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ATTITUDE CONTROL ALGORITHMS IN A SWARM OF
CUBESATS: KRIGING INTERPOLATION AND COORDINATED

DATA EXCHANGE

Anton Afanasev∗, Anton Ivanov†, Ahmed Mahfouz‡, and Dmitry Pritykin§

This study is a part of the Skoltech University project to deploy a swarm of four
identical 3U CubeSats in LEO. The CubeSats are to be equipped with gamma-
ray sensors and their collective behavior will be exhibited in detecting gamma-ray
bursts and coordinated attitude control. We consider a fully magnetic attitude
control system, comprising a magnetometer as a part of attitude determination
routine and three orthogonal magnetorquers as actuators. Having implemented
and tested the conventional three-axis magnetic attitude determination and con-
trol algorithms, we proceed to study how the performance of such ADCS may
be enhanced by using measurements and state vectors exchange. We interpolate
the exchanged data, using the Kriging algorithm in conjunction with Extended
Kalman filter and Lyapunov-based controller, since it provides the auto-correlation
and variance information about the environment of the magnetic field, which is of
utmost importance for heterogeneous and noisy fields. In our simulations we com-
pare the performance of the controller for a single satellite to that of the satellite
in the swarm of CubeSats, which maintains the form of a regular tetrahedron and
carries out distributed measurements with interpolation. Improved attitude stabi-
lization for the latter scenario is demonstrated by mean squared errors.

INTRODUCTION

Distributed space systems use multi-spacecraft formations to replace large single-satellite archi-
tectures with the aim of enhancing mission reliability and achievable outcomes while lowering
costs.1 Although single-satellite missions still have advantages in terms of accuracy and function-
ality, new distributed architectures provide improved flexibility and adaptability to structural and
functional changes.2 This development is not entirely unexpected and has been foretold – among
others – by Stanisław Lem,3 whose book “Summa Technologiae” indicates a certain similarity be-
tween biological and technological evolution, which has a tendency towards extinction of uncoop-
erative gigantic species (whether it be dinosaurs in biology or zeppelins in technology), whereas the
smaller ones go on and continue their development. One of the reasons behind this might be that the
surviving smaller species are able to form large groups, communicating with each other and finding
optimal ways to resolve vital issues, such as where to find food, how to attack foes etc.
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The analogy can be extended to CubeSats swarms, which are becoming feasible, but require the
adoption of new operation paradigms that, on one hand, enhance their autonomy, but on the other
hand, make full use of it. Deployment of the miniature satellites’ swarms promises to be fast and
inexpensive. These Swarms can comprise simplistic units that detect certain events and exchange
signals with each other and even larger more complicated spacecraft that acts as an analysis hub.
Finally, swarms or constellations can be employed as distributed artificial intelligence. They can
exhibit collective behaviour, such as self-organization, transformability, self-learning and simulta-
neous sensing over large areas. We shall refer the reader to an exhaustive survey by Farrag4 of
swarm missions, which, for the moment, is mostly the technology demonstration. Among those
missions that are currently planned to be deployed, we may mention the HERMES (High Energy
Rapid Modular Ensemble of Satellites), which is a mission concept, based on a swarm of nano-
satellites in low Earth orbit (LEO), hosting simple but fast scintillators to probe the X-ray emission
of bright high-energy transients.5 The swarm mission, our study stems from, is also conceptually a
scientific project that is currently under development at Skoltech, aiming to deploy a swarm of four
identical 3U CubeSats in a LEO. The CubeSats are to carry gamma-ray sensors, and their collective
behavior will be exhibited in detecting gamma-ray bursts and in coordinated attitude control. The
CubeSats are not supposed to be equipped with propulsion systems, and the only means of control-
ling their dynamics to exhibit the swarm behavior is in using the attitude determination and control
subsystem (ADCS). A number of studies have already been carried out with the aim of designing
the spacecraft themselves and their ADCS in particular.6, 7

This paper addresses the problem of collective data processing and usage in a swarm of CubeSats.
It namely focuses on the spacecraft’s attitude determination and control subsystems (ADCS), which
benefits from the distributed measurement data exchange through the intersatellite link. By pro-
cessing the exchanged measurement data, the swarm is shown to recover the actual magnetic field
in the areas where the swarm satellites are present. Our preliminary study8 has shown that even
the simplest interpolation algorithm enhances the on-board magnetic field model, thus making the
attitude determination algorithms more robust and more immune, for instance, to magnetic storms.
To further demonstrate this effect, we consider advanced interpolation techniques that capture the
spatial statistical properties of the geomagnetic field and apply them in the control loop of a fully
magnetic attitude control system. We use state-of-the-art attitude control algorithms,9, 10 which are
fairly often implemented in CubeSats, because of low cost of the required hardware. We shall note,
however, that the use of the proposed data exchange scheme is in no way limited to magnetic control
systems and can be generalized to be employed in the attitude or even orbit determination loop in
groups of satellites of various design.

The paper has the following structure. In the first sections we introduce our implementation of a
fully magnetic ADCS for a single satellite.9 This part comprises introduction of the used reference
frames, equations of motion, controller and the Extended Kalman Filter to process the magnetometer
data. We then present simulation results for the single satellite scenario and quantify them using
Mean-Squared Errors (MSE) metrics. Having done that, we proceed to the core part of the study
devoted to the interpolation of the magnetic field measurements by the swarm of 4 CubeSats with the
Kriging algorithm. Measurements optimization explicitly leads to the enhancement of the attitude
control in each individual CubeSat, showing better MSEs as compared to a single satellite setup.
The article ends with Conclusions, which discusses the obtained results and outlines prospective
directions of future research.
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REFERENCE FRAMES

Let us denote by O⊕ and Os the center of the Earth and a satellite’s center of mass, respectively.
The following reference frames will be used:

F u Orbital reference frame O⊕xyz (fig. 1a). This frame is defined by the spacecraft’s argument
of latitude u on the given circular orbit. z-axis extends through the current position of the
satellite. y-axis direction coincides with that of the satellite’s center of mass angular momen-
tum. x-axis completes the frame to a right-handed triad (for circular orbits the x-axis runs
parallel to the spacecraft’s linear velocity vector). All vectors represented in this frame are
denoted by the upper index u: vu (single satellite scenario).

F q Body-fixed reference frame OsXY Z (fig. 1b). The three axes of this frame coincide with
the spacecraft’s principal axes of inertia. Usually, the smallest and the greatest moments of
inertia are related to Z and Y -axis, respectively – to fulfil the gravity-gradient orientation
stability conditions. The frame is obtained from the orbital frame F u by spacecraft’s unit
quaternion Q∗ rotation. All vectors represented in this frame are denoted by the upper index
q: vq (single satellite scenario).

z

y

x

(a) Orbital Fu

X

Y

Z

(b) Body-fixed F q

Figure 1: Reference frames.

The frames F u and F q, whose origin is fixed in the satellite, are constantly changing with
respect to the center of Earth. Moreover, for the swarm scenario there will be multiple of such
frames. In that case we shall enumerate them according to the number of satellites in the swarm.
For interpolation purposes we shall also introduce an orbital reference frame related to the swarm’s
center of mass:

F u
j Orbital reference frame of the jth satellite in the swarm. All vectors represented in this frame

are denoted by the upper index uj : vuj (swarm scenario).

F u
0 Orbital reference frame of the swarm’s center of mass. All vectors represented in this frame

are denoted by the upper index u0: vu0 (swarm scenario).

F q
j Body-fixed reference frame of the jth satellite in the swarm. All vectors represented in this

frame are denoted by the upper index qj : vqj (swarm scenario).
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SPACECRAFT EQUATIONS OF MOTION

Quaternion Kinematics

The unit quaternion Q = (q0,q) relates the spacecraft’s body-frame F q to the orbital frame F u.
Thus representations of any vector r in these two frames rq and ru are related by

ru = Q ◦ rq ◦ Q∗,
where Q∗ = (q0,−q) is the conjugate of Q.

Let ωq and Ωq denote the absolute and relative angular velocities of the spacecraft. Absolute
angular velocity ωq then may be expressed as

ωq = Ωq +Q∗ ◦ ωu0 ◦ Q, (1)

where ωu0 =
(
0 ω0 0

)> is the angular velocity of the orbital frame corresponding to the mean
motion.

The quaternion kinematics equation for the relative motion is

Q̇ =
1

2
Q ◦ Ωq. (2)

Rigid Body Dynamics

Each spacecraft is modeled as a rigid body, whose rotation is described by the Euler equations:

Jω̇q + ωq × Jωq = Tq (3)

where J is the inertia tensor of the spacecraft, Tq is the resultant torque acting upon the body. The
resultant torque is given by:

Tq = Tq
ctrl + Tq

grav + Tq
dist, (4)

where Tq
ctrl is the control torque, Tq

grav is the gravity-gradient torque, and Tq
dist is the disturbance

torque.

The control torque Tq
ctrl is modeled as

Tq
ctrl = mq ×Bq, (5)

where Bq is true value of the geomagnetic field, mq is the magnetic moment generated by three
mutually orthogonal magnetorquers that each spacecraft is equipped with. The algorithm, according
to which the magnetic moment is generated, is described in the next section.

The gravity-gradient torque Tq
grav is given by:

Tq
grav = 3ω2

0 eqZ × JeqZ (6)

where eqZ = Q∗ ◦ euz ◦ Q = Q∗ ◦
(
0 0 1

)> ◦ Q is the unit vector of Z-axis in F q, which
is quaternion-rotated ort of z-axis in F u.

Disturbance torque Tq
dist comprises all explicitly unaccounted for external torques (i.e. torques

due to atmospheric drag, solar radiation pressure, and residual magnetization) and all sorts of inter-
nal noise processes, which may also generate parasitic torques. In this study the disturbance torque
is modeled as a normally distributed random variable with mean value of some static torque Tq

stat
and standard deviation σtorque with corresponding covariance matrix Σtorque = σ2torqueI, where I is
the identity matrix:

Tq
dist = ηtorque ∼ N

(
Tq

stat,Σtorque
)

(7)
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CONTROL MAGNETIC MOMENT

The magnetic moment is computed with the aid of the well-known PD algorithm9

mq = kω∆Ωq ×Bq + ksS
q ×Bq, (8)

where ∆Ωq = Ωq−Ωq
des is the angular velocity error, Sq = 4q0q is the attitude error corresponding

to the error quaternion Q, Bq is the on-board estimate of the external geomagnetic field, kω and ks
are the control gains.

In this study the required attitude is attained when the orbital and the body-frame coincide, which
means that the required attitude corresponds to the identity quaternion and the required relative
angular velocity is zero.

Coefficients kω and ks are tuned via Floquet theory. The basic procedure11 is to minimize the
maximal eigenvalue of the monodromy matrix, constituted of the values of motion equations’ fun-
damental matrix of solutions after spacecraft’s one revolution on the orbit.

Equations (2) and (8) in the linear approximation and assuming that the geomagnetic field is
modeled as the direct dipole form a system with periodic coefficients (as required by the Floquet
theory):

d

du

(
Ωq

Sq

)
= J

(
Ωq

Sq

)
, (9)

where the Jacobian matrix J is given by

J =

∂

(
dΩq

du

dSq

du

)
∂
(
Ωq Sq

) (10)

Let X be the fundamental matrix of solutions to the system of equations (9). Since J is periodic
with respect to the argument of latitude u: J (u+ Tu) = J (u) with Tu = 2π, and initial condition
for the fundamental matrix X is X (0) = I, the following relation holds

X (u+ Tu) = X (u)X (Tu) , (11)

where X (Tu) is the monodromy matrix for the fundamental matrix X and will be denoted asM.

Finally, the monodromy matrixM = X (2π) is obtained from the following ODE, solved for the
time-span of exactly one period u ∈ [0, 2π]

dX
du

= JX ,
X (0) = I.

(12)

The values for control gains kω and ks are then obtained as:

k?ω, k
?
s = arg min

kω ,ks
max
j
< (lnλj), (13)

where λj = λj (kω, ks) are eigenvalues of the monodromy matrixM.

The outlined procedure is illustrated by figure 2, which shows the contour plot of max
j
< lnλj as

a function of the two gains’ values (k′ω = kωω0). It is worth noting that a sufficient condition for
controller convergence from Eq. (8) requires max

j
< lnλj to be strictly negative.
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Figure 2: Stability area for CubeSat with inertia tensor J = diag (0.011, 0.014, 0.009)
[
kg ·m2

]
on

a circular orbit with altitude horb = 750 km and inclination i = 60◦.

GEOMAGNETIC FIELD

In order to preserve the periodicity of Jacobian J from Eq. (9) the direct dipole model of the geo-
magnetic field is used throughout the paper as a baseline model. The direct dipole can be expressed
in the orbital reference frame as11

Bu =
µeµ0
4πR3

 cosu sin i
cos i

−2 sinu sin i

 , (14)

where R is the position vector of a point in space having absolute value R, µe = 7.94 · 1022 A ·m2

is the Earth magnetic dipole moment, µ0 = 1.257 · 10−6
N
A2 is the vacuum permeability, u and i are

the argument of latitude and orbit inclination, respectively.

The magnetic field is measured by the spacecraft’s on-board magnetometer. Measurement er-
rors are modeled as normal distribution with mean value of magnetometer bias Bq

bias and standard
deviation σmeas with corresponding covariance matrix Σmeas = σ2measI:

ηmeas ∼ N
(
Bq

bias,Σmeas
)
. (15)

Thus, the measurement model is given by:

B̃q = Q∗ ◦ Bu ◦ Q+ ηmeas. (16)

where B̃q is the measurement of the magnetometer in the body-fixed frame F q.

The same direct dipole model with the environmental noise ηenv introduced to model the actual
magnetic field surrounding the spacecraft. The noise has normal distribution with zero mean and
covariance matrix Σenv = σ2envI:

ηenv ∼ N (0,Σenv) . (17)
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Finally, the environmental model is:

Bq = Q∗ ◦ Bu ◦ Q+ ηenv, (18)

where Bq is the true value of the magnetic field in the measurement point in F q.

EXTENDED KALMAN FILTER

The Kalman filter represents recursive estimation of the state vector X(t) of an a priori known
dynamical system.12 To calculate the current ith state of the system Xi = X(ti) it is necessary to
obtain the current measurement zi = z(ti) and know the previous state Xi−1 = X(ti−1). Unlike
other recursive filters, the Kalman filter operates not only with the state estimates, but also with
estimates of the uncertainty of the state vector in the form of covariance matrix Pi = P(ti).

As we deal with a nonlinear system the Extended Kalman Filter (EKF) will be employed. The
general form of a nonlinear system for EKF is written as follows:

Ẋ(t) = f (X(t)) + Gw(t)

zi = h (Xi) + vi
(19)

where function f is the evolution of vector X, function h is the measurement model of vector X,
w and v are process and observation noises, respectively, with normal distribution and covariance
matrices Σw and Σv:

w(t) ∼ N (Ew(t),Σw(t))

vi ∼ N (Evi,Σvi)
(20)

where E – expected value; and G is the matrix of the process noise w influence on the state-space
vector X.

Let X̃ and X̂ denote the predicted (or extrapolated) and corrected (or filtered) estimates of the
state-space vector, respectively, and let P̃ and P̂ be the corresponding covariance matrices. The
predicted value of the vector is obtained out of the corrected one in the previous time step via the
evolution function f from (19):

Ẋ(t) = f (X(t))

w.r.t. X(ti−1) = X̂i−1
=⇒ X(ti) = X̃i (21)

Let Fi and Hi be evolution and observation matrices, respectively:

Fi =
∂f

∂X

∣∣∣∣
X=X̂i−1

Hi =
∂h

∂X

∣∣∣∣
X=X̃i

(22)

The covariance matrix of the discrete-time process noise with respect to state-space vector is
given by

ΣGw =

ti∫
ti−1

ΦiGΣwG>Φ>i dt, (23)

where Φi is the transition matrix between steps i− 1 and i:

Φi = exp [Fi (ti − ti−1)] (24)
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Covariance matrix prediction P̃i on the basis of Eqs. (24) and (23) becomes as follows:

P̃i = ΦiP̂i−1Φ
>
i + ΣGw (25)

Having completed the prediction step with Equations (21) and (25) we proceed to the correction
step, which is given by:

Ki = P̃iH
>
i

(
HiP̃iH

>
i + Σvi

)
X̂i = X̃i + Ki

(
zi − h

(
X̃i

))
P̂i = (I−KiHi) P̃i

(26)

Satellite Attitude Control

The state-space vector for satellite attitude13 in the orbital reference frame F u is:

X =

(
q
ωq

)
(27)

The evolution function f is given by Eq. (2) and Eq. (3). The evolution matrix Fi from Eq. (22)
is simplified to the constant:

F =

03×3
1

2
I3×3

03×3 03×3

 (28)

with the corresponding transition matrix from Eq. (24) (assuming constant time step):

Φ =

I3×3
1

2
I3×3 ·∆t

03×3 I3×3

 (29)

where ∆t = tctrl + tmeas is the control loop period, which includes period of actuation tctrl (when
the magnetorquers generate the control moment) and period of measurments tmeas (when the mag-
netorquers are switched off and the external magnetic field can be measured by the on-board mag-
netometer).

The model noise w with corresponding covariance matrix Σw and matrix of influence G is
associated with Tq

dist from Eq. (7):

Ew = Tq
stat Σw = σ2torqueI3×3 G =

(
03×3
J−1

)
(30)

The measurement model h is obtained from Eq. (16):

h(X) = Q∗ ◦ Bu ◦ Q (31)

The observation matrix Hi from Eq. (22) is obtained from linearized Eq. (31):

Hi =
(

2W
h(X̃i) 03×3

)
(32)

8



where Ws for vector s =
(
s1 s2 s3

)> is a skew-symmetric matrix given by:

Ws =

 0 −s3 s2
s3 0 −s1
−s2 s1 0

 (33)

The observation noise v with corresponding covariance matrix Σv is associated with ηmeas from
Eq. (15):

Ev = Bq
bias Σv = σ2measI3×3 (34)

SINGLE SATELLITE SCENARIO

This section presents the simulations results for a single 3U CubeSat scenario. The CubeSat is
assumed to be in a circular orbit (altitude horb = 750 km; inclination i = 60◦). The CubeSat’s
tensor of inertia is J = diag (0.011, 0.014, 0.009) kg · m2. The output of the magnetorquers is
limited by |mmax| = 0.1 A ·m2. The control loop time settings are tctrl = 5 s and tmeas = 1 s. The

controller gains are tuned to (k′ω, ks) = (60, 8)
N ·m

T2 .

The result of the controlled dynamics simulation is shown in the figure 3. The plots portray the
dynamics of the satellite’s angular velocity and orientation expressed through the Euler angles.

Simulation Results for Perturbed Dynamics

In this section we show the results of perturbed dynamics simulation that require the Kalman
filter. Let us list the settings used in the EKF algorithm.

Initial state-space vector: X0 = 06×1. These values are used to initialize both the dynamical
model and the Kalman filter.

Initial covariance matrix: P0 = diag
(
σ2q0 , σ

2
q0 , σ

2
q0 , σ

2
ω0
, σ2ω0

, σ2ω0

)
, where σq0 and σω0 are as-

sumptions of the maximum (or big enough) errors of quaternions and angular velocities respectively.

In this study σq0 =
π

2
and σω0 =

π

18

[
rad
s

]
.

Noise parameters:
static torque Tstat = 0; standard deviation of torque noise σtorque = 5 nN · m; magnetometer
bias Bbias = 0; standard deviation of measurement noise σmeas = 1 nT; standard deviation of
environmental noise σenv = 1 nT.

The result of the simulation is shown in the figure 4. In contrast to the previous figure the plots
in the figure 4 zoom in to the region of smaller values of both angular velocities and Euler angles,
thus giving a clear picture of the actual stabilization and pointing accuracy.

Accuracy (Mean-Squared Errors)

In order to assess the quality of the ADCS performance we run multiple simulations and gather
statistics on the attitude and stabilization accuracy. The results of this numerical experiment are
shown in the figure 5. The number of simulations processed is M = 50.
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It can be seen from the plots in the figure 5 that the controller and the filter generally converge to
the values of Euler angles bounded by 3.5 degrees (in all tree axes), which is a reasonable enough
performance for the modeled disturbances.
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Figure 3: Absolute angular velocity ωq and Euler angles without disturbances in a single satellite
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satellite scenario.

SWARM SCENARIO

To enhance the accuracy of the attitude estimation we propose to take advantage of the fact
that our mission is actually a swarm of CubeSats. The swarm comprises 4 spacecrafts, and their
relative motion is further assumed to be such that they are constantly positioned in the vertices of
a regular tetrahedron, which moves as a rigid body. The advantages of such a spatial configuration
have been discussed in connection with various missions that had spatial or temporal environmental
measurements as their primary objective.14 We shall not discuss here how such orbital motion can
be implemented by the four spacecrafts, but refer the reader for the details to a study,15 where these
matters are addressed.
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Figure 6: Swarm structure
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The center of mass of the swarm is located in the center of tetrahedron and simultaneously on
the same circular orbit, as it was in the single satellite scenario. It moves as a virtual 5th CubeSat,
which collects the data on the attitude of all the swarm spacecraft. Since the data is concentrated
in the center of mass, it makes sense to carry out calculations in the reference frame, bound to this
point. Thus, the center of mass orbital frame is reintroduced – F u

0 .

Position vectors of the swarm satellites in F u
0 are defined as follows: Ru0

0 is the position vector
of the center of mass, ∆Ru0

j is the position of the jth satellite relative to the center of mass, Ru0
j =

Ru0
0 + ∆Ru0

j is the position vector of the jth satellite.

Ru0
0 =

 0
0
R0

 ∆Ru0
j =

∆xj
∆yj
∆zj

 Ru0
j =

 ∆xj
∆yj

R0 + ∆zj

 (35)

Absolute values of vectors from Eq. (35) are identical in any frame and equal to (R0,∆Rj , Rj)
respectively.

The tetrahedron used in the subsequent simulations is defined by its vertices (vectors ∆Ru0
j ) as:

Sat1 ∆Ru0
1 =

(
3r 0 0

)>
Sat2 ∆Ru0

2 =
(
−r −2

√
2r 0

)>
Sat3 ∆Ru0

3 =
(
−r

√
2r
√

6r
)>

Sat4 ∆Ru0
4 =

(
−r

√
2r −

√
6r
)>

where r is the scaling coefficient. Hence, the size of tetrahedron is 2
√

6r. The choice of vertices is
illustrated in the figure 6. In the subsequent simulations the distances between any two vertices of
the tetrahedral formation (i.e. edges of the tetrahedron) are assumed to be 50 km, which makes a
formation of a reasonable size from the communication point of view.

Interpolation

The magnetic field is measured by the magnetometers of each satellite in the swarm. It means
that we acquire these measurements (denoted as B̃

qj
j ) in the body-fixed reference frame of the jth

satellite F q
j .

The obtained values are then converted to the respective orbital reference frame of the jth satellite
F u
j with the current quaternion Qj :

B̃
uj
j = Qj ◦ B̃

qj
j ◦ Q∗j (36)

After each satellite in the swarm has formed the values of magnetic field at its present location,
the data must be sent over to the virtual CubeSat (hub) in the swarm’s center of mass. To process
the measurements data, the hub should convert all vectors to the single reference frame, which is
center of mass orbital reference frame F u

0 .
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The conversion between F u
j and F u

0 is carried out via DCM, which requires the position of the
jth satellite in F u

0 . To fulfill this condition, each satellite, in addition, sends to the virtual CubeSat
its position Ru0

j to form the DCM Au
j→0. So, the measurements are converted:

B̃u0
j = Au

j→0B̃
uj
j (37)

Finally, the virtual hub estimates the value of the magnetic field in the center of mass Bu0
0 , using

the interpolation methods with known tuples of (location, parameter) in the form
(
Ru0
j , B̃

u0
j

)
.

Our previous study8 employed Inverse Distance Weighting (IDW) to this end, however its obvious
drawback is that it does not take into account spatial statistical properties of the geomagnetic field.
To overcome this, the interpolation technique Kriging (described in the next section) is used as the
best linear approximator.

Extrapolation

The interpolation procedure, as described in the previous section, takes place in the center of
mass orbital reference frame F u

0 . The output of the interpolation is the vector estimate of the
geomagnetic field at the center of mass B̂u0

0 . Thus, having obtained the value of B̂u0
0 we now need

to determine the values of B̂u0
j (estimate of the magnetic field vector of jth satellite in F u

0 ).

To do this, we need to find the function g, which returns the values of geomagnetic field at
satellites’ positions, given the value in the center of mass, the structure of the direct dipole model,
and the location of each satellite Ru0

j :

g : Bu0
0 ,R

u0
j −→ Bu0

j (38)

Let us write down expressions for Bu0
0 and Bu0

j and compare them. Bu0
0 is straightforward Eq.

(14), but for radius-vector Ru0
0 as in the single satellite scenario, because the center of mass is

located on the orbit. Taking into account Eq. (14) it can be rewritten as:

Bu0
0 = − µeµ0

4πR3
0

1 0 0
0 1 0
0 0 −2

ku0 , ku0 = −

cosu sin i
cos i

sinu sin i

 (39)

Expression for Bu0
j is given by the dipole formula:

Bu0
j =

µeµ0
4πR3

j

[
3

R2
j

(
ku0 ·Ru0

j

)
Ru0
j − ku0

]
(40)

It is clear that we can find vector ku0 via Eq. (39) and substitute it into Eq. (40) to find Bu0
j .

Dipole vector ku0 from Eq. (39):

ku0 = −4πR3
0

µeµ0

1 0 0
0 1 0

0 0 −1
2

Bu0
0 (41)
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Let us denote the matrix of coefficients from Eq. (41) as I− 1
2
. Then the substitution of Eq. (41)

into Eq. (40), using new designation:

Bu0
j =

R3
0

R3
j

[
I− 1

2
Bu0

0 −
3

R2
j

(
I− 1

2
Bu0

0 ·Ru0
j

)
Ru0
j

]
(42)

Eq. (42) is the function g, defined in Eq. (38), which can be used to calculate estimates B̂u0
j ,

based on the interpolated value B̂u0
0 :

B̂u0
j =

R3
0

R3
j

[
I− 1

2
B̂u0

0 −
3

R2
j

(
I− 1

2
B̂u0

0 ·Ru0
j

)
Ru0
j

]
(43)

After we have got the estimates for magnetic field values B̂u0
j in the center of mass orbital refer-

ence frame F u
0 , those values can be transformed into satellites’ own orbital reference frame F u

j :

B̂
uj
j = Au

0→jB̂
u0
j (44)

where Au
0→j is the DCM of transition F u

0 → F u
j .

Enhanced values of the magnetic field vectors, which go into the observation model from Eq.
(31) of each satellite, bounding orbital reference frame F u

j with body-fixed frame F q
j as in Eq.

(36), are given by extrapolated estimates in Eq. (44).

KRIGING

Model

Kriging algorithms are a family of linear regression methods to estimate point values at any
location within a given region.16 Unlike IDW and splines, which use predetermined analytical
formulae defining the smoothness of the resulting curve and dependent only on the measurements
of point values in the vicinity of the interpolated location, Kriging is based on the statistical models.
The latter include autocorrelation analysis (relations between measured points). As a result, Kriging
not only constructs predicted values surface, but also provides representation of the reliability or
accuracy of such values.

Kriging takes into account spatial correlation between the data points, which is determined by the
vector distances between them.

The point in the region is denoted by R, and the value of the parameter measured at this point is
denoted by B̃(R) (since we measure the magnetic field17).

The estimator in Kriging is, as in IDW, weighted sum of measurements in the vicinity of the
interpolated point:

B̂(R0) =

n∑
j=1

κjB̃(Rj) (45)

where R0 is the interpolated point, B̂ is the predicted value of the measured parameter, Rj are
the points available in the vicinity of interpolated one, κj are the weights, reflecting the spatial
correlation between Rj and R0, n is the number of available points.
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The measured function B̃(R) is assumed to be stationary, which implies the translation-invariance
of the mean b

∀R : E
[
B̃(R)

]
= b (46)

and the covariance C(h) (for Ordinary Kriging (OK) only the distance is important, for different
approaches in Kriging the direction between points can be used):

∀Ri,Rj : |Ri −Rj | = h

cov
(
B̃(Ri), B̃(Rj)

)
= C(Ri −Rj)

OK
= C(h)

(47)

where h is the distance between points, C(h) is the translation-invariant function of covariance.

Variance minimization

The estimator B̂(R0) should be unbiased (equal to the mean from Eq. (46)), which is achieved
by setting the 1-norm of coefficients vector κ from Eq. (45) equal to 1:

E
[
B̂(R0)

]
= E

[
B̃(R0)

]
= b ⇐⇒

n∑
i=1

κi = 1 (48)

Then we can minimize the variance of the estimator prediction σ2e , using unbiasedness in Eq.
(48):

σ2e = D
[
B̂(R0)− B̃(R0)

]
= E

[
B̂(R0)− B̃(R0)

]2
(49)

where D is variance.

Expanding Eq. (49) in terms of Eq. (47):

σ2e = σ2 +

n∑
i=1

n∑
j=1

κiκjC(Ri −Rj)− 2

n∑
i=1

κiC(Ri −R0) (50)

where σ2 = D
[
B̃(Ri)

]
= C(0) – variance of measured point.

Thus, we are facing a minimization problem with objective function from Eq. (50) and constraint
in the form of unbiasedness in Eq. (48):

min
κ

σ2e w.r.t.
n∑
i=1

κi = 1 (51)

The problem from Eq. (51) can be solved via dual problem with Lagrange multiplier 2κ, assigned
to constraint from Eq. (48). The Lagrangian L will have the form:

L = σ2e − 2κ

(
n∑
i=1

κi − 1

)
(52)

Necessary condition of the minimum:

1

2

∂L
∂κi

=

n∑
j=1

κjC(Ri −Rj)− C(Ri −R0)− κ = 0,

1

2

∂L
∂κ

=
n∑
j=1

κj − 1 = 0,

(53)
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which is a system of equations for the vector κ and the multiplier κ via covariances C(h).

Usually instead of covariances C(h) in system of equations (53) semivariances γ(h) are used.
The semivariance is one half of the variance between adjacent measurements and has the following
connection with covariance (semivariances are also translation-invariant):

γ(Ri −Rj) =
1

2
D
[
B̃(Ri)− B̃(Rj)

]
= σ2 − C(Ri −Rj)). (54)

Now, let us rewrite system (53) in terms of semivariances from Eq. (54):

n∑
j=1

κjγ(Ri −Rj) + κ = γ(Ri −R0),

n∑
j=1

κj = 1.

(55)

Semivariograms

System (55) yields vector κ as the output, to calculate the estimator from Eq. (45), however in
order to solve it we need a priori information about the semivariances γ(h).

To collect the information about the semivariance of the measured parameter in the given re-
gion, the empirical semivariogram is built. Empirical semivariogram is a non-parametric function,
which accepts the distance between measured points h as an argument and returns the approximate
semivariance for points located at a distance h from each other:

∀Ri,Rj : |Ri −Rj | = h

γ(h) =
1

2nh

nh∑
(i,j)=1

(
B̃(Ri)− B̃(Rj)

)2
,

(56)

where nh is the total number of sampled points pairs.

Having amassed enough data in the empirical semivariogram, we can approximate it with some
model function, which ensures validity. This is necessary, due to discontinuity of functions in Eq.
(56).

Model functions usually have the following parameters:

• nugget – measure of discontinuity at the origin,

• sill – lim
h→∞

γ(h),

• range – distance h, at which γ(h) = 0.95 sill.

These parameters are illustrated on the figure 7. There is a vast majority of such models, but for
brevity we will use only one of the most common ones – powered exponential:

γ(h) =

c0 + c

(
1− exp

[
−
(
h

a

)ν])
, h > 0

0, h = 0

(57)
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Figure 7: Semivariogram model function parameters

where c0 is the nugget, c0 + c is the sill, range is approximately 3a, and ν is the power of the
exponent. If ν = 1 the model is called exponential, and if ν = 2 it is called gaussian.

Since we use direct dipole model of the magnetic field, we can create the empirical semivariogram
on the observations, which fit this model.

In the figure 8 empirical semivariogram is plotted with power exponential model function. As the
result, the semivariogram from Eq. (57) to be used for swarm scenario filtering has the following

parameter values: c0 = 0.02 µT2, c = 1.5 µT2, a = 127 km, ν =
8

3
.
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km

0.00
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µ
T2

Semivariograms

Empirical
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Figure 8: Semivariogram of the direct dipole magnetic field on the circular orbit with altitude
horb = 750 km and inclination i = 60◦. n = 2000 points is taken in the vicinity of the point on
orbit with argument of latitude u = 60◦ (nh = 19900 averaged to 1000). The vicinity is defined as
the cube with center in the point of the orbit and sides, equal to 50 km

Results and Discussion

Simulation results of filtering with Kriging are presented in the figure 9. Plots are given only for
1 satellite out of 4, because the results a similar. Parameters of the orbit, CubeSats, controller and
noises are the same as in the single satellite scenario. In comparison with the figure 5 the accuracy of
the orientation in the current plot is one degree better, which is the best case in simulations. It shows
that the Ordinary Kriging interpolation does ensure a noticeable attitude control enhancement.
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Figure 9: Mean-Squared Errors of the absolute angular velocity ωq and Euler angles in a swarm
scenario

Our simulation results indicate that the attitude determination and control system of a swarm may
indeed become more robust than that of a single satellite. However, there remains a number of open
questions, which shall be addressed in the future research:

1. In this study the powered exponential model function is used, since it was a best fit for the
empirical semivariogram obtained for the direct dipole magnetic field model. Which semi-
variogram model should be used to enhance attitude accuracy?

2. Currently, the region of interpolated points is defined by the size of swarm tetrahedron (equals
to its edge). What is the actual range of Kriging? And at what point observations become
unreliable?

3. The swarm moves as a rigid body and conserves its distances throughout the whole period
on the orbit. How the attitude MSEs will change when the relative movement around the
swarm’s center of mass will be implemented?

4. The Ordinary Kriging is used — when correlation weights in semivariogram are dependant
only on the absolute value of the lag distance h. How will the accuracy change, if the Kriging
with trends (directions of h) will be used? Is it excessive to implement temporal Kriging?

5. The empirical semivariogram is obtained using the dependence of the semivariance between
a couple of points and the Euclidean distance between them. Will semivariogram be more
precise, if the spherical distance or another dependent parameter is used?

6. Currently, there are only 4 CubeSats in the swarm. How the orientation accuracy changes
with the number of satellites involved? Is the dependency monotonic or there is a saturation
point?
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7. Direct dipole is an oversimplified model of the measurement field, which makes spatial cor-
relation more robust than it really is. How will the usage of the IGRF-12 affect empirical
semivariogram precision?

CONCLUSION

Our study delineates a method to enhance attitude determination algorithms in a satellite swarm
by exchanging and processing distributed measurements of the geomagnetic field. Kriging interpo-
lator has been implemented to simulate the communication between the swarm nodes and enhance
the attitude control on the basis of optimized magnetic field measurements. To analyze the spatial
correlation in the interpolation region, an empirical semivariogram, based on the direct dipole of
the geomagnetic field, is acquired and fit into the powered exponential mathematical model, which
was used in the communication algorithm. Based on the proposed determination algorithm, a com-
plete set of solely magnetic attitude control algorithms is developed, implemented and tested by
numerical experiments. Filtration of CubeSat’s magnetic ADCS is performed and compared with
the filtration in the swarm. It appears that the the system which uses the interpolator has on average
0.5◦ better accuracy. However, the disturbances used in simulations are rather small and the in-orbit
resulting MSEs are expected to be different, with greater standard deviations and non-zero means.

To sum up, CubeSats’ orientation enhancement via decentralized communication and magnetic
field interpolation has been tested in the simple scenario, and found to be working as intended.
However, there is still a lot of questions, listed in the results subsection, which should be addressed
to improve the robustness of the algorithm in the real life missions.
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