УДК 47-386+541.49

1,2,4-ТРИФЕНИЛЦИКЛОПЕНТАДИЕНИЛЬНЫЕ КОМПЛЕКСЫ ПРАЗЕОДИМА И ЭРБИЯ

© 2023 г. С. С. Дегтярева^{1, 2}, Д. А. Бардонов^{1, 2}, К. А. Лысенко^{2, 3}, М. Е. Миняев^{1, 4}, И. Э. Нифантьев^{1, 2, 3}, Д. М. Ройтерштейн^{1, 2, 4}, *

¹Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва, Россия

²Национальный исследовательский университет "Высшая школа экономики", Москва, Россия

³Московский государственный университет им. М.В. Ломоносова, Москва, Россия

⁴Институт органической химии им. Н.Д. Зелинского РАН, Москва, Россия

*e-mail: roiter@yandex.ru

Поступила в редакцию 06.12.2022 г. После доработки 09.02.2023 г. Принята к публикации 15.02.2023 г.

Взаимодействие трифенилциклопентадиенилкалия с тетрагидрофуранатами хлоридов празеодима и эрбия, в зависимости от соотношения реагентов, приводит к образованию тетраядерных ат-комплексов [{(Ph₃C₅H₂)Pr(THF)}₂(μ_2 -Cl)₂(μ_3 -Cl)₃K]₂(C₇H₈)₄ (I) и [{(Ph₃C₅H₂)Er(THF)}₂(μ_2 -Cl)₂(μ_3 -Cl)₃K(THF)]₂ (III); и биядерных ат-комплексов [(Ph₃C₅H₂)₂LnCl(KCl)]₂ Ln = Pr (II), Er (IV) (CCDC № 2224244 (I), 2224243 (II), 2224245 (III), 2224242 (IV)). В основе сходных по строению комплексов I и III лежит остов {[Ln₂(μ -Cl)₃]₂(μ -Cl)₂K₂}, в III катион калия дополнительно координирован молекулой ТГФ. В основе строения изоструктурных II и IV биядерный остов [Ln(μ -Cl)₃K₁.

Ключевые слова: лантаниды, трифенилциклопентадиенильный лиганд, рентгеноструктурный анализ

DOI: 10.31857/S0132344X22600540, EDN: SAGZHE

Замещенные циклопентадиенильные лиганды играют важную роль в дизайне и синтезе металлоорганических соединений 4f-элементов [1-4]. Большое разнообразие таких лигандов и одновременно интерес к ним обусловлены легкостью модификации циклопентадиенильного лиганда. Арилзамещенные циклопентадиенильные лиганды в этом плане особенно перспективны, благодаря возможности их модификации как за счет использования различного числа заместителей в циклопентадиенильном кольце, так и путем введения заместителей в арильный фрагмент [5-8]. Ранее мы сообщали о получении серии полифенилзамещенных циклопентадиенильных ат-комплексов гадолиния, неодима и тербия. В ряду этих соединений на примере моно- и бистрифенилциклопентадиенильных комплексов были обнаружены два устойчивых структурных мотива: биядерный остов [Ln(µ-Cl)₂K]₂ для бисциклопентадиенильных комплексов $[Cp_2^{Ph3}Ln(\mu_2-Cl)(\mu_3-Cl)K(THF)_n]_2$, n = 0(Ln = Gd, Tb), n = 2 (Ln = Nd), и тетраядерный

стов {[$Ln_2(\mu-Cl)_4$]₂($\mu-Cl)_2K_2$ } для моноциклопентадиенильных комплексов {[$Cp^{Ph3}Ln(THF)$]₂(μ_2 - $Cl)_2(\mu_3-Cl)_3K(THF)_n$ }₂ n = 0 (Ln = Nd), 1 (Ln = Gd, Tb) [9–11]. Представлялось интересным изучить структурные особенности аналогичных трифенилциклопентадиенильных комплексов лантанидов с большим и меньшим ионным радиусом, чем тербий и гадолиний, находящихся в середине 4*f*-ряда. Предполагалось, что движение к началу и/или к концу 4*f*-ряда, сопровождающееся соответствующим изменением ионных радиусов, приведет к перестройке координационной сферы ионов РЗЭ в этих комплексах.

Цель настоящей работы — синтез и изучение структуры моно- и бистрифенилциклопентадиенильных комплексов эрбия и празеодима и сопоставление особенностей их строения с родственными соединениями тербия, гадолиния и неодима.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез соединений I–IV проводили в атмосфере предварительно очищенного аргона в среде безводных растворителей с использованием перчаточного бокса СПЕКС-ГБ2. Тетрагидрофуран предварительно высушивали над NaOH и перегоняли над калием/бензофеноном. Гексан перегоняли над калий-натриевой эвтектикой/бензофеноном. Толуол перегоняли над натрием/бензофеноном. PrCl₃(THF)₂ и ErCl₃(THF)₃ получали в соответствии с известной методикой [12]. Бензилкалий получали по модифицированной литературной методике [13]. 1,2,4-Трифенилциклопентадиен получали по известной методике [14], перекристаллизовывали из абсолютного спирта и высушивали в дивакууме. Элементный намическом анализ комплексов I–III выполняли на приборе Thermo Scientific FLASH 2000 CHNS/O Analyzer. Элементный анализ комплекса IV проводили на приборе Perkin-Elmer 24000 Series II elemental CHNS/O. Содержание металла определяли комплексонометрическим титрованием ЭДТА с индикатором ксиленоловым оранжевым.

Синтез [{($Ph_3C_5H_2$)Pr(THF)}₂(μ_2 -Cl)₂(μ_3 -Cl)₃K]₂-(C₇H₈)₄ (I). Раствор 0.265 г (2.04 ммоль) бензилкалия в 5 мл ТГФ медленно, при перемешивании, добавляли к 10 мл раствора 0.588 г (2 ммоль) 1,2,4трифенилциклопентадиена в ТГФ. Реакционную смесь перемешивали в течение 15 мин. полученный раствор 1,2,4-трифенилциклопентадиенилкалия медленно прибавляли к перемешиваемой суспензии PrCl₃(THF)₂ (0.783 г, 2 ммоль) в 6 мл ТГФ. Реакционную смесь перемешивали 12 ч. затем центрифугировали для отделения осадка хлорида калия. Осадок промывали 5 мл ТГФ и снова центрифугировали. Супернатант объединяли и упаривали досуха. Полученное вязкое масло растворяли в 15 мл толуола, к раствору аккуратно добавляли 20 мл гексана, избегая смешения слоев. Через 10 дней образовались ярко-зеленые кристаллы комплекса I. Кристаллы высушивали в динамическом вакууме. Выход комплекса I 0.764 г (0.289 ммоль, 58%).

Найдено, %:	C 55.70;	H 4.65;	Pr, 20.87.
Для C ₁₂₂ H ₁₁₆ O ₄ C	$l_{10}K_2Pr_4$		
вычислено, %:	C 55.45;	H 4.43;	Pr, 21.35.

Пригодные для рентгеноструктурного анализа (PCA) кристаллы получали в результате медленной диффузии гексана в раствор I в толуоле. Судя по данным PCA, элементарная ячейка комплекса I содержит четыре молекулы толуола. Две из этих молекул теряются при высушивании в вакууме.

Синтез [(**Ph**₃**C**₅**H**₂)₂**PrCl**(**KCl**)]₂ (**II**) выполняли по методике, аналогичной для комплекса I, исходя из 0.530 г (4.08 ммоль) бензилкалия, 1.176 г (4 ммоль) 1,2,4-трифенилциклопентадиена и 0.783 г, (2 ммоль) **PrCl**₃(THF)₂. Выход II 0.787 г (0.470 ммоль, 47%).

Найдено, %:	C 66.05;	H 4.19;	Pr, 16.99.		
Для C ₉₂ H ₆₈ Cl ₄ K ₂ Pr ₂					
вычислено, %:	C 65.96;	H 4.10;	Pr, 16.84.		

КООРДИНАЦИОННАЯ ХИМИЯ том 49 № 8 2023

Синтез [{($Ph_3C_5H_2$)Er(THF)}₂(μ_2 -Cl)₂(μ_3 -Cl)₃K(THF)]₂ (III) выполняли по методике, аналогичной для комплекса I, исходя из 0.265 г (2.04 ммоль) бензилкалия, 0.588 г (2 ммоль) 1,2,4-трифенилциклопентадиена и (0.979 г, 2 ммоль) ErCl₃(THF)₃. Выход комплекса III 0.641 г (0.237 ммоль, 47%).

Найдено, %:	C 51.75;	H 4.34.
Для C ₁₁₆ H ₁₁₆ O ₆ Cl ₁₀	K_2Er_4	
вычислено, %:	C 51.45;	H 4.32.

Пригодные для РСА кристаллы получали в результате медленной диффузии гексана в раствор III в ТГФ.

Синтез [(Ph₃C₅H₂)₂ErCl(KCl)]₂ (IV) выполняли по методике, аналогичной для комплекса I, исходя из 0.265 г (2.04 ммоль) бензилкалия, 0.588 г (2 ммоль) 1,2,4-трифенилциклопентадиена И 0.490 г (1 ммоль) ErCl₃(THF)₃. При выделении IV вязкое масло, образовавшееся при упаривании реакционной смеси после центрифугирования промывали 10 мл толуола, отделяли розовый осадок центрифугированием и растворяли его в 15 мл ТГФ. К раствору аккуратно добавляли 20 мл гексана, избегая смешения слоев. Через 10 дней образовались розовые кристаллы. После высушивания в вакууме выход кристаллов составил 0.062 г. К маточному раствору добавляли еще 20 мл гексана, при этом дополнительно образовалось еще 0.139 г IV. Суммарный выход IV 0.201 г (0.201 ммоль, 23%).

Найдено, %:	C 62.94;	H 4.09.
Для C ₉₂ H ₆₈ Cl ₄ K ₂ Er ₂		
вычислено, %:	C 63.95;	Н 3.97.

Пригодные для РСА кристаллы получали в результате медленной диффузии гексана в раствор IV в ТГФ. Заниженные данные элементного анализа в случае комплекса IV, так же как и низкий выход, заставляют предполагать, что выделенный монокристаллический образец не является основным продуктом данной реакции, а представляет собой лишь одно из нескольких соединений. Действительно, при воспроизведении синтеза IV в ряде случаев из реакционной смеси был выделен в кристаллическом виде сольват 1,2,4-трифенилциклопентадиенилкалия.

РСА комплексов I–IV проведен на дифрактометре Bruker Quest D8 (детектор Photon-III, Мо K_{α} -излучение, графитовый монохроматор, ω -сканирования). Интенсивности отражений получены по программе SAINT [15]. Учет поглощения кристаллом проведен полуэмпирически по эквивалентным отражениям в программе SAD-ABS [16]. Структуры расшифрованы прямым методом в программе SHELXT [17] и уточнены

Таблица 1. Основные кристаллографические данные и параметры уточнения для соединений I–IV

Парацият	Значение			
параметр	Ι	II	III	IV
Брутто-формула	$\begin{array}{c} C_{108}H_{100}O_4Cl_{10}K_2Pr_4,\\ 4(C_7H_8) \end{array}$	C ₉₂ H ₆₈ Cl ₄ K ₂ Pr ₂	$C_{116}H_{116}O_6Cl_{10}K_2Er_4$	C ₉₂ H ₆₈ Cl ₄ K ₂ Er ₂
Μ	2826.74	1675.28	2707.82	1727.98
Т, К	112	105	100	123
Кристаллическая система	Моноклинная	Ромбическая	Моноклинная	Ромбическая
Пр. группа	C2/c	Iba2	$P2_1/n$	Iba2
Z (Z')	8 (1)	8 (1)	2 (0.5)	8 (1)
a, Å	24.9719(14)	17.5395(8)	13.3267(2)	17.420(3)
b, Å	17.1060(10)	25.2497(15)	33.6011(6)	25.059(3)
<i>c</i> , Å	29.7298(16)	16.9294(10)	13.5223(2)	16.884(3)
β, град	102.940(2)	90	116.6339(7)	90
<i>V</i> , Å ³	12377.2(12)	7497.5(7)	5412.65(15)	7370.6(18)
ρ(выч.), г см ⁻³	1.517	1.484	1.661	1.557
μ, мм ⁻¹	1.883	1.585	3.447	4.744
<i>F</i> (000)	5696	3376	2680	3448
2θ _{max} , град (полнота)	58 (0.998)	58 (0.999)	60 (0.999)	52 (0.999)
Число измеренных отражений	51262	34379	195071	15698
Число независимых отражений	16384	9932	15766	7163
Число отражений с <i>I</i> > 2σ(<i>I</i>)	12284	7169	14559	5174
Количество уточняемых параметров	709	452	668	452
$R_1 (I > 2\sigma(I))$	0.0530	0.0561	0.0287	0.0626
<i>wR</i> ₂ (все данные)	0.1161	0.1166	0.0625	0.1460
GOOF	1.030	0.990	1.116	0.945
Остаточная электронная плотность (min/max), е $Å^{-3}$	-1.120/1.098	-0.815/0.906	-1.501/1.604	-0.828/1.627

жении по F_{hkl}^2 в программе SHELXL-2018 [18]. При уточнении разупорядоченных фрагментов использованы ограничения для параметров атомных смещений и позиционных параметров (DFIX и EADP). Атомы водорода во всех структурах рассчитаны по модели жесткого тела (расстояние C–H = = 0.950 Å для ароматических, 0.990 Å для метиленовых и 1.000 Å для циклопентадиенильных атомов водорода) и уточнены в относительном изотропном приближении $U_{\mu_{30}}(H) = 1.2U_{3\kappa_B}(C)$. Основные кристаллографические данные и параметры уточнения для соединений I–IV приведены в табл. 1.

Координаты атомов и другие параметры структур I–IV депонированы в Кембриджском банке структурных данных (CCDC № 2224242– 2224245, deposit@ccdc.cam.ac.uk или http:// www.ccdc.cam.ac.uk/data_request/cif).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Действием раствора 1,2,4-трифенилциклопентадиенилкалия в ТГФ на суспензию тетрагидрофураната хлорида празеодима $PrCl_3(THF)_2$ в ТГФ, в зависимости от соотношения реагентов, были получены ат-комплексы [{ $Cp^{Ph3}Pr(THF)$ }_2-(μ_2 -Cl)₂(μ_3 -Cl)₃K]₂ (I) и [$Cp_2^{Ph3}PrCl(KCl)$]₂ (II) (THF = тетрагидрофуран, $Cp^{Ph3} = 1,2,4$ -трифенилциклопентадиенил) (схема 1).

Строение полученных соединений установлено методом РСА. Комплекс I состоит из двух эквивалентных фрагментов $[{Cp^{Ph3}Pr(THF)}_2(\mu_2-Cl)_2(\mu_3-Cl)_3K]$, объединенных двумя связями K–Cl (рис. 1). Комплекс I изоструктурен аналогичному комплексу неодима $[{Cp^{Ph3}Nd(THF)}_2(\mu_2-Cl)_2(\mu_3-Cl)_3K]_2$ [11], однако отличается от аналогичных трифенилциклопентадиенильных комплексов гадолиния и тербия $[{Cp^{Ph3}Ln(THF)}_2(\mu_2-Cl)_2(\mu_3-Cl)_3K(THF)]_2$ [9] (Ln = Gd, Tb) координационным окружением ионов калия: в комплексе I ион калия координиро-

ван четырьмя μ_3 -мостиковыми и одним μ_2 -мостиковым атомом хлора, а также η^6 -координирован фенильным заместителем одного из циклопентадиенильных лигандов, тогда как в комплексах [{Cp^{Ph3}Ln(THF)}₂(μ_2 -Cl)₂(μ_3 -Cl)₃K(THF)]₂ ион калия, помимо пяти хлоридных лигандов, координирован атомом кислорода молекулы ТГФ и η^2 -координирован фенильной группой.

Каждый из двух неэквивалентных катионов празеодима в I координирован четырьмя мостиковыми хлоридными лигандами, атомом кислорода

Рис. 1. Молекулярное строение комплекса I в представлении атомов эллипсоидами тепловых колебаний ($\rho = 50\%$). Атомы водорода, часть фенильных групп и разупорядоченность координированных молекул ТГФ не показаны.

молекулы ТГФ и η^5 -циклопентадиенильным анионом (КЧ 8). Значения углов разворота фенильных колец относительно циклопентадиенильного кольца находятся в диапазоне от 8.7° до 44.9°, при этом значения углов разворота фенильных колец в положении 4 циклопентадиенильного аниона заметно меньше соответствующих значений для фенильных колец в положениях 1 и 2 (см. табл. 2).

Интересно, что практически все моноарилциклопентадиенильные комплексы лантанидов, не содержащие иных лигандов, кроме циклопентадиенильного и галогенидного, содержат структурный мотив $[M_4K_2Cl_{10}]$ [9, 11, 19–21]. Единственным исключением является комплекс $[Cp^{Ph3}YCl_2(THF)_3]$, имеющий моноядерное строение [22]. Известен пример подобного структурного мотива и в химии *d*-металлов [23].

Бисциклопентадиенильный комплекс II, так же как и I, расположен на центре инверсии (рис. 2). Он относится к достаточно редкому в лантанидорганической химии структурному типу ат-комплекса, в котором катион щелочного металла не координиро-

Параметр	Ι	II	III	IV
Длины связей Ln–C _{Cp} , Å	2.733(5)-2.833(5)	2.735(8)-2.829(8)	2.626(2)-3.751(3)	2.61(1)-2.71(2)
Расстояния Ln-Cp _{центроид} , Å	2.505, 2.516	2.497, 2.500	2.393, 2.405	2.358, 2.364
Длины связей Ln–Cl, Å	2.692(1)-2.920(1)	2.680(2), 2.721(2)	2.5658(9)-2.8750(7)	2.560(4), 2.598(4)
Длины связей Ln–O _{THF} , Å	2.449(3), 2.461(3)		2.338(3)-2.345(2)	
Углы разворота фенильных колец в положениях 1 и 2 циклопентадиенильного кольца, град	28.9, 44.9; 38.4, 40.9	35.1, 38.6; 19.3, 59.4	35.6, 38.3; 30.1, 37.4	36.2, 39.8; 18.0, 58.7
Углы разворота фенильных колец в положении 4 цикло- пентадиенильного кольца, град	8.7; 14.8	15.4; 22.5	18.1; 19.5	16.9; 22.8
Расстояния КС _{Рһ} , Å	3.050(5)-2.562(4)	3.05(1)-3.513(9)	3.234(4), 3.332(4), 3.580(4)	3.06(2)-3.41(2)

Таблица 2. Основные структурные параметры комплексов I–IV

Рис. 2. Молекулярное строение комплекса II в представлении атомов эллипсоидами тепловых колебаний (ρ = 50%). Атомы водорода и часть фенильных групп не показаны

ван О- или N-донорным лигандом: [Cp₂LnX₂M], где Cp – замещенный или незамещенный циклопентадиенильный лиганд, X – анионный лиганд, M – катион щелочного металла. Для празеодима комплексы такого типа ранее не были известны.

Рис. 3. Молекулярное строение комплекса III в представлении атомов эллипсоидами тепловых колебаний (ρ = 50%). Атомы водорода, часть фенильных групп и атомы углерода молекул ТГФ не показаны для упрощения рисунка.

КООРДИНАЦИОННАЯ ХИМИЯ том 49 № 8 2023

Ион празеодима в комплексе II координирован двумя η^5 -циклопентадиенильными лигандами и двумя хлоридными лигандами (КЧ 8), как и в случае комплекса I. При этом расстояние Pr– Ср^{Ph3}_{центроид} для бисциклопентадиенильного комплекса несколько меньше (среднее расстояние 2.498 Å), чем для моноциклопентадиенильного комплекса (среднее расстояние 2.510 Å). В то же время средние значения углов разворота фенильных колец относительно циклопентадиенильного кольца для II значительно выше, чем для I. Средние значения углов разворота составляют 38.1° (II) и 29.3° (I) для фенильных колец в положениях 1 и 2 циклопентадиенильного лиганда, и 18.9° (II) и 11.7° (I) для фенильных колец 4-ом положении соответственно. Такое значительное различие может говорить о большей стерической нагруженности иона празеодима в комплексе II, по сравнению с комплексом I.

Комплекс II изоструктурен описанным ранее аналогичным соединениям гадолиния и тербия [9].

Комплексы эрбия $[{Cp^{Ph3}Er(THF)}_2(\mu_2-Cl)_2(\mu_3-Cl)_3K(THF)]_2$ (III) и $[Cp_2^{Ph3}ErCl(KCl)]_2$ (IV) получены по аналогии с комплексами празеодима (схема 2). Комплексы III и IV были выделены из реакций перекристаллизацией из смесей $T\Gamma\Phi$ -гексан.

Строение комплекса III также было установлено методом РСА. Комплекс III (рис. 3) сходен по строению с І. Основное отличие в строении І и III состоит в координационном окружении иона калия. В комплексе празеодима І ион калия координирован пятью хлоридными лигандами и пи-системой одного из фенильных колец трифенилциклопентадиенильного лиганда, в комплексе эрбия III ион калия координирован пятью хлоридными лигандами и молекулой тетрагидрофурана. Комплекс III изоструктурен комплексам гадолиния и тербия $[{CpPh_3Ln(THF)}_2(\mu_2-Cl)_2(\mu_3-Cl)_3K(THF)]_2$ [9] (Ln = Gd, Tb), что в целом достаточно ожидаемо с учетом близости величин ионных радиусов Gd³⁺, Tb³⁺ и Er³⁺.

Строение IV (рис. 4) также установлено методом PCA рентгеноструктурного анализа, комплекс IV изоструктурен комплексу II, а также аналогичным комплексам тербия и гадолиния [20].

В результате данной работы были получены и структурно охарактеризованы моно- и бистрифе-

Рис. 4. Молекулярное строение комплекса IV в представлении атомов эллипсоидами тепловых колебаний (ρ = 50%). Атомы водорода и часть фенильных групп не показаны для упрощения рисунка.

нилциклопентадиенилхлоридные комплексы эрбия и празеодима. Все полученные соединения представляют собой ат-комплексы. При этом моноциклопентадиенильный комплекс празеодима I изоструктурен родственному комплексу неодима, а комплекс эрбия III — комплексам тербия и гадолиния, в то время как бисциклопентадиенильные комплексы празеодима II и эрбия IV изоструктурны аналогичным бисциклопентадиенильным комплексам тербия и гадолиния.

Авторы сообщают, что у них нет конфликта интересов.

ФИНАНСИРОВАНИЕ

Работа выполнена при поддержке Российского научного фонда (грант № 22-13-00312).

СПИСОК ЛИТЕРАТУРЫ

- Arndt S., Okuda J. // Chem. Rev. 2002. V. 102. № 6. P. 1953.
- 2. *Edelmann F.T.* // Comprehensive Organometallic Chemistry III. Elsevier, 2007. P. 1.
- Day B.M., Guo F.S., Layfield R.A. //Acc. Chem. Res. 2018. V. 51. № 8. P. 1880.
- 4. Evans W.J., Davis B.L. // Chem. Rev. 2002. V. 102. № 6. P. 2119.
- 5. Xu J., Gao W., Zhang Y. et al. // J. Organomet. Chem. 2007. V. 692. № 1. P. 1505.

- 6. Ye J., Deng D., Gao Y. et al. // Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2015. V. 134. P. 22.
- Zhang X., Ye J., Xu L. et al. // J. Lumin. 2013. V. 139. P. 28.
- Yang L., Ye J., Xu L. et al. // RSC Adv. 2012. V. 2. № 30. P. 11529.
- 9. *Roitershtein D.M., Puntus L.N., Vinogradov A.A. et al.* // Inorg. Chem. 2018. V. 57. № 16. P. 10199.
- 10. Minyaev M.E., Komarov P.D., Roitershtein D.M. et al. // Organometallics. 2019. V. 38. № 15. P. 2892.
- Minyaev M.E., Vinogradov A.A., Roitershtein D.M. et al. // J. Organomet. Chem. 2016. V. 818. P. 128.
- Edelmann F.T., Poremba P. // Synthetic Methods of Organometallic and Inorganic Chemistry (Herrman/Brauer) / Eds. Edelmann, F.T., Herrmann, W.A. Stuttgart (Germany): Verlag, 1997. P. 34.
- Lochmann L., Trekoval J. // J. Organomet. Chem. 1987. V. 326. № 1. P. 1.
- Hirsch S.S., Bailey W. J.J. // Org. Chem. 1978. V. 43. № 21. P. 4090.
- 15. APEX-III. Madison (WI, USA): Bruker AXS Inc., 2019.
- Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. P. 3.
- 17. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
- 18. Sheldrick G.M. // Acta Crystallogr. C. 2013. V. 71. P. 3.
- Бардонов Д.А., Лысенко К.А., Нифантьев И.Э., Ройтерштейн Д.М. // Коорд. химия. 2022. Т. 48. № 5. С. 296 (Bardonov D.A., Lysenko K.A., Nifant'ev I.E., Roitershtein D.M. // Russ. J. Coord. Chem. 2022. V. 48.

№ 5. P. 295.

https://doi.org/10.1134/S1070328422050013

- 20. *Vinogradov A.A., Komarov P.D., Puntus L.N. et al.* // Inorg. Chim. Acta. 2022. V. 533. № 120777.
- 21. Komarov P.D., Nifant'ev I.E., Roitershtein D.M., Minyaev M.E. // J. Chem. Crystallogr. 2021. V. 51. P. 352.
- 22. Ройтерштейн Д.М., Миняев М.Е., Михайлюк А.А. и др. // Изв. АН. Сер. хим. 2012. Т. 61. С. 1726 (Roitershtein D.M., Minyaev M.E., Mikhaylyuk A.A. et al. // Russ. Chem. Bull. 2012. V. 61. P. 1726).
- 23. *Fohlmeister L., Jones C. //* J. Chem. Crystallogr. 2014. V. 44. P. 301.