On one way of constructing unbalanced TU-based permutations

Denis Fomin

HSE University

Definition 1

Walsh-Hadamard transform $W_{S}(a, b)$ of (n, m)-function S for $a \in \mathbb{F}_{2}^{n}, b \in \mathbb{F}_{2}^{m}$ is defined as follows:

$$
W_{S}^{a, b}=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{\langle a, x\rangle+\langle b, S(x)\rangle}
$$

Definition 2

The nonlinearity of (n, m)-function S is denote as N_{S} and defined as follows:

$$
N_{S}=2^{n-1}-\frac{1}{2} \max _{\substack{a \in \mathbb{F}^{n}, b \in \mathbb{F}_{2}^{n} \backslash \theta}}\left|W_{S}^{a, b}\right| .
$$

Definition 3

The algebraic degree (minimum degree) $\operatorname{deg}(S)$ of (n, m)-function S is the minimum degree among all the component functions of $S:\langle a, S(x)\rangle, a \in \mathbb{F}_{2}^{m} \backslash \theta$:

$$
\operatorname{deg}(S)=\min _{a \in \mathbb{F}_{2}^{m} \backslash \theta} \operatorname{deg}(\langle a, S(x)\rangle)
$$

Definition 4

The maximum degree of (n, m)-function S is the maximum degree among all the component functions of $S:\langle a, S(x)\rangle, a \in \mathbb{F}_{2}^{m} \backslash \theta$:

$$
\operatorname{deg}_{m}(S)=\max _{a \in \mathbb{F}_{2}^{m} \backslash \theta} \operatorname{deg}(\langle a, S(x)\rangle)
$$

Definition 5

For $a \in \mathbb{F}_{2}^{n} \backslash \theta, b \in \mathbb{F}_{2}^{m}$ let

$$
\delta_{S}^{a, b}=\left|\left\{x \in \mathbb{F}_{2^{n}} \mid S(x+a)+S(x)=b\right\}\right|
$$

An (n, m)-function S is called differentially δ_{S}-uniform if

$$
\delta_{S}=\max _{\substack{a \in \mathbb{F}_{2}^{n} \backslash \theta, b \in \mathbb{F}_{2}^{m}}} \delta_{S}^{a, b}
$$

Consider the set \mathcal{G}_{k} of $(n+m, 1)$-functions $G\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$, such that $\operatorname{deg}(G) \leq k, k \in \mathbb{N}$ and for each $\bar{x} \in \mathbb{F}_{2}^{n}$ if we substitute in place of each variable y_{i}, $i \in \overline{1, m}$, the value of the corresponding Boolean function $f_{i}(\bar{x})$, then the value of the function $G\left(x_{1}, \ldots, x_{n}, f_{1}(\bar{x}), \ldots, f_{m}(\bar{x})\right)$ is equals to 0 :

$$
\mathcal{G}_{k}=\left\{G\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right): G\left(x_{1}, \ldots, x_{n}, f_{1}(\bar{x}), \ldots, f_{m}(\bar{x})\right)=0 \forall \bar{x} \in \mathbb{F}_{2}^{n}\right\}
$$

The set \mathcal{G}_{k} is a subgroup of the ring of polynomials of degree non above k. Let's denote r_{F}^{k} - the basis size of \mathcal{G}_{k}.

Definition 6

A minimum number k such that $r_{F}^{k} \neq 0$, is called graph algebraic immunity of F and denoted by $A I_{g r}(F)$.

Definition 7

Let F be an (n, m)-function, $1 \leq t \leq \min (n, m), x_{1}, y_{1} \in \mathbb{F}_{2}^{t}$, $x_{2} \in \mathbb{F}_{2}^{n-t}, y_{2} \in \mathbb{F}_{2}^{m-t}, x \in \mathbb{F}_{2}^{n}, x=x_{1}\left\|x_{2}, y=y_{1}\right\| y_{2}, T\left(x_{1}, x_{2}\right)$ is a (n, t) function such that if we fix value x_{2} by any value from $\mathbb{F}_{2^{n-t}}$ then the function T is a bijection for value x_{1}, U is any $(n, m-t)$-function. Then if the function F has the following representation:

$$
\begin{equation*}
F(x)=F\left(x_{1} \| x_{2}\right)=\left(T\left(x_{1}, x_{2}\right), U\left(x_{2}, T\left(x_{1}, x_{2}\right)\right)\right) \tag{1}
\end{equation*}
$$

then such representation of F in the form (1) is called the
 $T U$-representation.

Let $\mathbb{F}_{2}^{n}, n \geq 6$ is a vector space with elements $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$.

For each element $v \in \mathbb{F}_{2}^{n}$ we put the match the pair $\left(v^{\prime}, v_{n}\right)$, where $v^{\prime} \in \mathbb{F}_{2^{n-1}}$, $v^{\prime}=v_{n-1} x^{n-2}+\cdots+v_{1}, \mathbb{F}_{2^{n-1}}=\mathbb{F}_{2}[x] / f(x), \operatorname{deg}(f)=n-1$.

This correspondence specifies bijective mapping of the set \mathbb{F}_{2}^{n} to $\mathbb{F}_{2^{n-1}} \times \mathbb{F}_{2}$.
Let $\operatorname{tr}(x)$ be a trace function from the field $\mathbb{F}_{2^{n-1}}$ to \mathbb{F}_{2}.

For any $c \in \mathbb{F}_{2^{n}-1} \backslash\{0,1\}$ such that $\operatorname{tr}(c)=\operatorname{tr}\left(c^{-1}\right)$, and arbitrary Boolean function g of $n-1$ variables in ${ }^{1}$ the function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ us defined as follows:

$$
F\left(v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}\right)= \begin{cases}\left(v^{\prime-1}, g\left(v^{\prime}\right)\right), & v_{n}=0 \tag{2}\\ \left(c \cdot v^{\prime-1}, g\left(v^{\prime} \cdot c^{-1}\right)+1\right), & v_{n}=1\end{cases}
$$

where $v^{\prime} \in \mathbb{F}_{2^{n-1}}, v^{\prime}$ is defined by the vector $\left(v_{1}, v_{2}, \ldots, v_{n-1}\right) \in \mathbb{F}_{2}^{n-1}, 0^{-1}=0$.
F is differentially 4-uniform permutation, that has the maximal algebraic degree equals to $n-1$, and the nonlinearity less or equals to $2^{n-1}-2\left\lfloor 2^{(n+1) / 2}\right\rfloor-4$.

[^0]
Proposition 1

Let $x_{1} \in \mathbb{F}_{2}^{n-1}, x_{2} \in \mathbb{F}_{2}$,
■ $T: \mathbb{F}_{2}^{n-1} \times \mathbb{F}_{2} \rightarrow \mathbb{F}_{2}^{n-1}, T\left(x_{1}, x_{2}\right)=x_{1}^{-1} \cdot c^{x_{2}}$,
■ $U: \mathbb{F}_{2}^{1} \times \mathbb{F}_{2}^{n-1} \rightarrow \mathbb{F}_{2}, U\left(x_{2}, x_{1}\right)=g\left(x_{1}^{-1}\right)+x_{2}$.
Then
1 if we fix x_{2} by an arbitrary value from \mathbb{F}_{2} then the function T is a bijection on the variable x_{1},
2 if we fix x_{1} by an arbitrary value from \mathbb{F}_{2}^{n-1} then the function U is a bijection on the variable x_{2},
3 functions T and U define a $T U$-representation of permutation defined by (2).

For the function F that has a $T U$-representation given by equation (1), denote
\square for $a \in \mathbb{F}_{2}^{t}$ the value $\delta_{T, a}$ is equal to δ if permutation T with fixed $x_{2}=a$ is differentially δ-uniform,
■ for $a \in \mathbb{F}_{2}^{t}, \alpha_{1}, \beta_{1} \in \mathbb{F}_{2}^{n-t}, \alpha_{2} \in \mathbb{F}_{2}^{t} \backslash \theta$, the value $\Delta_{T, a}^{\alpha_{1}, \alpha_{2}, \beta_{1}}$ is the number of solutions to the equation:

$$
T\left(x_{1}, a\right)+T\left(x_{1}+\alpha_{1}, a+\alpha_{2}\right)=\beta_{1}
$$

Theorem 8

Let $n, t \in \mathbb{N}, 1 \leq t \leq n-1, x_{1} \in \mathbb{F}_{2}^{n-t}, x_{2} \in \mathbb{F}_{2}^{t}$,

- function $T: \mathbb{F}_{2}^{n-t} \times \mathbb{F}_{2}^{t} \rightarrow \mathbb{F}_{2}^{n-1}$ such that fixation x_{2} by arbitrary value from \mathbb{F}_{2}^{t} the function $T\left(x_{1}, x_{2}\right)$ is the permutation on the variable x_{1},
- function $U: \mathbb{F}_{2}^{t} \times \mathbb{F}_{2}^{n-t} \rightarrow \mathbb{F}_{2}^{t}$ such that fixation x_{1} by arbitrary value from \mathbb{F}_{2}^{n-t} the function $U\left(x_{2}, x_{1}\right)$ is the permutation on the variable x_{2}.
Then the permutation F, defined by (1) is differentially δ-uniform, where

$$
\begin{equation*}
\delta \leq 2^{t} \cdot \max \left\{\max _{a \in \mathbb{F}_{2}^{t}}\left(\delta_{T, a}\right), \max _{\substack{\alpha_{1}, \beta_{1} \in \mathbb{F}_{2}^{n-t} \\ a \in \mathbb{F}_{2}^{t}, \alpha_{2} \in \mathbb{F}_{2}^{\prime} \backslash \theta}}\left(\Delta_{T, a}^{\alpha_{1}, \alpha_{2}, \beta_{1}}\right)\right\} \tag{3}
\end{equation*}
$$

Corollary 9

In the conditions of theorem 8 let $t=1, \delta_{T, a} \leq \delta, a \in \mathbb{F}_{2}$, then the permutation F, defined by (1) is differentially 2δ-uniform $\max _{\alpha_{1}, \beta_{1} \in \mathbb{F}_{2}^{n-1}} \Delta_{T, 0}^{\alpha_{1}, 1, \beta_{1}} \leq \delta$.

According to the corollary in order to construct a differentially 4-uniform permutation F one must take two differential 2-uniform permutations π_{1} and π_{2} of the space \mathbb{F}_{2}^{n-1}. And if $T\left(x_{1}, 0\right)=\pi_{1}$ and $T\left(x_{1}, 1\right)=\pi_{2}$, then it remains to check that the number of solutions of following equations:

$$
\pi_{1}(x)+\pi_{2}\left(x+\alpha_{1}\right)=\beta_{1}
$$

for all possible values of $\alpha_{1}, \beta_{1} \in \mathbb{F}_{2}^{n-1}$ are not greater than 2 .

Proposition 2

Let $x_{1} \in \mathbb{F}_{2}^{n-1}$, n be an even number, $x_{2} \in \mathbb{F}_{2}, f$ be an arbitrary Boolean function of $n-1$ variables, $c \in \mathbb{F}_{2^{n-1}} \backslash\{\theta, 1\}$,

■ $T: \mathbb{F}_{2}^{n-1} \times \mathbb{F}_{2} \rightarrow \mathbb{F}_{2}^{n-1}, T\left(x_{1}, x_{2}\right)=x_{1}^{-1} \cdot c^{x_{2}}$,
■ $U: \mathbb{F}_{2}^{1} \times \mathbb{F}_{2}^{n-1} \rightarrow \mathbb{F}_{2}, U\left(x_{2}, x_{1}\right)=f\left(x_{1}\right)+x_{2}$.
Then equation (1) defines the permutation F, and at the same time
1 if $\operatorname{tr}(c)=\operatorname{tr}\left(c^{-1}\right)=1$, then $\delta_{F}=4$,
2 otherwise $-\delta_{F}=6$.

Remark 1

The proof of point 1 of the previous proposition was previously published in ${ }^{2}$.
${ }^{2}$ Claude Carlet, Deng Tang, Xiaohu Tang, and Qunying Liao., "New construction of differentially 4uniform bijections. In Dongdai Lin, Shouhuai Xu, and Moti Yung, editors, Information Security and Cryptology, pages 22-38, Cham, 2014. Springer International Publishing.".

Proposition 3

Let $x_{1} \in \mathbb{F}_{2}^{n-1}$, n be an even number, $x_{2} \in \mathbb{F}_{2}, f$ be an arbitrary Boolean function of $n-1$ variables, $c \in \mathbb{F}_{2^{n-1}} \backslash\{\theta, 1\}$,

■ $T: \mathbb{F}_{2}^{n-1} \times \mathbb{F}_{2} \rightarrow \mathbb{F}_{2}^{n-1}, T\left(x_{1}, x_{2}\right)=x_{1}^{3} \cdot c^{x_{2}}$,

- $U: \mathbb{F}_{2}^{1} \times \mathbb{F}_{2}^{n-1} \rightarrow \mathbb{F}_{2}, U\left(x_{2}, x_{1}\right)=f\left(x_{1}\right)+x_{2}$.

Then equation (1) defines the permutation F, and $\delta_{F}=6$.

Proposition 4

Let $x_{1} \in \mathbb{F}_{2}^{n-1}, n$ be an even number, $x_{2} \in \mathbb{F}_{2}$, $a, b \in \mathbb{F}_{2^{n-1}}, T: \mathbb{F}_{2}^{n-1} \times \mathbb{F}_{2} \rightarrow \mathbb{F}_{2}^{n-1}$
■ $T\left(x_{1}, 0\right)=x_{1}^{3}$,
■ $T\left(x_{1}, 1\right)=x_{1}^{3}+a \cdot x_{1}^{2}+b \cdot x_{1}$.
Then either $\alpha_{1} \in \mathbb{F}_{2^{n-1}}$ and $\beta_{1} \in \mathbb{F}_{2^{n-1}}$ exist such that the number of solutions to the equation

$$
T\left(x_{1}+\alpha_{1}, 0\right)+T\left(x_{1}, 1\right)=\beta_{1}
$$

will equal to 2^{n-1} or $T\left(x_{1}, 1\right)$ is not a permutation.

Proposition 5

Let $x_{1} \in \mathbb{F}_{2}^{n-1}$, n e an even number, $x_{2} \in \mathbb{F}_{2}$, f be an arbitrary Booleann function of $n-1$ variables, $c \in \mathbb{F}_{2^{n-1}} \backslash\{\theta, 1\}$,

■ $T: \mathbb{F}_{2}^{n-1} \times \mathbb{F}_{2} \rightarrow \mathbb{F}_{2}^{n-1}, T\left(x_{1}, 0\right)=x_{1}^{3}, T\left(x_{1}, 0\right)=x_{1}^{-1}$,
■ $U: \mathbb{F}_{2}^{1} \times \mathbb{F}_{2}^{n-1} \rightarrow \mathbb{F}_{2}, U\left(x_{2}, x_{1}\right)=f\left(x_{1}\right)+x_{2}$.
Then the equation (1) specifies differentially 8-uniform permutation.

Proposition 6

Let $t=2, x_{1} \in \mathbb{F}_{2}^{n-t}, x_{2} \in \mathbb{F}_{2}^{t}$,
$\square T: \mathbb{F}_{2}^{n-t} \times \mathbb{F}_{2}^{t} \rightarrow \mathbb{F}_{2}^{n-1}$, when fixing an arbitrary x_{2} function $T\left(x_{1}, x_{2}\right)=x_{1}^{-1} \cdot c^{x_{2}}$,
$\square U: \mathbb{F}_{2}^{t} \times \mathbb{F}_{2}^{n-t} \rightarrow \mathbb{F}_{2}^{t}$, when fixing an arbitrary x_{1} function $U\left(x_{2}, x_{1}\right)$ is a permutation on the variable x_{2}.

Then there exist such $c_{y}, y \in \mathbb{F}_{2^{2}}, c_{y_{1}} \neq c_{y_{2}}$ if $y_{1} \neq y_{2}$, that the permutation F, given by equation (1) is a differentially 8-uniform permutation.

Proposition 7

Let $x_{1} \in \mathbb{F}_{2}^{n-1}, n \in \mathbb{N}$ be an even number, $i \in \mathbb{N}, i \leq 2^{n-1}-2, x_{2} \in \mathbb{F}_{2}, c \in \mathbb{F}_{2^{n-1}} \backslash\{\theta, 1\}$, $T: \mathbb{F}_{2}^{n-1} \times \mathbb{F}_{2} \rightarrow \mathbb{F}_{2}^{n-1}, T\left(x_{1}, x_{2}\right)=x_{1}^{i} \cdot c^{x_{2}}$, then $\operatorname{deg} T=|i|+1$.

Remark 2

If in statements of propositions 2 and 3 the function f has an algebraic degree equal to 1 , then the entire permutation F will also have an algebraic degree equal to 1.

Proposition 8

Under the conditions of propositions 2 and 3, the permutation F will have the graph algebraic immunity equals to 2.

[^0]: ${ }^{1}$ Claude Carlet, Deng Tang, Xiaohu Tang, and Qunying Liao., "New construction of differentially 4uniform bijections. In Dongdai Lin, Shouhuai Xu, and Moti Yung, editors, Information Security and Cryptology, pages 22-38, Cham, 2014. Springer International Publishing.".

