Distinguishing attacks on Feistel ciphers based on linear and differential attacks

Denis Fomin

HSE University

- $q \in \mathbb{N}, Q \in \mathbb{N}$
- $K \in \mathbb{Z}_{q}^{k}$ - key
- $T \in \mathbb{Z}_{q}^{t}$ - tweak
- $I \in \mathbb{N}$ rounds
- Encryption function of GTFN: $E_{K, T}: \mathbb{Z}_{q}^{Q} \rightarrow \mathbb{Z}_{q}^{Q}$
- round function of GTFN is a key, tweak and round-dependent mapping:

$$
F: \mathbb{Z}_{q}^{k} \times \mathbb{Z}_{q}^{t} \times \mathbb{Z}_{I} \times \mathbb{Z}_{q}^{R} \rightarrow \mathbb{Z}_{q}^{L},
$$

$L, R \in \mathbb{N}, L+R=Q$

- Let for some $h \in \mathbb{N}, h<Q, L=\lceil Q / h\rceil$, then $R=Q-\lceil Q / h\rceil$

An internal state of i round of GTFN: $S^{(i)}=S_{0}^{(i)} \| S_{1}^{(i)}$, where $S_{0}^{(i)} \in \mathbb{Z}_{q}^{L}, S_{1}^{(i)} \in \mathbb{Z}_{q}^{R}$
$S^{(0)}$ is a plaintext, $S^{(I)}$ is a ciphertext.

The round function is evaluated as follows:

$$
S^{(i)}=S_{1}^{(i-1)} \|\left(S_{0}^{(i-1)}+F\left(K, T, i, R^{(i-1)}\right)\right)
$$

where " + " is either
$■$ an operation of group $\mathbb{Z}_{q^{L}}$, that we will denote as \boxplus;
■ or operator of vector space \mathbb{Z}_{q}^{L}, that we will denote as \oplus.

Figure: $\operatorname{GTFN}_{\oplus}, q=2$ and " + " operator in Figure: GTFN $_{\boxplus}, q=L$ and " + " operator in round function is \oplus
 round function is \boxplus
F for fixed K, T is realized a random function $\mathbb{Z}_{q}^{R} \rightarrow \mathbb{Z}_{q}^{L}$ according to the discrete distribution D

- Uniform discrete distribution $\mathrm{U}\left(\mathbb{Z}_{q}^{L}\right)$
- Distribution $\mathrm{M}(q, L)$ of the following random variable:

$$
\zeta=\xi \quad\left(\bmod \left(q^{L}\right)\right), \text { where } \xi \sim \mathrm{U}\left(\mathbb{Z}_{2}^{\left\lceil L \cdot \log _{2}(q)\right\rceil}\right)
$$

- Let $R=(h-1) \cdot L$, internal state is a concatenation of h elements of \mathbb{Z}_{q}
- With probability 1 , the following difference relationship for h rounds holds:

$$
\begin{aligned}
&(\alpha \| \underbrace{0\|\ldots\| 0}_{h-1}) \xrightarrow{1} \\
&(\underbrace{0\|\ldots\| 0}_{h-1} \| \alpha) \xrightarrow{1} \\
& \xrightarrow[\rightarrow]{(\underbrace{0\|\ldots\| 0}_{h-2}\|\alpha\| \star)} \xrightarrow{1} \cdots \xrightarrow{1}(\alpha \| \underbrace{\star\|\ldots\| \star}_{h-1}),
\end{aligned}
$$

- There is an efficient algorithm to distinguish h rounds of the GTFN algorithm from a random substitution
- Difficulty and amount of material are about $O\left(q^{L}\right)$

- With probability $q^{-(h-1) L}$, the following difference relationship for $h+1$ rounds holds:

$$
\begin{aligned}
(\alpha \| \underbrace{0\|\ldots\| 0}_{h-1}) \stackrel{1}{\rightarrow} & (\underbrace{0\|\ldots\| 0}_{h-1} \| \alpha) \xrightarrow{q^{-L}} \\
& \xrightarrow{q^{-L}}(\underbrace{0\|\ldots\| 0}_{h-2}\|\alpha\| 0) \xrightarrow{q^{-L}} \cdots \\
& \cdots{ }^{q^{-L}}(\alpha \| \underbrace{0\|\ldots\| 0}_{h-1}) \xrightarrow{1}(\underbrace{0\|\ldots\| 0}_{h-1} \| \alpha),
\end{aligned}
$$

- the following difference relation holds for 4 rounds of the GTFN $_{\oplus}$ when $h=3$:

$$
(\alpha\|0\| 0) \xrightarrow{1}(0\|0\| \alpha) \xrightarrow{2^{-b_{L}}}(0\|\alpha\| 0) \xrightarrow{2^{-b_{L}}}(\alpha\|0\| 0) \xrightarrow{1}(0\|0\| \alpha)
$$

The idea of this attack is based on the statistical problem of distinguishing between two hypotheses:

■ random sample observation from Bernoulli distribution with "success" probability equals to $q^{-(h-1) L}$;
■ random sample observation from Bernoulli distribution with "success" probability equals to $q^{-(h) L}$.
The difficulty of differental attack based on this test is about $O\left(q^{h L}\right)$.

Let there are $M_{j} \leq M / 2$ pairs of plain texts encrypted using $t_{j}, j=1, \ldots, T$, tweaks that have a difference $(\alpha\|0\| \ldots \| 0)$ for some fixed α.

Then the statistics equivalent to the likelihood ratio statistics:

$$
S_{j}\left(M_{j}\right)=\sum_{i=1}^{M_{j}} z_{i, j}
$$

where $z_{i, j}$ is-an indicator that equals 1 if and only if i-th pair of plaintexts that has an input difference $(\alpha\|0\| \ldots \| 0)$ is have the same difference between ciphertexts.

Simply increasing the material using different tweaks, values of α is generally speaking not correct.

However, we can consider $S_{j}\left(M_{j}\right)$ at one tweak with fixed α as a random variable that has a binomial distribution with parameters $\operatorname{Bin}\left(M_{j}, q_{i}\right)$.

In that case we can consider N such observations (N tweaks) and the statistic equivalent to the likelihood ratio statistic equals to:

$$
K(N, M)=\sum_{j=1}^{N} S_{j}\left(M_{j}\right)
$$

Considering different values of α also leads to an increase in the efficiency of the attack.

Note that if the adversary has the ability to encrypt arbitrary texts, then he can choose texts in such a way as to obtain up to M different values of α for which there will be about $M / 2$ pairs of plaintexts for the chosen values of α.

Indeed, if the cryptoanalyst can encrypt $M=q^{e}$ plaintexts $\left(x_{1}, x_{2}, \ldots, x_{h}\right)$, where $x_{1} \leq M$, the difference relations described above are fulfilled for any value of $\alpha \in \mathbb{Z}_{q}^{e} \backslash\{0\}, \alpha \leq M$.

This potentially could increase the amount of material (like in a multidimensional linear cryptanalysis)

Let's consider GTFN_{\boxplus} with round function that are chosen according M distribution.
Then the probability of the difference relation $F(x)+F(x+a)=b$ is equal to:

$$
\mathrm{P}\{F(x)+F(x+a)=b\}=\frac{4 W_{0,0}}{\left(N^{\prime}\right)^{2}}+\frac{2 W_{0,1}}{\left(N^{\prime}\right)^{2}}+\frac{W_{1,1}}{\left(N^{\prime}\right)^{2}}=p_{1}(b),
$$

where

$$
\begin{gathered}
W_{0,0}=\max \left\{N^{\prime}-N-b, 0, N^{\prime}-2 N+b, 2 N^{\prime}-3 N\right\} \\
W_{0,1}=\min \left\{2 b, 2\left(N^{\prime}-N\right), 2(N-b), 4 N-2 N^{\prime}\right\} \\
W_{1,1}=N-W_{0,0}-W_{0,1},
\end{gathered}
$$

$N=2^{\left[L \log _{2}(q)\right\rceil}, N^{\prime}=q^{L}$

The graph of this probability for the case $q=10, h=3, L=3$ is shown in figure:

Figure: Graph of probability $p_{1}(b)$ in case $q=10, h=3, L=3$

This property helps to reduce the amount of material needed to apply the difference attack compared to the equal-probability case $\left(\mathrm{U}\left(\mathbb{Z}_{q^{L}}\right)\right)$.

It also allows to apply a difference attack for more rounds. Without losing generality, let us consider the special case of GTFN_{\boxplus} with $q=10, h=3$. Let's find the probability of the following $2 h+1$-rounds differential relation:

$$
(\alpha\|0\| 0) \xrightarrow[2 h+1 \text { rounds }]{ }(0\|0\| \star)
$$

where $\alpha \in \mathbb{Z}_{10^{L}}$ - a fixed value, \star - any value of the set $\mathbb{Z}_{10^{L}}$. The differential above can be descripted as follows:

$$
\begin{aligned}
(\alpha\|0\| 0) \rightarrow(0\|0\| \alpha) \rightarrow(0\|\alpha\| \gamma) \rightarrow(\alpha\|\gamma\| \delta) & \rightarrow(\gamma\|\delta\| \beta) \rightarrow \\
& \rightarrow(\delta\|\beta\| 0) \rightarrow(\beta\|0\| 0) \rightarrow(0\|0\| \beta)
\end{aligned}
$$

where $\alpha \in \mathbb{Z}_{10^{L}}$ - a fixed value, β, γ, δ - some values of the set $\mathbb{Z}_{10^{L}}$.

This probability is different from the case of an equal probability distribution:

	Distribution	
L	M	U
3	$10^{-6}+1.61 \cdot 10^{-11}$	10^{-6}
4	$10^{-8}+4.01 \cdot 10^{-11}$	10^{-8}
5	$10^{-10}+7.24 \cdot 10^{-13}$	10^{-10}
6	$10^{-12}+1.17 \cdot 10^{-16}$	10^{-12}

$L \neq Q / h$ case

Let $\alpha \in \mathbb{Z}_{q}^{L}, \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{L}\right), w=L-(Q-(h-1) L)=h L-Q$, $\alpha_{1}=\ldots=\alpha_{w}=0$.

Then the following difference relationship for h rounds holds:

$$
(\alpha \| \underbrace{0\|\ldots\| 0}_{h-1}) \xrightarrow[h \text { rounds }]{1}\left(\alpha^{\prime} \| \star\right),
$$

where $\alpha^{\prime}=\left(\alpha_{w+1}, \alpha_{w+2}, \ldots, \alpha_{L}\right)$, \star - some element of \mathbb{Z}_{q}^{Q-L+w}.
As we can see in case $L=Q / h$ the value $w=0$ and all statements shown earlier are correct.

The scalar product of two functions f_{1}, f_{2} with values in \mathbb{C}^{\times}is defined as follows:

$$
\left\langle f_{1}, f_{2}\right\rangle=\sum_{x \in X} f_{1}(x) \overline{f_{2}(x)}
$$

The Fourier coefficients of function $f \in \mathbb{C}^{X}$ is a function $C_{\alpha}^{f} \in \mathbb{C}^{\widehat{X}}$:

$$
C_{\alpha}^{f}=\left\langle f, \overline{\chi_{\alpha}}\right\rangle=\sum_{x \in X} f(x) \overline{\chi_{\alpha}(x)}, \alpha \in X
$$

These coefficients are defined the Fourier transform of f :

$$
f=\frac{1}{|X|} \sum_{\alpha \in X} C_{\alpha}^{f} \chi_{\alpha}
$$

Let D is a distribution of values of finite Abelian group X :

$$
\operatorname{Pr}_{\mathrm{D}}\{x\}=p(x) .
$$

The function $p(x)$ can be represented using the Fourier transform as function of \mathbb{C}^{X} :

$$
p(x)=\frac{1}{|X|} \sum_{\alpha \in X} C_{\alpha}^{P} \chi_{\alpha}(x) .
$$

Then C_{α}^{p} is the expected number of $\overline{\chi_{\alpha}}$:

$$
C_{\alpha}^{p}=\sum_{x \in X} p(x) \overline{\chi_{\alpha}(x)}=\mathbf{E} \overline{\chi_{\alpha}} .
$$

Statement

Let $f \in Y^{X}$ be a function with arguments in finite Abelian group X and with values in finite Abelian group Y. Then

$$
\mathbf{E} \psi_{\beta}(f(x))=\frac{1}{|X|} \sum_{\alpha \in X} C_{\beta, \alpha}^{f} \cdot \mathbf{E} \chi_{\alpha}
$$

Statement

Under the conditions of the previous statement:

$$
\operatorname{Pr}\{f(x)=b\}=\frac{1}{|Y|} \sum_{\beta \in Y} \mathbf{E} \psi_{\beta}(f) \overline{\psi_{\beta}(b)}=\frac{1}{|Y|} \sum_{\beta \in Y} \mathbf{E} \overline{\psi_{\beta}(f)} \psi_{\beta}(b)
$$

Let's consider the function $F(x)$ of the form $F(x)=(f(x),-x)$. In that case $F(x) \in(Y \dot{+} X)^{X}$. If X and Y are finite Abelian groups then $Z=Y \dot{+} X$ also a finite Abelian group and

$$
Z=Y \dot{+} X=H_{1} \dot{+} \ldots \dot{+} H_{t} \dot{+} G_{1} \dot{+} \ldots \dot{+} G_{k} .
$$

Let $\phi_{\gamma}, \gamma \in Z, \gamma=\beta \| \alpha-$ are characters of group Z. Then for function F :

$$
\operatorname{Pr}\{F(x)=b\}=\frac{1}{|Z|} \sum_{\gamma \in Z} \mathbf{E} \phi_{\gamma}(F) \overline{\phi_{\gamma}(b)}=\sum_{\gamma \in Z} \mathbf{E}\left(\psi_{\beta}(f(x)) \overline{\chi_{\alpha}(x)}\right) \overline{\psi_{\beta}(f(x))} \chi_{\alpha}(x)
$$

We can see that $\mathbf{E}\left(\psi_{\beta}(f(x)) \overline{\chi_{\alpha}(x)}\right)$ is a Fourier coefficient of function F when $\mathrm{D}=\mathrm{U}$. In this work we call correlation coefficient of the linear approximation $\left(\chi_{\alpha}, \phi_{\beta}\right)$ of function f the value

$$
\mathbf{L}_{\beta, \alpha}^{F}=\mathbf{E}\left(\psi_{\beta}(f(x)) \overline{\chi_{\alpha}(x)}\right)
$$

If Y and X are the same groups the equation above can be rewritten as follows:

$$
\mathbf{L}_{\beta, \alpha}^{F}=\mathbf{E}\left(\chi_{\beta}(f(x)) \overline{\chi_{\alpha}(x)}\right)
$$

■ $R=(h-1) \cdot L$
■ Consider the following linear relation on three rounds of the GTFN algorithm:

$$
\begin{aligned}
&(\alpha \| \underbrace{0\|\ldots\| 0}_{h-1}) \xrightarrow{c_{1}} \\
&(\underbrace{0\|\ldots\| 0}_{h-1} \| \alpha) \xrightarrow{1} \\
& \xrightarrow[\rightarrow]{(\underbrace{0\|\ldots\| 0}_{h-2}\|\alpha\| 0) \xrightarrow{1} \cdots \xrightarrow{1}(\alpha \| \underbrace{0\|\ldots\| 0}_{h-1}),}
\end{aligned}
$$

Let's describe this relationship in more detail. The correlation coefficient c_{1} in the first round

$$
(\alpha \| \underbrace{0\|\ldots\| 0}_{h-1}) \xrightarrow{c_{1}}(\underbrace{0\|\ldots\| 0}_{h-1} \| \alpha)
$$

equals to:

$$
\mathbf{E}\left(\chi_{\alpha}\left(K, T, 1, S_{1}^{(0)}\right) \overline{\chi_{0}\left(S_{1}^{(0)}\right)}\right)=\mathbf{E}\left(\chi_{\alpha}\left(K, T, 1, S_{1}^{(0)}\right)\right)
$$

where $F\left(K, T, 1, S_{1}^{(0)}\right)$ - is F-function of the first round. In case of GTFN_{\oplus} algorithm this coefficient equals to:

$$
2 \cdot \mathrm{P}\left\{\left\langle 0, S_{1}^{(0)}\right\rangle=\left\langle\beta, F\left(b, 1, T, S_{1}^{(0)}\right)\right\rangle\right\}-1=c_{1}
$$

Similarly we can consider the others correlation coefficients for the following relations:

$$
(\underbrace{0\|\ldots\| 0}_{h-1} \| \alpha) \xrightarrow{1}(\underbrace{0\|\ldots\| 0}_{h-2}\|\alpha\| 0), \ldots,(0\|\alpha\| \underbrace{0\|\ldots\| 0}_{h-2}) \xrightarrow{1}(\alpha \| \underbrace{0\|\ldots\| 0}_{h-1}) .
$$

It's easy to show, that

$$
\mathbf{E}\left(\chi_{0}\left(F\left(K, T, i+1, S_{1}^{(i)}\right)\right) \overline{\chi_{0}\left(S_{1}^{(i)}\right)}\right)=1 .
$$

In case of GTFN_{\oplus} algorithm this coefficient equals to:

$$
2 \cdot \mathrm{P}\left\{\left\langle 0, S_{1}^{(i)}\right\rangle=\left\langle 0, F\left(K, T, i+1, S_{1}^{(i)}\right)\right\rangle\right\}-1=1 .
$$

As in ${ }^{1}$, we can use the following approach. Let the set of plaintexts have the following form: $P=\left\{\left(x_{1}, x_{2}, \ldots, x_{h}\right)\right\}$, where $x_{2}, x_{3}, \ldots, x_{h}$ are fixed by some constants from the set \mathbb{Z}_{q}^{L}. Then for the first three rounds of the algorithm GTFN the absolute value of correlation coefficient is equal to 1 . Indeed, on the first round, the values $F\left(K, T, 1, S_{1}^{(0)}\right)$ will be the same and equal to some $y \in \mathbb{Z}_{q}^{L}$, from which it follows that

$$
\left|\mathbf{E}\left(\chi_{\alpha}\left(F\left(K, T, 1, S_{1}^{(0)}\right)\right) \overline{\chi_{0}\left(S_{1}^{(0)}\right)}\right)\right|=\left|\mathbf{E}\left(\chi_{\alpha}(y)\right)\right|=\left|\left(\chi_{\alpha}(y)\right)\right|=1 .
$$

In case of GTFN_{\oplus} algorithm this coefficient equals to:

$$
2 \cdot \mathrm{P}\left\{\left\langle 0, S_{1}^{(0)}\right\rangle=\langle\alpha, y\rangle\right\}-1= \pm 1 .
$$

[^0]■ For a random vectorial Boolean function $S: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}^{m}$ as n increases, the value $\mathbf{L}_{\beta, \alpha}^{S}$ will have a normal distribution with parameters $\mathcal{N}\left(0,2^{-n}\right)$.
■ If X and Y are finite Abelian groups and S is a random function $S \in Y^{X}$ the the distribution of $\sqrt{|X|} \mathbf{L}_{\beta, \alpha}^{S}$ converges to the standard complex normal distribution $\mathcal{C N}(0,1)$.

- If $D \neq U$ then the distribution of the value

$$
\mathbf{L}_{\alpha, 0}^{S}=\mathbf{E}\left(\chi_{\alpha}\left(K, T, 1, S_{1}^{(0)}\right)\right)
$$

should be estimated.

Consider the following linear relation on $h \cdot r+h$ rounds of the GTFN algorithm, similar to those considered in ${ }^{2}$:

$$
\begin{aligned}
& (\alpha \| \underbrace{0\|\ldots\| 0}_{h-1}) \xrightarrow{1}(\underbrace{0\|\ldots\| 0}_{h-1} \| \alpha) \xrightarrow{1}(\underbrace{0\|\ldots\| 0}_{h-2}\|\alpha\| 0) \xrightarrow{1} \cdots \\
& \cdots \xrightarrow{1}(\alpha \| \underbrace{0\|\ldots\| 0}_{h-1}) \xrightarrow{c_{h+1}}(\underbrace{0\|\ldots\| 0}_{h-1} \| \alpha) \xrightarrow{1} \ldots \stackrel{1}{\rightarrow}(\alpha \| \underbrace{0\|\ldots\| 0}_{h-1}) \xrightarrow{c_{2 h+1}} \\
& \xrightarrow{c_{2 h+1}} \ldots \xrightarrow{c_{r-h+1}}(\underbrace{0\|\ldots\| 0}_{h-1} \| \alpha) \xrightarrow{1} \ldots \stackrel{1}{\rightarrow}(\alpha \| \underbrace{0\|\ldots\| 0}_{h-1}) .
\end{aligned}
$$

Using the pilling-up lemma the correlation coefficient $\mathcal{C}_{1}=\mathbf{L}_{(\alpha\| \|\| \| \ldots \| 0),(\alpha\|0\| \ldots \| 0)}^{\text {GTFN }}$ can be estimated as follows:

$$
\mathcal{C}_{1}=\prod_{i=1}^{r / h-h} c_{1+h \cdot i}
$$

where $c_{1+h \cdot i}=\mathbf{L}_{\alpha, 0}^{F}$.

- A random permutation will have a correlation coefficient equals to the value \mathcal{C}_{0}, which is a realization of a random variable with the uniform distribution.
■ The distribution of \mathcal{C}_{0} is well known and we also suppose that the distribution of \mathcal{C}_{1} is also known to a cryptanalyst.

The statistics based on logarithm of likelihood function is asymptotically equivalent to:

$$
\sum_{\alpha^{\prime}, \beta^{\prime} \in X \backslash 0} \mathbf{L}_{\beta^{\prime}, \alpha^{\prime}}^{S} \sum_{i=1}^{M} \overline{\chi_{\beta^{\prime}}\left(y_{i}\right)} \chi_{\alpha^{\prime}}\left(x_{i}\right)
$$

With $M \rightarrow \infty$ the sum $\sum_{i=1}^{M} \overline{\chi_{\beta^{\prime}}\left(y_{i}\right)} \chi_{\alpha^{\prime}}\left(x_{i}\right)$ converges to $\overline{\mathbf{L}_{\beta^{\prime}, \alpha^{\prime}}^{S}}$, then

$$
\sum_{\alpha^{\prime}, \beta^{\prime} \in X \backslash 0} \mathbf{L}_{\beta^{\prime}, \alpha^{\prime}}^{S} \sum_{i=1}^{M} \overline{\chi_{\beta^{\prime}}\left(y_{i}\right)} \chi_{\alpha^{\prime}}\left(x_{i}\right) \rightarrow M \sum_{\alpha^{\prime}, \beta^{\prime} \in X \backslash 0}\left|\mathbf{L}_{\beta^{\prime}, \alpha^{\prime}}^{S}\right|^{2}
$$

As we consider plaintexts of the form $\left(x\left\|a_{1}\right\| a_{2}\|\ldots\| a_{h-1}\right)$, where $a_{0}, a_{1}, \ldots, a_{h-1}-$ some fixed elements of \mathbb{Z}_{q}^{L} and $\alpha^{\prime}=\beta^{\prime}$ of the form $(\alpha\|0\| \ldots \| 0)$ then the equation above is equal to:

$$
M \sum_{\alpha \in \mathbb{Z}_{q}^{L} \backslash 0}\left|\mathbf{L}_{(\alpha\|0\| \ldots \| 0),(\alpha\|0\| \ldots \| 0)}^{S}\right|^{2}
$$

Let $\mathbf{D} \mathcal{C}_{0}$ is the variance of correlation coefficient of a random function and $\mathbf{D} \mathcal{C}_{1}$ is the variance of a correlation coefficient

$$
\mathbf{D} \mathcal{C}_{1}=\mathbf{L}_{(\alpha\|0\| \ldots \| 0),(\alpha\|0\| \ldots \| 0)}^{\mathrm{GTFN}} \approx\left(\mathbf{D} \mathbf{L}_{\alpha, 0}^{F}\right)^{r / h-h}
$$

Then for a successful attack the ratio between M, N (tweak and other plaitexts quantity) and $|X|=q^{L}$ should be:

$$
M \cdot N \cdot|X| \approx O\left(\left(\mathbf{D} \mathcal{C}_{1}-\mathbf{D} \mathcal{C}_{0}\right)^{-1}\right)
$$

[^1]
[^0]: ${ }^{1}$ Tim Beyne., "Linear Cryptanalysis of FF3-1 and FEA. Cryptology ePrint Archive, Report 2021/815, 2021. https://ia.cr/2021/815.".

[^1]: ${ }^{2}$ Tim Beyne., "Linear Cryptanalysis of FF3-1 and FEA. Cryptology ePrint Archive, Report 2021/815, 2021. https://ia.cr/2021/815.".

