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Abstract
This study has been conducted as a part of the Skoltech University project to deploy a swarm of 3U CubeSats
in LEO. Our previous studies have shown that data exchange in a swarm of satellites may enhance the attitude
determination and control system performance in individual satellites by using interpolated distributed
measurements of magnetic field in the attitude determination loop. This work takes the concept a step
further and investigates a scenario of having within a swarm a subgroup of spacecraft that are equipped with
more precise magnetometers than the rest and are employed as a measurement network that serves the precise
magnetic field map to the rest of the swarm spacecraft. We consider this servicing network to comprise four
spacecraft, whose trajectories ensure the effective spatial configuration for distributed measurements in the
region of interest (where the rest of the swarm spacecraft are). Using several interpolation techniques, such
as Ordinary and Non-Ordinary Kriging, the servicing satellites provide statistical maps of the surrounding
geomagnetic field in the form of semivariograms atlases for each Cartesian coordinate. These maps are then
fed to the attitude determination routines of the other swarms satellites and processed by their respective
Extended Kalman Filters. Thus, we propose a decentralized communication algorithm between satellites of
different groups, based on which every satellite in the swarm improves its ADCS performance. We present
our simulation results that show the advantages of the proposed method over the usage of independent
controllers in each satellite.
keywords: swarm, CubeSat, Kriging, semivariogram, atlas, magnetic attitude control

1. Introduction

New distributed architectures of space systems
provide improved flexibility and adaptability to struc-
tural and functional changes [3]. Deployment of the
miniature satellites’ swarms promises to be fast and
inexpensive. These Swarms can comprise simplistic
units that detect certain events and exchange signals
with each other and even larger more complicated
spacecraft that acts as an analysis hub. Swarms or
constellations can be employed as distributed arti-
ficial intelligence. They can exhibit collective be-
haviour, such as self-organization, transformability,
self-learning and simultaneous sensing over large ar-
eas. Farrag [6] for example composed a survey of the
technology demonstration in swarm missions. Among
those missions we may mention the HERMES (High
Energy Rapid Modular Ensemble of Satellites), which
is a mission concept, based on a swarm of nano-
satellites in low Earth orbit (LEO), hosting simple
but fast scintillators to probe the X-ray emission of
bright high-energy transients [7]. The swarm mission,

our study stems from, is also conceptually a scien-
tific project that is currently under development at
Skoltech, aiming to deploy a swarm of four identical
3U CubeSats in a LEO. The CubeSats are to carry
gamma-ray sensors, and their collective behavior will
be exhibited in detecting gamma-ray bursts and in
coordinated attitude control.

We start our study by considering a three-
dimensional formation, whose structure is similar to
the one proposed in [4], but clusters of closely located
satellites are substituted by single points of measure-
ment, thus making the formation a group of four
satellites. Two of the satellites are to orbit the Earth
in the leader-follower configuration in a near-circular
near-polar orbit while the other two must keep the
three-dimensional formation nondegenerate.

Having established the orbital motion of the for-
mation spacecraft we proceed implementation of a
fully magnetic ADCS and the interpolation of the ge-
omagnetic field distributed measurements in the in-
terior points of the tetrahedron composed of the four
satellites. To this end we employ the Kriging interpo-
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lation technique [13], which originated in geostatisti-
cal analysis, and to the best of our knowledge has not
been extensively used in space applications. One of
its indisputable advantages over other interpolators
is the ability to capture a certain degree of continuity
inherent in the spatially distributed properties to be
measured.

We build the atlas of the semivariograms, sepa-
rated into 3 sectors, based on the region of orbit they
were constructed upon. Having done that we present
simulation results with MSEs of orientation and an-
gular velocity metric, and then compare those results
with that of the singleton ADCS, which uses direct
measurements of the geomagnetic field. Finally, the
conclusion wraps up the paper by discussing the re-
sults and prospects of their application.

2. Orbital configuration

The formation of CubeSats in the form of tetra-
hedron was discussed in our previous work [2]. Here
we enumerate main features of the configuration and
give quantitative parameters. The formation is de-
ployed at a near polar circular orbit with altitude of
500 km and inclination of 87◦. The first satellite is
traveling along this orbit, whereas other three satel-
lites occupy relative orbits such that their positions
are in the vertices of a non-degenerate tetrahedron.

The motion of closely orbiting satellites in the cen-
tral gravity field in near circular orbits is described by
the Hill-Clohessy-Wiltshire equations [14, 8]. The rel-
ative spacecraft dynamics with respect to the orbital
reference of the first satellite, which moves along the
circular orbit with mean motion ω0. In this reference
frame, z-axis is aligned with the local vertical, y-axis
coincides with the normal to the orbital plane, and
x-axis (along track) completes the reference frame to
the right-handed triad.

The linearized equations describing spacecraft rel-
ative motion in near circular orbits are given by

ẍ+ 2ω0ż = ux,

ÿ + ω2
0y = uy,

z̈ − 2ω0ẋ− 3ω2
0z = uz,

(1)

where u =
∆f

m
. In the case of free motion, i.e. if

∆f = 0, Eq. (1) admit bounded periodic solutions
given by 

x(t) = c1 cos (ω0t+ α0) + c3,

y(t) = c2 sin (ω0t+ β0),

z(t) =
c1
2

sin (ω0t+ α0),

(2)

where the constants c1, c2, c3, α0, β0 are determined
by the initial conditions.

Tetrahedron Formation Initial Conditions
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Table 1: Initial Conditions for the Tetrahedron Ver-
tices Reference Trajectories

The initial conditions determining the reference
trajectories are specified in Table 1. The value of di-
mensionless parameter ρ, which determines the char-
acteristic distances between the satellites in forma-
tion is chosen to be ρ = 1430 m for all subsequent
simulations. The relative trajectories of the forma-
tion are shown in Fig. 1, and the quality change, in-
troduced in (3), is shown in Fig. 2.

Fig. 1: Relative trajectories of the formation satel-
lites as seen from the orbital frame

The measure of the resulting tetrahedron quality
is given as [1, 10]:

Q = 12
(3V )2/3

L
, (3)

where V is the volume of the tetrahedron and L is the
sum of squared lengths of all tetrahedron’s edges. Q
changes between 0 for degenerate configuration and
1 for regular tetrahedrons.
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Fig. 2: Formation quality Q

3. Single satellite attitude control

3.1 Motion and measurements models

We consider 2 main reference frames: orbital
Fu ≡ Oxyz, where z-axis extends through the cur-
rent position of the satellite, y-axis direction coincides
with that of the satellite’s center of mass angular mo-
mentum and x-axis completes the frame to a right-
handed triad; and body-fixed F q ≡ OXY Z, three
axes of which coincide with principle axes of inertia.
All vectors represented in those frames are denoted
by upper indexes u and q respectively – ru and rq.

The unit quaternion Q = (q0,q) relates the space-
craft’s body-frame F q to the orbital frame Fu. Thus
representations of any vector r in these two frames
rq and ru are related by

ru = Q ◦ rq ◦ Q∗,

where Q∗ = (q0,−q) is the conjugate of Q.
The satellite is considered to be a rigid body, which

complies with the kinematics and dynamics motion
equations: Q̇ =

1

2
Q ◦ Ωq,

Jω̇q + ωq × Jωq = Tq
ctrl + Tq

grav + Tq
dist

(4)

where ωq and Ωq are absolute and relative angular ve-
locities of the spacecraft, connected via mean-motion
ω0, J is the diagonalized inertia tensor, Tq

ctrl is a con-
trol torque, Tq

grav is a gravitational torque and Tq
dist

is a disturbance torque.
The gravity-gradient torque is given by Tq

grav =
3ω2

0 eqZ × JeqZ , where eqZ is the ort of Z-axis in F q.
The disturbance torque is modeled as Gaussian noise

with zero mean and standard deviation σtorque with
corresponding covariance matrix Σtorque = σ2

torqueI:
Tq

dist ∼ N (0,Σtorque). And control torque simulates
the work of magnetorquer, i.e. equals to vector prod-
uct of required magnetic moment mq and external
actual magnetic field Bq: Tq

ctrl = mq ×Bq.
The magnetic moment is computed with the aid of

the well-known Lyapunov-based algorithm [9]

mq = kω∆Ωq ×Bq + ksS
q ×Bq, (5)

where ∆Ωq = Ωq − Ωq
req is the angular velocity er-

ror, Sq = 4q0q is the attitude error corresponding to
the error quaternion Q, Bq is the on-board estimate
of the external geomagnetic field, kω and ks are the
control gains.

The difference between the on-board estimate of
the external geomagnetic field Bq and the actual cur-
rent field Bq can reach values of σenv = 300 nT, if,
as in this research, the IGRF-13 model of the mag-
netic field [5] is used, since the OBC model is usu-
ally reduced. That’s why we model the difference
between 2 field vectors as the Gaussian noise with
0 mean and and covariance matrix Σenv = σ2

envI:
Bq −Bq ∼ N (0,Σenv).

The measurement of the geomagnetic field is oc-
cured via magnetometers, which have bias Bq

bias and
standard deviation σmeas with corresponding covari-
ance matrix Σmeas = σ2

measI. So, measurements

B̃q also modeled as Gaussian noise: B̃q − Bq ∼
N (Bq

bias,Σmeas). In current research the bias is con-
sidered to be zero.

3.2 Extended Kalman Filter

The Kalman filter represents recursive estimation
of the state vector X(t) of an a dynamical system
[11]. To calculate the current ith state of the sys-
tem Xi = X(ti) it is necessary to obtain the current
measurement zi = z(ti) and know the previous state
Xi−1 = X(ti−1). Kalman filter also operates with
estimates of the uncertainty of the state vector in the
form of covariance matrix Pi = P(ti).

Since our system (4) is nonlinear, the Extended
Kalman Filter (EKF) should be used. The general
form of a nonlinear continuous system with discrete
measurements for EKF is written as follows:

Ẋ(t) = f (X(t)) + Gw(t)

zi = h (Xi) + vi
(6)

where function f is the evolution of vector X, func-
tion h is the measurement model of vector X, w and v
are process and observation noises, respectively, with
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normal distribution and covariance matrices Σw and
Σv, and G is the matrix of the process noise w in-
fluence on the state-space vector X.

Let X̃ and X̂ denote the predicted (or extrap-
olated) and corrected (or filtered) estimates of the

state-space vector, respectively, and let P̃ and P̂
be the corresponding covariance matrices. The pre-
dicted value of the vector is obtained out of the cor-
rected one in the previous time step via the evolution
function f from (6):

Ẋ(t) = f (X(t))

w.r.t. X(ti−1) = X̂i−1
=⇒ X(ti) = X̃i (7)

Let Fi and Hi be evolution and observation ma-
trices, respectively:

Fi =
∂f

∂X

∣∣∣∣
X=X̂i−1

Hi =
∂h

∂X

∣∣∣∣
X=X̃i

(8)

The covariance matrix of the discrete-time process
noise with respect to state-space vector is given by

ΣGw =

ti∫
ti−1

ΦiGΣwG>Φ>i dt, (9)

where Φi is the transition matrix between steps i− 1
and i:

Φi = exp [Fi (ti − ti−1)] (10)

Covariance matrix prediction P̃i on the basis of
Eqs. (10) and (9) becomes as follows:

P̃i = ΦiP̂i−1Φ
>
i + ΣGw (11)

Having completed the prediction step with Equa-
tions (7) and (11) we proceed to the correction step,
which is given by:

Ki = P̃iH
>
i

(
HiP̃iH

>
i + Σvi

)
X̂i = X̃i + Ki

(
zi − h

(
X̃i

))
P̂i = (I−KiHi) P̃i

(12)

where K is Kalman gain matrix.
The state-space vector in our case is concatenation

of quaternion and angular velocity: X =
(
q ωq

)>
.

After the linearization of dynamics and measurement
models we get matrices:

F =

(
03×3

1

2
I3×3

03×3 03×3

)
Hi =

(
2Wh(X̃i) 03×3

)

where Ws is a skew-symmetric matrix for vector s
and h(X) is conversion of orbital magnetic field value
into the body-fixed frame: Q∗ ◦ Bu ◦ Q.

The process noise w is clearly Tq
dist with matrix

G equal
(
03×3 J−1

)>
. The observation noise v is

represented by measurements N (Bq
bias,Σmeas).

The CubeSat’s tensor of inertia is J =
diag (0.011, 0.014, 0.009) kg · m2. The output of the

magnetorquers is limited by |mmax| = 0.1 A · m2.
The control loop time settings are tctrl = 5 s and
tmeas = 1 s. The controller gains are tuned to

(k′ω, ks) = (45, 10)
N ·m

T2 .

Initial state-space vector: X0 = 06×1. These val-
ues are used to initialize both the dynamical model
and the Kalman filter. Initial covariance matrix:
P0 = diag

(
σ2
q0 , σ

2
q0 , σ

2
q0 , σ

2
ω0
, σ2
ω0
, σ2
ω0

)
, where σq0

and σω0
are assumptions of the maximum (or big

enough) errors of quaternions and angular veloci-
ties respectively. In this study σq0 = 1 and σω0 =
π

18

[
rad

s

]
.

Noise parameters: standard deviation of torque
noise σtorque = 5 nN ·m; magnetometer bias Bbias =
0; standard deviation of measurement noise σmeas =
100 nT; standard deviation of environmental noise
σenv = 300 nT.

The result of the simulation for a single satellite is
shown in the figure 3.
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Fig. 3: Orientation MSEs for a single satellite ADCS
with EKF

4. Attitude control in a swarm

4.1 Data exchange and interpolation

For the swarm scenario there are multiple of or-
bital and body-fixed frames – Fu and F q. In that
case we shall enumerate them according to the num-
ber of satellites in the swarm: Fu

j , F q
j – orbital and

IAC–20–C1.9.7 Page 4 of 8



71th International Astronautical Congress, The CyberSpace Edition, 12-14 October 2020. Copyright c© 2020 by International
Astronautical Federation (IAF). All rights reserved.

body-fixed reference frames of the jth satellite in the
swarm. Respective vectors in those frames have the
following view: ruj , rqj .

The magnetic field is measured by the magnetome-
ters of each satellite in the swarm. Those measure-
ments B̃

qj
j are in body frame F q

j .
The obtained values are then converted to the re-

spective orbital reference frame of the jth satellite Fu
j

with the current quaternion Qj :

B̃
uj

j = Qj ◦ B̃
qj
j ◦ Q

∗
j (13)

To interpolate given values all vectors should be
converted to the single reference frame, which is or-
bital reference frame of the first satellite Fu

1 , station-
ary in the relative motion of the whole formation.

The conversion between Fu
j and Fu

1 is carried out

via DCM, which requires the position of the jth satel-
lite in Fu

1 . To fulfill this condition, each satellite, in
addition, sends to chosen CubeSat its position Ru1

j

to form the DCM Au
j→1. So, the measurements are

converted:
B̃u1
j = Au

j→1B̃
uj

j (14)

Finally, the chosen CubeSat estimates the value
of the magnetic field in its own location B̂u1

j , us-
ing the Kriging algorithm with known tuples of
(location, parameter) of all other satellites in the

form
(
Ru1
j , B̃

u1
j

)
. The procedure repeats for all

satellites until we get all 4 estimates for each one:
B̂u1

1 , B̂u1
2 , B̂u1

3 , B̂u1
4 . Those estimates are all in the

orbital frame of the first CubeSat Fu
1 . Estimates af-

ter converted back to the body-fixed frame of their
own satellites via known DCMs and quaternions:

B̂
uj

j =
(
Au
j→1

)>
B̂u1
j

B̂
qj
j = Q∗j ◦ B̂

uj

j ◦ Qj
(15)

Acquired estimates B̂
qj
j are used as measurements

z in EKF.

4.2 Kriging

Kriging algorithms are a family of linear regres-
sion methods to estimate point values at any location
within a given region [12], which not only constructs
predicted values surface, but also provides represen-
tation of the reliability of such values.

The estimator in Kriging is weighted sum of mea-
surements in the vicinity of the interpolated point:

B̂(R0) =

n∑
j=1

κjB̃(Rj) (16)

where R0 is the interpolated point, B̂ is the predicted
value of the measured parameter, Rj are the points

available in the vicinity of interpolated one, B̃ is the
measurement of geomagnetic field, κj are the weights,
reflecting the spatial correlation between Rj and R0,
n is the number of available points.

Assuming unbiasedness of the estima-

tor
(
E
[
B̂(R0)

]
= E

[
B̃(R0)

])
, and minimiz-

ing the variance of the estimator prediction(
minD

[
B̂(R0)− B̃(R0)

])
, we acquire the system

of equations on weights κj and Lagrange multiplier
κ (E is expected value and D is variance):

n∑
j=1

κjγ(Ri −Rj) + κ = γ(Ri −R0),

n∑
j=1

κj = 1.

(17)

where γ(h) is the semivariance, which by definition is

γ(Ri −Rj) =
1

2
D
[
B̃(Ri)− B̃(Rj)

]
.

So, to calculate weights κj we should know val-
ues of the semivariance between measurement points.
Those values are acquired via semivariograms.

4.3 Atlas of semivariograms

To collect the information about the semivariance
of the measured parameter in the region, the empiri-
cal semivariogram is built. Empirical semivariogram
accepts the distance between measured points h as an
argument and returns the approximate semivariance
for points located at a distance h from each other:

∀Ri,Rj : |Ri −Rj | = h

γ(h) =
1

2nh

nh∑
(i,j)=1

(
B̃(Ri)− B̃(Rj)

)2
,

(18)

where nh is the total number of sampled points pairs.
Then empirical semivariogram can be approxi-

mated with some model function. This is necessary,
due to discontinuity of γ(h) in Eq. (18).

In this research we also introduce the separation of
the orbit on 3 sectors with respective semivariograms.
In comparison with previous study [2], where we used
only one semivariogram for the whole orbit, there are
3 sources of measurement points, which is more fa-
vorable in the context of heterogeneity of the geo-
magnetic field. The separation is shown in he figure
4.

Collecting measurement data from cubes with size
50 km and centers in the points of orbit with argu-
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u = 0o

u = 60o

u = 120o

Fig. 4: The separation of the orbit on sectors with
different semivariograms

ments of latitude 0◦, 60◦ and 120◦, we acquire empir-
ical semivariograms, shown in the figure 5.
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Fig. 5: Atlas of semivariograms for 3 sectors

There are a lot of model functions, but the best one
in terms of fitting accuracy is powered exponential
one with following view:

γ(h) =

c0 + c

(
1− exp

[
−
(
h

a

)ν])
, h > 0

0, h = 0

(19)
where c0, c, a and ν are parameters of the model.

Fitting the model from Eq. (19) into the empir-
ical semivariograms from figure 5 gives parameters
distribution, listed in the table 2.

The comparison of the MSEs of the measurements
B̃ and interpolated estimates B̂ in relation to the
actual value of the magnetic field B for one satellite
from swarm is drawn in the figure 6.

It’s clear from the figure that the interpolation
gives considerable decrease to the observation noise.
The enhancement is best seen in the case of magnetic

u, deg c0, µT2 c, µT2 a, km ν
0 0.01 1.15 441 2.54
60 0.04 2.48 364 2.77
120 0.08 4.15 380 2.76

Table 2: Parameters of the powered exponential
semivariogram model for 3 sectors of orbit

Fig. 6: Measurements vs Interpolated estimates
MSEs in absolute value

storms, when the interpolation with different sources
eliminates big bias of the storm.

Using same parameters as in the Section 3, but re-
placing measurements B̃ with interpolated estimates
B̂ in the ADCS of a satellite, we computed the MSEs
for swarm scenario, results of which are in the figure
7.
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Fig. 7: Orientation and angular velocities MSEs for
a satellite a in swarm, using the interpolated esti-
mates instead of direct measurements in EKF

It can be seen that the MSEs of the Euler angles
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decreased by 15% in comparison with single-satellite
result, which is really good outcome for the interpo-
lated estimates usage in a slightly perturbed environ-
ment.

5. Conclusion

In this paper we showed that even for a four-
satellite formation, distributed measurements and
appropriate interpolation methods can produce ac-
curate instantaneous maps of the measured quan-
tity. We constructed the non-degenerating tetrahe-
dral CubeSat formation with relative motion. We
outlined the procedure of how the Kriging interpo-
lation can be carried out, studied different semivar-
iogram models and separated them into the atlas,
depending on the current sector of the orbit. We
acquired empirical semivariograms for the IGRF-13
model of the geomagnetic field and fitted into them
best possible model function, which was proven em-
pirically. We found that usage of interpolated esti-
mates in the formation of CubeSats can enhance the
accuracy of the attitude control by 15% in compar-
ison with singleton ADCS and direct measurements.
Also, the interpolations technique is more robust to
out of scope environmental events, such as magnetic
storms. However, the disturbances used in simula-
tions are rather small and the in-orbit resulting MSEs
are expected to be different, with greater standard de-
viations and non-zero means. We believe that Krig-
ing interpolation technique is worth of the close at-
tention from researchers of mega-constellations and
distributed measurements, since this technique may
have a great effect on the ADCS refining or even be-
come universal.
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