by grouping similar lags h, lag similarity is
defined in terms of lag tolerance, which is a hyperparam-
eter of the method;

� fit the empirical semivariogram with a parametric semi-
variogram model function by choosing a suitable model
and estimating its parameters, e.g. by a least squares fit.

A plot of semivariance is called a semivariogram.
Each point of an empirical semivariogram corresponds

to all pairs of available dataset points separated by distance
h, for which the sum of the squared difference between their
values is computed:

8Ri;Rj : Ri � Rj

�� �� ¼ h

c hð Þ ¼ 1
2Nh

XNh

i;jð Þ¼1

B
�
Rið Þ � B

�
Rj

� �� �2

;
ð10Þ

where Nh is the total number of the sampled points pairs.
IGRF-13 Semivariograms. Empirical semivariograms

which will be subsequently employed by the interpolator
are created with the use of the data obtained from
IGRF-13 model. It stands to reason that it captures the
necessary statistical properties of the geomagnetic field as
the candidate models – proposed by various research
groups for inclusion in IGRF – prior to becoming IGRF
constituents are subjected to statistical tests (Thébault
et al., 2015). On the other hand, IGRF has its accuracy,
which is considered to be limited by a combination of
two types of error, namely error of commission where there
is a difference between the IGRF and the part of the field
that it is attempting to model, and error of omission where
the error is the part of the field that the IGRF is not
attempting to model (Macmillan and Finlay, 2011). The
errors of commission for the epochs for which satellite data
are available are estimated to be within 5–10 nT root mean
square (rms) of the true value (Macmillan and Finlay,
2011). The error of omission is dominated by the crustal
field and the rms value is estimated to be 200–300 nT
(Macmillan and Finlay, 2011).

If, for instance, the interpolated data are used in the
loop of a satellite attitude determination system as
described in Mahfouz et al. (2019), it is important to find
out how much the interpolation accuracy is influenced by
the semivariogram constructed from the IGRF model, if
the actual field is different. In other words, the question
is how do the IGRF errors influence the resulting empirical
semivariogram. In order to quantify the effect, we have
analyzed several empirical semivariograms and compared
their effect on the Kriging weights. Fig. 3 presents semivar-
iograms for pure IGRF-13 model, IGRF-13 model with
added zero mean white noise (standard deviation 200
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nT), IGRF-13 model with added zero mean white noise (s-
tandard deviation 400 nT), and the direct dipole model
(Ovchinnikov et al., 2018). Four data sets are obtained as
the four models’ outputs at locations distributed in a cube
of edge-length 50 km, whose center moves along the orbit
specified earlier. Each set contains 20000 samples.

As one would have expected, the greater is the noise we
add, the more shapeless the point cloud becomes. The semi-
variograms presented in the plots of Fig. 3 do not provide a
very clear indication as to the best semivariance model that
fits the empirical data. However, the definition of the
empirical semivariogram in Eq. (10) allows averaging the
point clouds within certain intervals along the lag distance
axis. The averaging reduces the number of bins, for which
the semivariogram data points are obtained, and the size of
these bins is determined by the lag distance tolerances.
There are no general rules for determining the lag toler-
ances, however choosing the bin size is found to be impor-
tant, and is based on the knowledge of the phenomenon
under consideration (?).

Empirical semivariogram is initially constructed for all
possible h-s we have in our pool of observations. Since
there are thousands of possible h-s, empirical semivari-
ogram looks like a cloud. The averaging is used to decrease
the number of points and to give semivariogram a form of
one-dimensional discontinuous function, which is easy to
fit. All values of h are organized into equal bins, and inside
those bins all values are averaged with simple arithmetic
mean. An example of semivariograms obtained by such
averaging is shown in the Fig. 4 where data corresponds
do the pure IGRF-13 model.
Fig. 3. Empirical semivariograms for

6

Continuing the averaging procedure until the plots (see
Fig. 5) retain only 10 bins, we can clearly distinguish the
trend of variogram. Using this technique, we can compare
the Fig. 3 plots obtained for the four different data sets.
The resulting comparison is presented in Fig. 5.

The baseline semivariogram in this figure is the blue
IGRF-13 with no noise added. Comparing other models
with the baseline allows us to draw the following
conclusions:

1. For smaller relative distances the direct dipole model is
indistinguishable from IGRF-13.

2. At greater distances, however, the direct dipole model
has a different slope than that of IGRF models. This
affects the fitted model function parameters, and subse-
quently, solutions of the system of equations for weights
ji.

3. Depending on the noise level for different IGRF models,
only the value of the displacement along the ordinate
axis changes. The trend is approximately the same.

Taking into account the fact that semivariograms are
used as weights of linear system of Eqs. (8), the displace-
ment along the ordinate axis becomes insignificant for the
solution, since it does not change the solution of this sys-
tem (i.e. weights ji). The slope, which becomes different
for the direct dipole model at greater distances, is a more
important parameter in this case. Since it is mostly the
ordinate axis displacement that changes with the noise
level, it can be inferred that even very noisy geomagnetic
field data can still be used within the Kriging approach.
different magnetic field models.



Fig. 4. Averaging of empirical semivariogram for IGRF-13 without noise.

Fig. 5. Comparison of empirical semivariogram trends for different field
models.

Fig. 6. Semivariogram model function parameters.
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After we have collected enough data for empirical semi-
variogram, we can approximate it with analytical models
(e.g. linear, spherical, Cauchy, powered exponential, etc.
(Wackernagel, 1995)). This step is necessary because of dis-
continuity in the Eq. (10).

As illustrated in Fig. 6 the model functions are usually
characterized by the following parameters:

� nugget – discontinuity level at the origin,
� sill – limh!1c hð Þ,
� range – distance h, at which c hð Þ ¼ 0:95 sill.

There is a large variety of such models, but as in the Figs. 3–
5, the function should possess the inflection point (the

point where the 2nd derivative changes sign) – this feature
is found in the powered exponential and Matern functions.
Extensive numerical experiments with the latter, however,
7

invariably resulted in its lower accuracy (in terms of root-
mean-square error RMSE) with respect to the former.
For this reason, we shall only consider the powered expo-
nential model given by:

c hð Þ ¼ c0 þ c 1� exp � h
a

� �m
 �� �
; h > 0

0 ; h ¼ 0

(
ð11Þ

where c0 is the nugget, c0 þ c is the sill, a is a distance
parameter, defined as approximately one third of a range
of the semivariogram, and m is the power of the exponent.
If m ¼ 1 the model is called exponential, and if m ¼ 2 it is
called Gaussian.

Fig. 7(a), (b) and (c) present the results of fitting pow-
ered exponential model to the empirical semivariograms,
which are based on the IGRF-13 model without any noise,
with 200 nT noise, and with 400 nT noise, respectively. The
parameters from Eq. (11) are presented in Table 2.

As can be seen from Table 2, all parameters except c0 are
nearly the same, which is consistent with the earlier
discussion on the ordinate displacements for these
semivariograms.



Fig. 7. Fitting of the powered exponential function into empirical semivariograms, based on IGRF-13 models with different level of noise.
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Concluding this Section, we shall note again that adding
noise to the geomagnetic field model does not significantly
change the Kriging solution, and therefore in all subse-
quent simulations we shall use the powered exponential
model fit obtained for the IGRF-13 model without the
noise component (first raw in Table 2). Thus, weights j,
acquired from any noise-level IGRF model (up to 400
nT), can be used for the interpolation, which takes as
observations actual magnetic field measurements.

4. Simulation results

All simulation in this Section are conducted with the fol-
lowing parameters:

� The orbits for the four formation satellites are described
in Section 2 with specified relative motion in form of
Table 1 (q ¼ 1430 m). Spacecraft do not have attitude
errors.

� The model of the Earth magnetic field is IGRF-13. The
value of the magnetic field in current location of each
satellite is measured by the magnetometer with error,
Table 2
Function parameters for different magnetic field models.

Standard deviation of model noise, nT½ � c0; lT2

 �

0 0:04
200 0:15
400 0:5

8

modeled as Gaussian noise with rmm ¼ 10 nT and zero
mean.

� The interpolation algorithm is Ordinary Kriging (see
Eq. (8)) with powered exponential model. The data is
taken and processed in the orbital frame of the 1st satel-
lite (see Fig. 1).

Experiment 1 – single-point measurements vs interpola-

tion. The graphs of Fig. 8 present the comparison of the
geomagnetic field interpolated measurements with a single
satellite measurements data. The interpolation is made for
the location of satellite 1 along its orbit. The plot depicts
the errors of direct measurement of the geomagnetic field
(black dots) and the errors of the interpolation results (col-
ored dots). The plots are made for just one run (one orbit)
and for the location of just one satellite, however the errors
are qualitatively representative of what we obtained in mul-
tiple numeric experiments.

Fig. 8 contains 4 subfigures, presenting the comparison
for the three components of the magnetic field vector and
for its absolute values, respectively. The graphs of Fig. 8
clearly show that the characteristic error of satellite mea-
c; lT2

 �

a; km½ � m

2:48 364 2:77
2:86 390 2:52
2:13 335 2:73



Fig. 8. The error of magnetic field interpolation by Ordinary Kriging in comparison with measurements error of Satellite #1 versus argument of latitude h
on the orbit.

Fig. 9. RMSE of the magnetic field interpolation versus characteristic size
of the formation.
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surements with interpolation in a formation is visibly smal-
ler than that for the conventional single-point measure-
ments. The latter, which will be further referred to as
singleton measurements implies that a satellite does not
use observations of other spacecraft (i.e. does not use
interpolation).

Experiment 2 – formation size. Comparing different
semivariograms in terms of mean-squared errors, we
argued in Section 3 that even the noise of 400 nT will not
significantly affect the interpolation result. This experiment
is to check this assumption. Fig. 9, shows how average
RMSE (for the interpolated absolute value of the geomag-
netic field at the locations of all the four satellites along
their orbits) is dependant on the characteristic size of this
formation. The average is computed from 100 runs of
one orbital period and different noise seeds.

The dotted horizontal line in the figure is the RMSE d
for measurements carried out by each satellite in singleton
mode without interpolation. The interpolation is consid-
ered to be ‘‘successful” if the corresponding RMSE level
is below this line. There are also 3 graphs, which show
the error level of measurements with Kriging interpolation
for the semivariograms, based on models of magnetic fields
with different levels of noise: 0, 200 and 400 nT – red, green
and blue, respectively. The plot shows that interpolation
graphs start to diverge only after the intersatellite distance
reaches 12:5 km. It indicates that all semivariogram models
9

are equally applicable for formation size less than 12 km.
Using the size of formation of 7 km, which mostly covers
all previously discussed ionospheric missions, the Kriging
interpolation can double the measurement accuracy.

Using measurements history. The usage of measurements
history implies adding prior measurements carried out by
the formation spacecraft for the current interpolation.
The prior measurements are made in the previous locations
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of the spacecraft along their respective orbits and we have
to assume that the measured field does not change during
the time that passed since the measurements were made.
This, and also the formation size considerations given in
the previous experiment limit the history of measurements
to those made no earlier than 0.2 s prior to the current
time, which corresponds to the distance of approximately
1.5 km back along the orbit. The time period of 0.2 s
between measurements is considered only in the areas of
the quasi-homogeneous fields, whereas the usage of history
measurements with this period in the area of quick and
strong field variations, such as magnetotails, will lead to
the loss of interpolation accuracy.

The result of increasing the number of data points in the
interpolator is shown in Fig. 10. The graphs of Fig. 10 are
analogous to those presented in Fig. 8, and show the result
of the magnetic field measurements’ accuracy enhancement
in terms of RMSE. The accuracy enhancement in each
component for the interpolated data with history points
is noticeably greater than in Fig. 8, where no measurements
history is used.

Table 3 presents the quantitative comparison of the his-
tory experiment results. It compares the mean labs and
standard deviation rabs for RMSE shown in Fig. 10(d),
and also standard deviations estimated for plots Fig. 10
(abc) (rX, rY, rZ). The conclusion about accuracy enhance-
ment is also confirmed by Fig. 11 (analogous to Fig. 9),
Fig. 10. The error of magnetic field interpolation by Ordinary Kriging in comp
h on the orbit, using the history of previous measurements.
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where the RMSEs of the magnetic field interpolation and
measurement is compared with singleton measurements,
all dependent on the formation size.

The most important observation from Fig. 11 is that
even for formations of large size the RMSEs of satellites
measurements with interpolation is always way under the
line of direct field measurement d (without interpolation).
Comparing it with Fig. 9, the size 7:5 km corresponds to
the accuracy improvement by 4 times (2 times without his-
tory). This implies that the quality of interpolation is highly
dependant on the number of measurement points. And
increasing this number in any way, such as using history
measurements, generally leads to a better accuracy of the
method.

Attitude determination. In our previous experiments we
have ascertained that the proposed interpolation technique
does allow obtaining better data for the external magnetic
field than that measured by each satellite individually. We
shall now show an example of how this can be employed in
the attitude determination loop of a satellite, which does
not belong to the modeled formation, but receives the
interpolated data as a service. To make this example sim-
ple, we shall not describe here the Extended Kalman filter,
which it is customary to use in the attitude determination
loop, but instead will show the advantages of using the
interpolated data through a simple deterministic TRIAD
algorithm (Markley and Crassidis, 2014).
arison with measurements error of Satellite #1 versus argument of latitude



Fig. 11. RMSE of the magnetic field interpolation versus characteristic
size of the formation, using the history of previous measurements.

Table 3
Comparison of means and estimated standard deviations of the RMSEs from Fig. 10 (interpolation with history measurements) and Fig. 8 (interpolation
without history measurements).

Interpolation type labs; nT½ � rabs; nT½ � rX ; nT½ � rY ; nT½ � rZ ; nT½ �
With history 84.4 91.6 53.2 51.2 54.1
Without history 95.9 104.3 60.9 57.7 62.1
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TRIAD is the procedure to obtain the satellite’s attitude
parameters (in the form of the direction cosine matrix
(DCM)) given two pairs of vectors represented in two dif-
ferent reference frames. One pair is, for instance, the direc-
tion to the Sun and the local geomagnetic field vector
represented in the inertial frame (usually calculated via
onboard models). We shall use those vectors representa-
tions in the orbital frame, which can be transformed to
the inertial frame and back. The second pair consists of
the same vectors, but measured by the sensors and, conse-
quently represented in the satellite body-frame.

For this experiment we shall simulate rotational dynam-
ics of a spacecraft located in the service zone of the forma-
tion and compare the results of its attitude determination
for TRIAD using onboard model for geomagnetic field
or the interpolated multipoint measurements. The trun-
cated onboard models (especially in CubeSats, where com-
putational power is scarce) usually differ from complete
IGRF models by a value of �100 nT. Beside that, they
are not able to predict such events as magnetic storms,
which can change the external magnetic field around the
spacecraft up to 500 nT (Lakhina et al., 2004). In this
regard the interpolated geomagnetic field vector (given in
inertial or orbital reference frame) appears to be advanta-
geous. It should be noted, however, that the main problem
of magnetometer-based attitude determination lies not in
the shortcomings of the model, but rather in difficulty of
identifying the magnetometer bias due to residual magneti-
sation of the satellite itself. However, this problem is
beyond the scope of this article.
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We shall compare, how the interpolation of the mag-
netic field model affects the resulting DCM. To this end
we are going to obtain two DCMs, one of which is built

upon onboard-model value of the magnetic field Borb
model,

and the other one is built upon interpolated value bBorb
int .

Interpolated estimate is based on the actual values of the

Earth magnetic field Borb
actual, which is obviously different

from the truncated board model. We consider this differ-
ence to be rmodel ¼ 500 nT, and model the dependency
between those fields as Gaussian noise with mentioned
standard deviation and zero bias:

Borb
actual ¼ Borb

model þN 0; r2
modelI

� � ð12Þ

Measurements B
�
body
meas are acquired with magnetometers,

which usually have observation errors. We shall model
magnetometer measurements with unbiased Gaussian
noise, whose standard deviation is rmm ¼ 10 nT, to mini-
mize the effect of observation noise on the DCM
reconstruction:

B
�
body
meas ¼ Aorb!bodyBorb

actual þN 0; r2
mmI

� � ð13Þ

where Aorb!body is true DCM, which converts vectors’ rep-
resentations from the orbital reference frame to the body-
frame.

Another pair of vectors, which is used for TRIAD algo-

rithm, consists of the Sun direction Sorb
model obtained from an

onboard model and sun sensor output S
�
body
meas. The Sun direc-

tion model outputs an inertial frame representation, which
depends only on the Julian date chosen in the following
simulation to be 2458940.19. The vector then is converted
to the orbital frame (zero RAAN and known inclination

87�) and taken as the model value Sorb
model. The sun sensor

measurements are modeled equivalently with magnetic field
measurements from Eqs. (12) and (13), but normalised and

with standard deviations rsunmodel ¼ 10�9 and

rsunsensor ¼ 10�4.
Thus, having two pairs of vectors B and S, we can define

the TRIAD-algorithm in our case. Estimates of the matrix

Aorb!body are following:

tb1 ¼ S
�
body
meas tb2 ¼ tb1 	 B

�body
meas

B
�body
meas

�� �� tb3 ¼ tb1 	 tb2

to1 ¼ Sorb
model to2 ¼ to1 	 Borb

Borbk k to3 ¼ to1 	 to2bAorb!body ¼ tb1 jtb2 jtb3

 �

to1 jto2 jto3

 �>

ð14Þ
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Substituting Borb from Eq. (14) either with Borb
model or withbBorb

int , we will get matrices bAorb!body
model and bAorb!body

int respec-
tively, which should be compared with each other.

DCMs are computed for the orbit, defined in Section 2,
and converted into the Euler angles – roll, pitch, yaw; and
into the axis-angle representation. Simulation results are
presented in Fig. 12. The peaks in the first four plots of
Fig. 12 are explained by a known weakness in the TRIAD
algorithm which becomes sensitive to errors when the angle
between the Sun direction and the geomagnetic field direc-
tion is small. Such is the case when the argument of latitude
approaches the value of 60�.

The kinematics for spacecraft relative motion and rota-
tional dynamics are simulated via following equations:
Fig. 12. The error of Euler angles and quaternion angle determination of Sate
orbit. Subfigures (a)–(d) show the RMSEs of aforementioned angles, recons
interpolated values (orange) of the Earth magnetic field. Subfigures (e)–(f) show
they are reconstructed with TRIAD, based on interpolated magnetic field valu
reader is referred to the web version of this article.)
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_A ¼ A xbody � A>norb

 �

	;

J _xbody þxbody 	 Jxbody ¼ Tbody
grav þ Tbody

dist ;
ð15Þ

where A ¼ Abody!orb and A> ¼ Aorb!body are DCMs which
relate orbital and body reference frames, xbody is space-
craft’s absolute angular velocity in the body frame,

norb ¼ 0 n 0ð Þ> is the mean-motion vector in the orbital
frame, x½ �	 is the skew-symmetric matrix, which represents
cross-product operator for vector x, such that

x½ �	y ¼ x	 y; 8x; y 2 R3; J is an inertia tensor in principal

(body) axes with components 11; 14; 9ð Þg 
m2;Tbody
grav and

Tbody
dist are gravitational and disturbance torques expressed

in the body frame. The disturbance torque is modeled as
llite #1, using the TRIAD algorithm, versus argument of latitude h on the
tructed with TRIAD algorithms, based on the model values (blue) and
the example of Euler angles evolution on the orbit for Satellite #1 and how
es. (For interpretation of the references to colour in this figure legend, the
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the unbiased Gaussian noise with standard deviation

rtorque ¼ 10�7N 
m. Simulations are held with initial condi-

tions: A ¼ A> ¼ I3	3;x
body ¼ 03, where I is an identity

matrix. Satellite rotational dynamics as described by the
Euler angles is shown in Fig. 12(e).

The results of RMSE calculation as shown in Fig. 12
indicate that the interpolation of geomagnetic field
enhances the accuracy of the satellite attitude determina-
tion even with simple TRIAD up to 3� in the case of strong
divergence of the onboard model with the actual magnetic
field. These results can be improved, using the Extended
Kalman Filter or other specific algorithm of the attitude
determination (and control) system.

To sum up the results of the experiments above, it can be
said that they provide conclusive evidence to acknowledge
the positive outcomes of the feasibility study we carried
out. However, it must be further investigated, whether
the proposed concept will turn out applicable in an actual
space mission with actual measurements. On one hand, it
may seem that multipoint measurements are always better
than single point measurements, because they allow aver-
aging out errors and rejecting obvious outliers. On the
other hand, collecting such measurements comes at a price
of establishing intersatellite communication with its
latency, extra power consumption, need to synchronize for-
mation spacecraft clocks and a common reference frame
with respect to which the data exchange is conducted.

We have reasons to believe, that the concept itself of
using Kriging family of interpolators to process multipoint
measurements of natural phenomena will remain valid if
implemented in a real mission as long as there are means
of constructing empirical semivariograms. For instance,
the example we used with the geomagnetic field measure-
ments is based on the IGRF models which are proven to
bear statistical resemblance with the actual field. This lets
us claim that the geomagnetic experiment can be repro-
duced in reality. The method we demonstrated here is
based on certain assumptions, which may not hold true
in reality (such as Gaussian noise as a difference of the
actual field from the IGRF model), but this difficulty can
be solved by using other Kriging interpolators which can
be applicable under various conditions (e.g. Kriging with
trends or spatio-temporal Kriging). This can be made a
subject of a future study.

Further concept validation, could be carried out with
the use of the measurement data from relevant real forma-
tion missions, however the available data sets are obtained
for formations (MMS, THEMIS) that operated at dis-
tances, which are significantly greater than those, at which
our method is expected to be advantageous (formation size
less than 10 km). However, we plan to conduct the real-
data experiment as Skoltech university is preparing a
swarm mission comprising four magnetically controlled
CubeSats as an intersatellite communication technology
demonstration. We hope that the coordinated data
13
exchange will become a part of the mission program and
this will allow us demonstrating a proof of concept in orbit.
5. Conclusion

This paper considers an extra function, a satellite forma-
tion can carry out, namely, data exchange and interpola-
tion. We studied a mission, whose orbital configuration is
similar to tentative ionospheric mission for multipoint spa-
tial plasma measurements in a polar orbit. As an example
of the multipoint measurements geomagnetic field was
considered.

We showed that even for a four-satellite formation, mul-
tipoint measurements and appropriate interpolation meth-
ods can produce comparatively precise instantaneous maps
of the measured quantity. For the geomagnetic field we
outlined the procedure of how the Kriging interpolation
can be carried out, studied different variogram models
and chose the best fitting one. We also established the size
of the 3D local map that can be constructed with the four
available satellites and discussed how the quality of this
map can be improved by using measurements history.

We concluded the paper by quantifying how the
enhanced geomagnetic field data can be used to improve
the attitude determination routine quality for any satellite,
which happens to be within the coverage of the servicing
formation. It appears that even for such simplistic attitude
determination routine as TRIAD the result can be
improved by 1–3 degrees, which is quite significant for uni-
versity ionospheric missions, that rely on the low-cost
COTS and require pointing accuracy of a few degrees.

On completing this study, we believe that the Kriging
interpolation algorithms (of which there is more than a
mere Ordinary Kriging we used in this paper) is worthy
of close attention of the researchers involved with multi-
point space measurements. One other thing, that we should
like to point out is that with the advent of megaconstella-
tions, when networking satellites will occupy large regions
of space, such service as we showed through the example of
four-satellite formation, may actually become as universal
as that of GNSS.
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