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a b s t r a c t

We present a comparative study of several algorithms for an in-plane random walk with a variable
step. The goal is to check the efficiency of the algorithm in case where the random walk terminates
at some boundary. We recently found that a finite step of the random walk produces a bias in the
hitting probability and this bias vanishes in the limit of an infinitesimal step. Therefore, it is important
to know how a change in the step size of the random walk influences the performance of simulations.
We propose an algorithm with the most effective procedure for the step-length-change protocol.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Simulation of a random walk is a very general approach in
many areas of science and engineering, for example, in physics
(cover of a torus [1]), biology (leukocyte migration [2]), chem-
istry (formation of crystal patterns [3]), health research (human
growth [4]), earth science (selection of river networks [5]), and
natural resources research (geostatistics [6]) to mention just a
few research areas.

A random walk in a domain is simulated with a finite step,
i.e., with jumps of the walker of some finite distance. The size of
the jumps is irrelevant while the walker is far from the domain
boundary, and there is a well-established method to speed up
simulations using the large step size far away from the do-
main [7]. The efficient algorithm to control distance to the domain
boundary is based on the marked hierarchical memory (see algo-
rithm [8] for the lattice walk and algorithm [9] for the off-lattice
walk), and a proper procedure for changing the size of the jumps
when close to the domain boundary must be chosen. Realization
of such algorithm for the contemporary computers with relatively
big onboard memory is published in [10]. Anyway, the last jump
to the boundary domain is always finite in all known methods
and algorithm realizations.

It was recently found [11] that the finiteness of the size of ran-
dom walk jumps produces a visible bias in the hitting probability.
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The walker moving in the plane from infinity hits the circle at the
origin and the bias in the hitting probability depends on the angle
between the position of the hitting point and the radius at which
the walker starts.1 Fortunately, the bias vanishes in the limit of an
infinitesimally small step size. This motivates the present study
of the efficiency of simulations while varying the step size using
different protocols. Simulating a random walk with a very small
size is impractical, and some protocol for changing the size must
be implemented.

In this paper, we check how different protocols can influence
the simulation efficiency, minimizing the time needed to hit the
boundary. We estimate numerically using different protocols the
probability for in-plane random walk to hit the circle placed at
origin. The probability is known exactly, and it was found in the
paper [11] that the bias has maximum absolute value at zero
angle (and at the angles ±π ) with respect to the initial position
of the random walk, and that the bias vanishes with vanishing
jump size. In the present paper we choose the bias at zero angle
as indicator of the accuracy of the estimated hitting probability.

The paper is organized as follows. In Section 2, we introduce
the model of the random walk in the plane and provide exact re-
sults for the termination probability. In Section 3, we discuss the
basic algorithm, introduce the observables to control accuracy for
the hitting probability, and propose the three different protocols

1 The problem of estimating the accuracy of the probability of the error in
Monte Carlo simulations was emphasized in the very early paper of Metropolis
and Ulam on the subject entitled ‘‘The Monte Carlo Method’’ (see the last two
sentences of the next-to-last paragraph in the paper [12]).
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Fig. 1. The random walk starts at the birth circle of radius Rb . The particle
terminates when it hits the circle of radius R. If the particle crosses the returning
circle Rr , then it is placed on the birth circle at the corresponding angle (see
expression (2) and the discussion in the text).

for the variable step of the random walk. In Section 4, we present
the results of the simulations. A short discussion of the results in
Section 5 concludes our paper.

2. Model

One of the most interesting cases for simulating a random
walk is the random walk in the plane, for at least two reasons.
First, it is well defined in the sense that the probability to escape
to infinity is zero. The unbiased random walk is fully ergodic, it
visits an ϵ-neighborhood of any point in the limit of infinite time.
The technical problem is that the time to reach such a neigh-
borhood is logarithmically divergent with ϵ→0. Fortunately, the
problem of infinite time can be eliminated because of the second
reason, the existence of an exact formula for the hitting probabil-
ity. The probability is defined in terms of the kernel solution of
the corresponding two-dimensional Laplace equation [13–15].

We perform simulations in the following geometry. An absorb-
ing circle of radius R is placed at the origin, and the walker starts
at any point on a ‘‘birth’’ circle of radius Rb. Walkers terminate at
the absorbing circle R. Fig. 1 schematically shows two trajectories
of this type, trajectory 1–1′ and trajectory 2–2′.

The exact probability to hit a point on the absorbing circle R
is given by

P(φ) =
1
2π

x2 − 1
x2 − 2x cosφ + 1

, (1)

where x = Rb/R > 1 and the angle φ is measured between the
radius of the initial position of the walker on the ‘‘birth’’ circle
Rb and the radius of the hitting point on the absorbing circle R.
The angles φ1 and φ2 for trajectories 1–1′ and 2–2′ are shown in
Fig. 1.

To reduce the computational time, we prevent walker from
going far away: if it goes farther than the distance Rr from the
origin, then we return the walker to the birth radius at the angle
φ calculated using the probability given by expression (2) with
x = Rr/Rb > 1 (see [15] for details). This case is plotted in Fig. 1
as the trajectory 3–3′, which generates a walker at the point 3′′ at
the radius Rb with the angle φ3. The angle φ with distribution (2)
is generated using the expression [13,15,16]

φ = 2 arctan
(
x − 1
x + 1

tan u
π

2

)
(2)

Fig. 2. Deviation ∆Pav(φ) for the random walk step length δ = 1 with M = 100.

with a random variable u uniformly distributed in the interval
[−1, 1].

We must stress that this is not only a computational trick but
also the way to include the infinite boundary condition exactly
for the solution of the Laplace problem in the plane. Using this
‘‘killing-free’’ algorithm in diffusion-limited aggregation simula-
tions, we never observe instability of the DLA cluster, which is the
case in simulations in which the walker is simply removed after
crossing the circle of radius Rr . The finite ratio of Rr to Rb leads to
a distortion of the infinite boundary conditions and generates a
Saffman–Taylor instability [17,18], due to which the DLA cluster
grows in only one direction [15] and develops only one of the
branches.

3. Algorithm and protocols

First, we check how the accuracy of estimating the hitting
probability and the computation time depends on the jump size
of the random walk. We perform N random walks, typically N =

105 to 106. For each of N random walks, we generate a random
angle φ0 uniformly distributed in [−π : π ] as the initial coor-
dinate on the circle of radius Rb (we define the direction of the
angles clockwise and the value of the angles from the horizontal
line). At each jump of the walk, we generate a random angle ψ
associated with the direction of the jump at the distance δ. We
calculate an estimate of the hitting probability Psim(φ) by dividing
the interval [−π : π ] of possible hitting angle values φ into 180
bins and counting the number of hits for each bin. Normalizing
the results over the total number N of random walkers and over
the bin size gives the estimate of the hitting probability Psim(φ).
The deviation of the estimate from the exact result is calculated
as

∆P(φ) =
Psim(φ) − P(φ)

P(φ)
. (3)

Repeatedly estimating ∆Pi(φ) with N walkers M times pro-
vides the average deviation ∆Pav(φ) and its standard error D(φ):

∆Pav(φ) =

∑M
i=1∆Pi(φ)

M
, (4)

D(φ) =

√∑M
i=1 (∆Pi(φ) −∆Pav(φ))2

M
. (5)

It was observed in our previous paper [11] that (i) the de-
viation depends on the angle φ as shown in Fig. 2 and (ii) the
deviation has an extremum at φ = 0,±π . It was proposed [11]
that estimated probability does depend on the angle φ and jump
size δ as

Psim(φ) ≈ P(φ)
(
1 −

(
δ

R

)α
cos φ

)
(6)

with positive exponent α < 1.
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Table 1
Computational performance for the equal jumps protocol P1.
δ ∆Pav Time (min) K

1 0.056(2) 0.1520(4) 4814(28)
0.1 0.015(2) 14.68(3) 445359(2860)

It is visible from Fig. 2 and from the Expr. (6) that the maxi-
mum deviations occur at the angles φ = ±π and 0. We choose
the value ∆Pav = |∆Pav(0)| as an indicator of the accuracy of
the estimated hitting probability Psim(φ) because it has lower
dispersion in comparison with the values at the angles ±π .

It was shown in [15] that finite-size effects are not visible for
Rr ≫ Rb > R. We therefore choose R = 10, Rb = 20, and Rr = 200
in the simulations. The hitting angle was calculated at the point
of intersection of the trajectory with the hitting circle R. For the
value R = 10 used in the simulations, for jump values limited to
δ ≤ 1, and for the bin width 2π/180, this choice of the angle does
not produce a visible bias.

We check three protocols.

P1: Equal jumps protocol. Simulations are performed with a fixed
jump distance δ.

P2: Two regions protocol. The inner space between the circles
R and Rb is divided into two regions. Jumps are performed
with the distance δ1 for a particle with the coordinate r in
the range Rc < r < Rr and with the distance δ2 for a particle
with r in the range R < r < Rc . Accordingly, δ2 is taken
smaller than δ1.

P3: Linear protocol. The jump size δ of the random walk is
changed as a linear function of the distance r to the origin:

δ(r) = δb − (δb − δh)
Rb − r
Rb − R

. (7)

The jump value δ(r) hence decreases from δb at the birth
circle Rb to the δh at the hitting circle R and is larger than δb
when the walker travels outside the birth circle Rb.

4. Simulations

4.1. Equal jumps protocol P1

The simulation results using protocol P1 are presented in
Table 1, where the number in parenthesis shows the statistical
uncertainty to the last digits of the quantity. The influence of
the step length on the accuracy of the hitting probability is
nicely demonstrated. Indeed, the data in the table shows that
simulations with the smaller length size lead to better precision:
a length ten times smaller gives a three times better precision. At
the same time, the computation time increases by two orders of
magnitude. The average number of jumps K also grows drastically
as the step length decreases.

It can be seen from Table 1 that longer jumps give better per-
formance but a higher deviation of the hitting probability while
shorter jumps give a better quality of the hitting probability and
longer computation times. We must therefore find an optimum in
the space of performance-accuracy. In practice, we should choose
a protocol of jump length variation.

The optimal simulation should use longer jumps far from the
absorbing domain and shorter jumps close to it. We consider two
implementations of this idea in protocols P2 and P3.

4.2. Simple protocol P2

Protocol P2 is designed to check the idea that only final jumps
influence the precision of the hitting probability. In Table 2, we

Table 2
Performance and precision evaluation for the simple protocol P2.
Rc δ1 δ2 ∆Pav T (min) K

11 1 0.3 0.024(2) 0.1559(2) 4543(29)
1 0.1 0.021(2) 0.1544(2) 4555(27)
1 0.05 0.015(2) 0.1529(3) 4737(27)
1 0.03 0.015(2) 0.1629(2) 5246(25)
1 0.02 0.011(2) 0.1695(2) 6287(28)
1 0.015 0.015(2) 0.1933(4) 7637(27)
1 0.01 0.013(2) 0.2507(2) 11582(31)

15 1 0.3 0.027(2) 0.1624(2) 4983(26)
1 0.1 0.020(2) 0.2236(2) 8351(30)
1 0.05 0.013(2) 0.4106(6) 19878(43)
1 0.03 0.012(2) 0.8677(5) 47027(77)
1 0.02 0.016(2) 1.754(1) 100104(173)
1 0.015 0.014(2) 2.874(4) 174131(312)
1 0.01 0.014(2) 7.38(1) 386544(635)

15 5 0.3 0.027(2) 0.00976(7) 379(1)
5 0.1 0.017(2) 0.03362(7) 1773(4)
5 0.05 0.015(2) 0.1116(1) 6402(13)
5 0.03 0.014(2) 0.2962(2) 17289(35)
5 0.02 0.012(2) 0.6520(5) 38573(88)
5 0.015 0.012(2) 1.1514(8) 67833(149)
5 0.01 0.013(2) 2.610(2) 152715(342)

show a summary of the simulations for different values of Rc , δ1,
and δ2.

The simulation results support assumption that only the value
of the last jumps are important: the deviation of the hitting
probability ∆Pav for δ2 = 0.01 is independent of the values of
both the parameters Rc and δ1 (compare the last row for each
value of Rc). We can guess that it is reasonable to increase the
value of δ1 as much as possible, and the limit of δ1 from above is
δ1 ≤ Rc −R. For example, we cannot use values of δ1 larger than 1
for Rc = 11 and R = 10 or larger than 5 for Rc = 15 and R = 10
(see Table 2).

Results for Rc = 11 and δ(r > Rc) = 5 are missing in the
table. In this case, a particle that is only 1 unit of length from
the absorbing circle R = 10 makes a jump much larger than
the distance to the circle, which obviously causes huge errors in
P(φ). In the simple algorithm, there is a relation between the size
of the region where small jumps are made and the size of the
large jump. Because we do not want the particle to jump from
the region r > Rc to the absorbing circle R, we should ensure
that Rc − R > δ(r > Rc) > δ(r ≤ Rc). The superior choice is
Rc − R ≫ δ(r ≤ Rc), which results in a large number of steps in
the region close to the absorbing circle.

One can mention inspecting Table 2, as well as the next two
Tables 3 and 4, that there is some minimum value of the deviation
(approximately 0.013 like in Table 2). These can be explained as
the finite size effect of the finite number of bins, we use for the
angle dependence of the hitting probability estimation.

4.3. Linear protocol P3

We next study the linear algorithm. Analysis of the simple
algorithm shows that we can increase jump length as much as
possible while keeping some region near the absorbing circle
that is only accessible with small jumps. The boundary case is
δ(r) = r − R, which means that the particle could jump from any
position in space to the absorbing sphere. We show results for
the linear algorithm in Table 3.

The behavior of the linear algorithm is similar to the simple
one. Increasing the initial jump length δ(Rb) gives better per-
formance, and decreasing δ(R) gives better precision (and worse
performance). It is important that the jumps increase linearly and
there is no upper bound. Nevertheless, ratio Kreturn of trajectories
that fly away and are returned to Rb is almost constant.
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Table 3
Performance and precision evaluation for linear protocol P3.
δb δh ∆Pav T (min) K

1 0.3 0.025(2) 0.01818(8) 787(2)
1 0.2 0.022(2) 0.01808(7) 824(2)
1 0.15 0.021(2) 0.01927(8) 865(2)
1 0.1 0.019(2) 0.01932(8) 950(2)
1 0.05 0.016(2) 0.02163(8) 1134(2)
1 0.03 0.012(2) 0.02498(8) 1281(2)
1 0.02 0.012(2) 0.02677(7) 1419(2)
1 0.01 0.010(2) 0.02950(8) 1655(3)

2 0.3 0.028(2) 0.00494(6) 219.8(5)
2 0.2 0.020(2) 0.00498(6) 240.9(5)
2 0.15 0.020(2) 0.00543(7) 257.6(5)
2 0.1 0.015(2) 0.00559(6) 283.5(5)
2 0.05 0.016(2) 0.00633(8) 336.9(6)
2 0.03 0.016(2) 0.00712(8) 378.9(5)
2 0.02 0.013(2) 0.00759(6) 414.7(6)
2 0.01 0.013(2) 0.00825(6) 477.4(6)

3 0.3 0.027(2) 0.00238(9) 107.5(2)
3 0.2 0.022(2) 0.00252(9) 117.5(2)
3 0.15 0.020(2) 0.00265(9) 126.1(2)
3 0.1 0.016(2) 0.00281(9) 139.1(3)
3 0.05 0.015(2) 0.00313(9) 163.8(3)
3 0.03 0.012(2) 0.00339(9) 183.4(3)
3 0.02 0.012(2) 0.00362(9) 199.5(3)
3 0.01 0.012(2) 0.00396(9) 226.5(3)

5 0.3 0.026(2) 0.00101(7) 42.78(7)
5 0.2 0.023(2) 0.00107(7) 46.76(8)
5 0.15 0.018(2) 0.00111(7) 49.96(8)
5 0.1 0.016(2) 0.00118(7) 54.61(9)
5 0.05 0.015(2) 0.00131(9) 63.25(9)
5 0.03 0.014(2) 0.00141(9) 69.9(1)
5 0.02 0.013(2) 0.00148(9) 75.4(1)
5 0.01 0.015(2) 0.00160(9) 84.8(1)

8 0.3 0.030(2) 0.00044(7) 16.40(3)
8 0.2 0.024(2) 0.00046(7) 17.68(3)
8 0.15 0.020(2) 0.00048(6) 18.65(3)
8 0.1 0.018(2) 0.00051(6) 20.09(3)
8 0.05 0.016(2) 0.00055(6) 22.94(3)
8 0.03 0.013(2) 0.00059(7) 24.96(3)
8 0.02 0.013(2) 0.00062(7) 26.68(3)
8 0.01 0.011(2) 0.00065(7) 29.70(4)

16 0.3 0.298(2) 0.00017(8) 5.51(2)
16 0.2 0.299(2) 0.00017(7) 5.50(2)
16 0.15 0.295(2) 0.00017(7) 5.53(2)
16 0.1 0.299(2) 0.00018(7) 5.53(2)
16 0.05 0.299(2) 0.00018(7) 5.53(2)
16 0.03 0.298(2) 0.00018(8) 5.51(2)
16 0.02 0.295(2) 0.00018(7) 5.56(2)
16 0.01 0.298(2) 0.00018(8) 5.54(2)

Table 4
Comparison of algorithms with a precision equal to the precision of the fixed
jump length algorithm with δ = 0.1.
Algorithm ∆Pav T (min) Speedup

P1 δ = 0.1 0.015(2) 14.68(3)

P2 Rc δ1 δ2

11 1 0.03 0.015(2) 0.1629(2) 88
15 1 0.01 0.014(2) 7.38(1) 2
15 5 0.03 0.014(2) 0.2962(2) 50

P3 δb δh

1 0.05 0.016(2) 0.02163(8) 679
2 0.1 0.015(2) 0.00559(6) 2 626
8 0.05 0.016(2) 0.00055(6) 26 691

4.4. Data analysis

We compare the different algorithms in Table 4, where we
fixed the precision of the estimate of the hitting probability for
a fair comparison.

Table 5
Results of the fit to Eqs. (8) and (9) for the simple protocol P2.
Rc δ1 y z

11 1 2.52(2) 2.01(2)
15 1 2.047(1) 2.05(2)
15 5 1.998(1) 2.03(1)

Table 6
Results of the fit to Eqs. (8) and (9) for the linear protocol P3.
δb y z

1 0.34(1) 0.307(6)
2 0.17(4) 0.174(5)
3 0.15(1) 0.132(5)
5 0.057(20) 0.098(5)
8 – 0.097(6)

We choose the standard algorithm with δ = 0.1 as a reference
and select results for simple and linear algorithms that are close
to it. The best algorithm is the linear algorithm starting with
δ = 8. This algorithm is 20000 times faster than the algorithm
with a fixed δ = 0.1 and 200 times faster than the algorithm with
the fixed δ = 1.

The data in Tables 2 and 3 can be analyzed to obtain more
information about the algorithm performance. The data in the
column Time in Table 2 can be fitted with a power law as a
function of δ2 with the exponent y,

T ∝ δ
−y
2 , (8)

and the data in the column K can be fitted with a power law with
the exponent z,

K ∝ δ−z
2 . (9)

The fit of the data in Table 2 is presented in Table 5. It is clear
that the simulation time T and the number of steps increases as
the second power of the inverse walk jump size δ2.

In the same manner, we can fit the data in Table 3 for the
linear algorithm (Protocol P3) by replacing δ2 with δb:

T ∝ δ
−y
b (10)

K ∝ δ−z
b .

We show the results of the fit in Table 6. Comparing Tables 5
and 6, we can see the drastic difference in the power-law depen-
dence for the simple protocol P2 and the linear protocol P3. The
value of the exponents y ≈ 2 and z ≈ 2 seems constant and
rather large in the case of the simple protocol P2. The values of
the exponents for the linear protocol P3 are quite smaller and
seem saturated to the small value z ≈ 0.1 (we do not have
reliable values of the exponent y in this case).

5. Discussions

We have numerically estimated the error in a random walk
simulation. The error is caused by the finite jump length that is
not infinitesimally small compared with the size of the absorbing
circle. We calculated the error as a function of the jump length δ
and measured the angle-dependent probability distribution. The
deviation of the angle dependence could lead to instabilities in
a random cluster formation (e.g., in a DLA simulation). We also
tested the performance and precision of variable-jump-length
algorithms and showed that such algorithms can give a large
performance improvement, as can be seen comparing expressions
(8), (9) and Table 5 with expression (10) and Table 6.

It should be noted that our results can be applied to the
random walk only in two-dimensions. In larger dimensions, there
is finite probability to escape to infinity while in two dimensions
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escaping probability is zero and random walk always returns to
the origin (despite the fact that the return time of the walk could
be very large). In three dimensions, this leads to the interesting
fact while looking for the probability that random walker will
never be absorbed by the circle of radius R: the effective radius
of the hitting sphere is changed linearly with the random walk
jump size δ. This effect was found by Ziff [19] and in more detail
in the series of papers [20–22]. It is not clear how these results
and the ones we describe in the present paper are connected.
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