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Abstract. We propose a novel algorithm for the construction of the sparse, nonetheless
the massive and rigid structure. The generated structures possess two significant properties
reminiscent of the metallic foams. Firstly, the weight of the structures can be as low as the
percent of the bulk one. Secondly, the structures are mechanically rigid. The structures are
necessary for the simulation of the physical models of the foam properties.

1. Introduction
Foam structures are attracting the attention of researchers in connection with the development of
new materials. One of the potential applications for such materials is developing and optimizing
hydrogen storage cells [1]. Among such materials, palladium foam stands out in terms of the
quality of the pumping cycle and hydrogen release, which is possibly related to the presence of
experimentally discovered ferromagnetic properties of palladium foam [2]. Palladium by itself
is not a ferromagnet, and there are indications that its low-dimensional forms may exhibit
ferromagnetic behavior [3].

It is interesting studying the magnetic properties of foam structures. In this note, as
a preliminary step, we propose a method for generating “foam” structures in a plane with
characteristics that resemble experimentally obtained foam structures. The main characteristics
of such structures are low density, reaching values in a fraction of a percent of the density of
similar continuous structures, and satisfying the second property - the presence of mechanical
rigidity.

To illustrate the method, we propose an algorithm for generating a foam structure in a plane.
This algorithm cannot be straightforwardly generalized to a three-dimensional case, but the
basic ideas remain the same. For the foam element, we use a straight line segment of length l. It
is easy to generalize the method to the case when the length of the foam elements is not fixed but
obeys some distribution with the mean l. Foam elements are randomly thrown inside a square
with a side L until the cluster of elements reaches all four square boundaries. This cluster is
selected as the foam structure, and those parts of the elements that go beyond the boundaries of
the square and those elements that have only one intersection with the cluster are removed from
it. The final structures are characterized by the fact that they have a finite and low density,
and secondly, they lie on the sides of the bounding square. Note that generating a structure and
removing some of the elements resembles making structures with chemical washing [2].

We choose identification of the density of the generated structures using comparison with the
strong mathematical results for the properties of the random lines in the plane [4, 5].
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The paper is organized as follows. In section 2, we introduce the algorithm for the foam
generation in the plane. In section 3, we describe the way the density identification of generated
structures. Discussion in section 4 summarized the results.

2. Algorithm for the foam generation
In this section, we describe in the details the algorithm for the foam generation in a plane.

We fix the box with the box size L. Needles of the size l fall randomly on the box. Two
needles are wired at the intersection point. The process stops when the foam grown with the
needles become rigid, in other words, when the foam can lie at the boundaries as the whole
structure and not fall while applying the gravitational force perpendicular to the box surface.
We then consider only those needles which belong to the cluster connecting the boundaries. We
cut everything which is out of the box.

The model we describe qualitatively reproduce the procedure used in the real experiments [2,
6] consisting of the foam growth and the washing process removing the short components and
weakly connected objects. Moreover, the foam structure is very similar to those geometrical
objects extracted algorithmically from the collagen gels [7].

The formal description of the algorithm the following.

(i) Choose the box size L provided with the coordinate system (x, y) equipped with the angle
orientation φ.

(ii) Choose the needle length l or choose the distribution of the needles with an average length
of l.

(iii) Generate random numbers for the position (xi, yi), φi of the needle in the box, where (xi, yi)
is the coordinate of the first end of the needle within the box (0 < xi, yi < L) and needle
orientation is φi ∈ [0, 2π).

(iv) Put the needle on the box. We take into account only part of the needle within the box
and cut the rest of the needle.

(v) Remember the intersection points of the needles.

(vi) Repeat steps 3,4 and 5 until the paths formed with the needles through the intersections
will connect all four sides of the box.

(vii) Decompose structure on the clusters.

(viii) Choose the most massive (percolating) cluster, ignoring all others. This last procedure is
closely related to the experimental washing of the foam [2]).

We use Hoshen-Kopelman [8] algorithm for the cluster decomposition and analysis of the
percolation event [9]. To identify the fact that some cluster connects all the boundaries, we
introduce the special needles corresponding to the box boundaries. We call four sides Master0,
Master1, Master2, and Master3, and assign corresponding flags with the True values indicating
that they belong to the largest cluster. The structure of the Cluster is as follows.

struct Cluster

{

int NumberOfCluster;

bool IsIntersectMaster0;

bool IsIntersectMaster1;

bool IsIntersectMaster2;

bool IsIntersectMaster3;

int[] NumbersOfFibersInTheCluster;

}
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Figure 1. A two-dimensional foam generated in the box L = 200 with the needle size l = 10.

Example of the two-dimensional foam generated by the algorithm shown in Fig. 1. The foam
looks like a very sparse network of connected segments.

Our simulations using the algorithm shows that the rigid washed foam (percolating cluster)
can have a density ρ as small as 0.2 for L = 100 for the length of the needle l = 25 and ρ = 0.015
for L = 500 for the length of the needle l = 25. Asymptotically, for the infinite length of the
needle, the density is ρ = 0.03 and 0.003 correspondingly. The values are comparable with those
obtained for the 3D palladium nanowire foams, which can be as low as ρ = 0.001 of the bulk [2].

3. Density identification
The question is, how can one calculate the density of the foam? Our definition of the density
relies on the exact results for the random lines in the plane [4, 5].

Miles [4] considered a system of straight lines randomly distributed in a plane and investigated
the statistical properties of the polygons formed with the intersected lines. He calculates the
mean values for polygons: the mean number of vertices 4, the mean number of perimeter
P = 2π/τ , and the mean number of area S = π/τ2, where τ is the density. The practical
meaning of τ will be identified below.

We use part of the above algorithm to generate structures for comparison, keeping the steps
1-5, dropping the steps 7-8, and changing step 6 with another condition “6a. Repeat steps
3,4 and 5 until the total length of the needles inside the box reached the value ltot”. We use
data structure Dcel (doubly-connected edge list) [12] for calculation of the average geometric
properties of the polygons formed by the needles. The number of different realization of the
foam used for the statistics is M = 200.

The simulation was done with parameters: the linear box size L = 200, ltot varies from 5000
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Figure 2. The polygon’s mean perimeter as a function of the inverse total length of the needles.
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Figure 3. The polygon’s mean area as a function of the inverse square of the needle’s total
length.

to 15000. Figures 2 and 3 show that the mean perimeter and mean area of the polygons formed
with the needles behaves inversely proportional to the ltot and the inverse of the square of ltot,
correspondingly. Therefore, the density τ introduced by Miles [4] is proportional to the ltot.
Properties of the polygons formed by the needles (the finite objects) within the box (the finite
objects) are qualitatively similar to the properties of the polygons formed by the lines (infinite



CSP2020
Journal of Physics: Conference Series 1740 (2021) 012030

IOP Publishing
doi:10.1088/1742-6596/1740/1/012030

5

objects) in the plane (infinite objects).
Richards [5] developed a procedure to calculate density through the mean number of lines

k crossing any straight segment of unit length, i.e., the mean free length of a line. Therefore
the mean square of the polygon S = π/τ2 = 4/πk2 and the mean perimeter of the polygon
P = 2π/τ = 4/k. In simulations, the foam can be covered by the grid with the unit horizontal
and vertical spacings. We calculated the number of intersections of the needles with the unit
bonds and normalized them by the number of bonds 2L2. We use statistics with M = 200
samples of foam, and we able to estimate the value A in 4/k2A, which should be close to
π ≈ 3.14 according to Ref. [5]. We obtain numbers in the interval of A = 3.31 − 3.66 for the
data pictured in Figure 3, and they are close to the π with the accuracy of 5–15 percents. The
discrepancy is because our network of the finite needles is not precisely the network of the plane’s
lines.

Finally, we adopt the procedure mentioned above for the calculation of the foam density.

4. Discussions
We introduce the method for the foam generation and describe in detail the algorithm for the
two-dimensional case. The generated structures have two major properties of the real foams, the
mechanical rigidity of the structure, and the very small density. We identify the density using
comparison with the mathematical results known for the random lines falling in the plane. The
resulting structures used in the simulations of the magnetic properties while placing Ising spins
on the structure and the results will be published elsewhere [13].
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