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Abstract. Medical Concept Coding (MCD) is a crucial task in biomed-
ical information extraction. Recent advances in neural network modeling
have demonstrated its usefulness in the task of natural language pro-
cessing. Modern framework of sequence-to-sequence learning that was
initially used for recurrent neural networks has been shown to provide
powerful solution to tasks such as Named Entity Recognition or Medical
Concept Coding. We have addressed the identification of clinical concepts
within the International Classification of Diseases version 10 (ICD-10)
in two benchmark data sets of death certificates provided for the task
1 in the CLEF eHealth shared task 2017. A proposed architecture com-
bines ideas from recurrent neural networks and traditional text retrieval
term weighting schemes. We found that our models reach accuracy of
75% and 86% as evaluated by the F-measure on the CépiDc corpus of
French texts and on the CDC corpus of English texts, respectfully. The
proposed models can be employed for coding electronic medical records
with ICD codes including diagnosis and procedure codes.
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1 Introduction

Medical concept coding is an important task of biomedical information extrac-
tion (IE), which is also a central concern of the text mining research community
in recent years. The goal of IE is to automatically detect a textual mention of
a named entity in free-form texts and map the entity mention to a unique con-
cept in an existing ontology after solving the homonymy problem [1]. There are
several widely used ontologies of medical concepts such as the Unified Medical
Language System (UMLS), SNOMED CT, and International Classification of
Diseases (ICD, ICD-10).

The problem of homonymy, i.e., of disambiguation of unrelated word mean-
ings, is one of the well-known challenges in natural language processing (NLP),
which could be found in each and every NLP sub-fields and related areas like



information retrieval. The drug discovery application sub-field is no exception in
that regard, but it also has its own unique features. Namely, it is typical for the
field that semantic unit here is an entity consisting typically of two and more
words or abbreviations. Thus, one needs to disambiguate the meaning of an en-
tity rather than a single word. For example, “headache” could mean migraine, or
dizziness, or a few additional discrepant medical terms. This task in the field is
called medical concept mapping, and disambiguation is one of its main features.

In this paper, we focus on the problem of ICD-10 coding, the aim is to
assign codes from the International Classification of Diseases to fragments of
texts. Computer-assisted coding (CAC) can help reduce the coding burden. CAC
systems are already in use in many healthcare facilities as a helpful tool for
increasing medical coder productivity [2]. Thus, progress in automated methods
for ICD coding is expected to directly impact real-world operations.

The problem of accurate identification of ICD codes based on verbal descrip-
tion of medical conditions naturally lends itself to using NLP approaches for
the task at hand. Since manual coding is time-consuming and error-prone, auto-
matic coding has been studied for many years. Two basic methods of identifying
ICD codes are dictionary matching and pattern matching [3]. Recent advances in
neural networks have deeply reshaped NLP research because of their capability
to learn representations from data without feature engineering in an end-to-end
manner. Recent studies treat the medical concept coding task as a supervised
sequence labeling problem. For instance, Miftahutdinov and Tutubalina [4] pro-
posed an encoder-decoder model based on bidirectional recurrent neural net-
works (RNNs) to translate a sequence of words into a sequence of medical codes;
experiments were carried out on the English corpus of death certificates. Karimi
et al. [5] leveraged a simple convolutional neural network with a fully-connected
layer to assign a label (a diagnosis code) for entries in a dataset of radiology
reports written in English. Duarte et al. [6] applied a deep neural network that
processes the texts of clinical reports from the Portuguese Ministry of Health.
These works demonstrate the first attempts to use deep learning methods for
ICD coding.

This work is a significantly extended version of the previously reported study
[4]; here, we extended experiments to employ novel RNN architectures. In ad-
dition to Long Short-Term Memory (LSTM), we utilize Gated Recurrent Units
(GRU) used for sequence learning. We explore the impact of different word em-
beddings and the length of output sequences of ICD codes. We conduct extensive
experiments on the French and English datasets from the CLEF eHealth shared
task 2017 and demonstrate the efficiency of our approach.

2 Related Work

Different approaches have been developed for medical concept coding task, mainly
falling into two categories: (i) knowledge-based methods [7–11]; and (ii) machine
learning approaches [12–14].



The ShARe/CLEF eHealth 2013 lab addressed the problem of identification
and normalization of disorders from clinical reports in Task 1 [15]. Leaman et
al. introduced a DNorm system for assigning disease mentions from PubMed
abstracts [16]. The CLEF Health 2016 and 2017 labs addressed the problem
of mapping death certificates to ICD codes. Death certificates are standardized
documents filled by physicians to report the death of a patient [17]. For the
CLEF eHealth 2016 lab, five teams participated in the shared task 2 about the
ICD-10 coding of death certificates in French [18]. Most submitted methods uti-
lized dictionary-based semantic similarity and, to some extent, string matching.
Mulligen et al. [9] obtained the best results in task 2 by combining a Solr tagger
with ICD-10 terminologies. The terminologies were derived from the task train-
ing set and a manually curated ICD-10 dictionary. They achieved an F-measure
of 84.8%. Zweigenbaum and Lavergne [19] utilized a hybrid method combining
pre-processing steps (stop word removal, diacritic removal, correction of some
spelling errors), simple dictionary projection, and mono-label supervised clas-
sification. They used Linear SVM trained on the full training corpus and the
2012 dictionary provided for CLEF participants. This hybrid method obtained
an F-measure of 85.86%. The participants of the CLEF eHealth 2016 task 2 did
not use word embeddings or deep neural networks.

The CLEF eHealth 2017 ICD-10 coding task provided datasets which con-
sisted of death certificates in French and English [17]. Nine teams participated in
the shared task 1. Cabot et al. [20] applied a combination of a dictionary-based
approach and fuzzy match algorithms. Their system obtained an F-measures of
76.36% on French records and 80.38% on English records. Zweigenbaum and
Lavergne extended their hybrid method [19] to multi-label classification. They
obtained F-measures of 82.5% and 84.7% on French and English texts, respec-
tively. Miftakhutdinov and Tutubalina [4] obtained the best results in the CLEF
eHealth 2017 task 1, training an LSTM-based encoder-decoder architecture. As
input, the network uses the certificates’ text lines containing terms that could
be directly linked to a single ICD-10 code or several codes. As output, the net-
work predicts a sequence of codes. The model obtained an F-measure of 85% on
English texts. In this paper, we extend experiments with neural networks on a
corpus of French certificates.

Although deep neural network models and word embedding techniques are
widely used in most natural language processing task, so far they have found
limited use for the medical domain texts. Nevertheless, first studies towards us-
ing neural networks for medical concept coding could be noticed [4, 21, 5, 6, 22].
For instance, Karimi et al. [5] leveraged a simple convolutional neural network
and fully-connected layer to assign a single label (an ICD code) on a dataset
of radiology reports. Duarte et al. [6] applied bidirectional GRU-based neural
networks for the assignment of ICD-10 codes to the death certificates, together
with the associated autopsy reports and clinical bulletins, from the Portuguese
Ministry of Health. We note that those works did not discuss experimental com-
parison of their methods for one-label and multi-label classification of clinical
texts.



2.1 Material and Methods

In this section, we discuss challenges in the task, our datasets, and proposed
approaches. There are several challenges to concept coding as well as entity and
word disambiguation:

– Textual variations. Clinical records have multiple mention forms, includ-
ing lexical, morphological, and syntactic variations, synonyms (hypertension
vs. high blood pressure disorder), abbreviations (attention deficit hyperac-
tivity disorder vs. ADDH vs. ADHD), alternate spellings or grammatical
errors (diarrheas vs. diarrhoea).

– Multiple overlapping entities. Boundaries of different entities in the text
could be not well defined. For example, the sentence “metastatic adencarci-
noma of lung to brain” is associated with two concepts: “Malignant neoplasm
of unspecified part of bronchus or lung” (C349) and “Secondary malignant
neoplasm of brain and cerebral meninges” (C793).

– Ambiguity. A single mention, like aspiration, can match multiple UMLS en-
tries, e.g. Endotracheal aspiration, Pulmonary aspiration, Aspiration Pneu-
monia, Aspiration precautions. We note that a great number of ambiguous
words in the biomedical domain are actually abbreviations [23].

The combination of these challenges makes concept coding especially chal-
lenging with simple string matching algorithms and dictionary-based approaches.

2.2 Corpora

We briefly describe two real-world datasets used in our study. The CépiDc
corpus and the CDC corpus consist of free-form text death certificates in
French and English, respectively. These corpora were provided for the task of
ICD10 coding in CLEF eHealth 2017 (Task 1).

The CépiDc corpus was provided by the French institute for health and
medical research (INSERM). It consists of free text death certificates collected
from physicians and hospitals in France over the period of 2006–2014. The corpus
consists of 65,844, 27,850, and 31,690 raw texts for training, developing and
testing, respectively. The full set includes 131,426 codes (2,527 unique codes).
Statistics of the corpus are presented in Table 2. We note that the CépiDc
corpus contains 6 times more certificates than the CDC corpus. We utilize the
‘raw’ version of the CépiDc corpus for further experiments.

The CDC corpus was provided by the American Center for Disease Control
(CDC). The corpus consists of free text death certificates collected electronically
in the United States during the year 2015. The corpus consists of 13,330 and
14,833 raw texts for training and testing, respectively. Additionally, the CDC
test set includes the “external” test set which is limited to textual fragments
with ICD codes linked with a particular type of deaths, called “external causes”
or violent deaths. The full set includes 18,928 codes (900 unique codes), while
the “external” set includes only 126 codes (28 unique codes). Statistics of the
corpus are presented in Table 2. Examples of raw texts from death certificates
with medical concepts and ICD codes are presented in Table 3.



Table 1. Statistics of the CépiDc corpus from [24].

Train Development Test
Certificates 65,844 27,850 31,690
Year 2006–2012 2013 2014
Lines 195,204 80,899 91,962
Tokens 1,176,994 496,649 599,127
Total ICD codes 266,808 110,869 131,426
Unique ICD codes 3,233 2,363 2,527
Unique unseen ICD codes - 224 266

Table 2. Statistics of the CDC American Death Certificates Corpus from [24].

Train Test
Certificates 13,330 6,665
Year 2015 2015
Lines 32,714 14,834
Tokens 90,442 42,819
Total ICD codes 39,334 18,928
Unique ICD codes 1,256 900
Unique unseen ICD codes - 157

3 Our Approach

The basic idea of our approach is to map the input sequence to a fixed-sized vec-
tor, more precisely, some semantic representation of this input, and then unroll
this representation in the target sequence using a neural network model. This
intuition is formally captured in an encoder-decoder architecture. The output
sequence is not a tagging sequence with one-to-one matching like in Part-of-
Speech tagging task. It is the sequence of medical concepts corresponding to
input sequence semantics. In fact, this architecture is aimed to solve multi-label
classification problem, since output sequence could be interpreted as a set of
labels for a sample input sequence.

3.1 Recurrent Neural Networks

RNNs are naturally used for sequence learning, where both input and output are
word and label sequences, respectively. RNN has recurrent hidden states, which
aim to simulate memory, i.e., the activation of a hidden state at every time
step depends on the previous hidden state [25]. The recurrent unit computes a
weighted sum of the input signal. There is the difficulty of training RNNs to
capture long-term dependencies due to the effect of vanishing gradients [26], so
the most widely used modifications of a RNN unit are the Long Short-Term
Memory (LSTM) [27] and the Gated Recurrent Unit (GRU) [28].

An important modification of the basic RNN architecture is bidirectional
RNNs, where the past and the future context is available in every time step [29].



Table 3. Examples of raw texts from death certificates with medical concepts and ICD
codes.

# Sample Medical Concept Code
1 CKD STAGE III, CHF, SEVERE OSTEOPOROSIS

Chronic kidney disease, stage 3 N183
Congestive ventricular heart failure I500

Osteoporosis M819
2 CAD / s/p CABG / Volume overload

Acute coronary artery disease I251
Fluid overload E877

3 F.T.T.
Failure to thrive syndrome R628

4 Neutropenic fever, pneumonia
Chronic Neutropenia D70

Fever R509
Pneumonia J189

Bidirectional LSTMs, developed by Graves and Schmidhuber [30, 31], contain
two chains of LSTM cells flowing in both forward and backward direction, and
the final representation is either a linear combination or simply concatenation
of their states.

3.2 Encoder-Decoder Model

As shown in Figure 1, the model consists of two components based on RNNs:
an encoder and a decoder. The encoder processes the input sequence, while the
decoder generates the output sequence.

We adopted the architecture as described in [28, 4]. The input layer of our
model is vector representations of individual words. Word embedding models
represent each word using a single real-valued vector. Such representation groups
together words that are semantically and syntactically similar [32].

In order to incorporate prior knowledge, we additionally concatenated cosine
similarity vector to the encoded state using on tf-idf representation. CLEF par-
ticipants were provided with a manually created dictionary. The tf-idf score of
a word, as defined by Salton and Buckley [33], is a reasonable measure of word
importance. This score privileges the words that not only mention frequently in
a given document, but also appear rarely in other documents of a corpus.

Cosine similarity vector was calculated as follows. First, for each ICD-10 code
present in the dictionary, we construct a document by simply concatenating di-
agnosis texts belonging to that code. For the resulting document set, the tf-idf
transformation was computed; thus, every ICD-10 code was provided with a vec-
tor representation. For a given input sequence, the tf-idf vector representation
was calculated. Using the vector representation of the input sequence and each
ICD-10 code, the vector of cosine similarities was constructed such as follows: the



Fig. 1. An illustration of the encoder-decoder architecture.
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i-th position of vector is the cosine distance between input sequence represen-
tation and i-th ICD code representation. We have made the implementation of
our model available at the github repository1. We consider pairs (diagnosis text,
ICD1) from the dictionary for our system since most entries in the dictionary
are associated with these codes.

Neural networks require word representations as inputs. We investigate the
use of several different pre-trained word embeddings. We utilize word embed-
dings named HealthVec: publicly available 200-dimensional embeddings that
were trained on 2,607,505 unlabeled user comments from health information web-
sites using the Continuous Bag-of-Words model in [34]. We adopt 300-dimensional
embeddings trained on the French version of Wikipedia using fasttext [35]. We
also experiment with another published 200-dimensional embeddings named
PubMedVec, which were trained on biomedical literature indexed in PubMed
[36].

4 Experiments

In this section, we discuss the performance of neural networks.

4.1 Settings

To find optimal neural network configuration and word embeddings, the 5-fold
cross-validation procedure was applied to the training CDC set. We compared

1 https://github.com/dartrevan/clef 2017



Table 4. ICD-10 coding performance of the encoder-decoder model on the CDC test
set of English texts (left) and the CépiDc test set of French texts (right).

P R F
Encoder-decoder LSTM .907 .817 .860

Official results from [24]
KFU-run1 (ours) .893 .811 .850

TUC-MI-run1 .940 .725 .819
SIBM-run1 .839 .783 .810
WBI-run1 .616 .606 .611

LIRMM-run1 .691 .514 .589
Average score .670 .582 .622
Median score .646 .606 .611

Non-off. from [24]
LIMSI-run2 .899 .801 .847

P R F
Encoder-decoder LSTM .848 .673 .750

Official results from [24]
SIBM-run1 .857 .689 .764
LITL-run2 .666 .414 .510

LIRMM-run1 .541 .480 .509
LIRMM-run2 .540 .480 .508
Average score .475 .358 .406
Median score .541 .414 .508

Non-off. from [24]
LIMSI-run2 .872 .784 .825

TUC-MI-run1 .883 .539 .669

architectures with different numbers of neurons in hidden layers of the encoder
and the decoder. The best cross-validation F-score was obtained for the archi-
tecture with 600 neurons in the hidden layer of the encoder and 1000 neurons in
the hidden layer of the decoder. We tested bidirectional LSTM as decoder but
did not achieve an improvement over the left-to-right LSTM. Additionally, we
utilized the encoder with attention mechanism but did not achieve an improve-
ment on the validation set. We also established that 10 were enough for stable
performance on the validation sets. In contrast with our previous model [4], we
set the decoder to predict ICD codes from the training set, not all codes from
the dictionary. We adopted the train and validation sets of the CépiDc corpus
for training.

We have implemented networks with the Keras library [37]. LSTM is trained
on top of the embedding layer. We used the 600-dimensional hidden layer for
the encoder RNN chain. Finally, the last hidden state of LSTM chain output
concatenated with cosine similarities vector was fed into a decoding LSTM layer
with 1000-dimensional hidden layer and softmax activation. In order to prevent
neural networks from overfitting, we used dropout of 0.5 [38]. We used categorical
cross entropy as the objective function and the Adam optimizer [39] with the
batch size of 20.

4.2 Results

Our neural models were evaluated on texts in English using evaluation metrics
of task 1 such as precision (P), recall (R) and balanced F-measure (F).

Table 4 presents results of the LSTM-based encoder-decoder model trained
with PubMedVec and several official results of participants’ methods (TUC-
MI, SIBM, LIMSI teams, etc.) which did not resort to RNNs [20, 19, 24]. On
the CDC test set, LSTM-based encoder-decoder model obtained F-measure of
86.0% with significant improvement as compared to other methods. The neural
network obtained comparable results with the LIMSI team that combined SVM



Table 5. Performance of the encoder-decoder model on the CDC test sets.

Networks’ Settings = 1 code ≥ 2 codes Full set
encoder decoder emb P R F P R F P R F
biLSTM LSTM random, 100 d. .935 .899 .916 .837 .605 .702 .908 .813 .858
biLSTM LSTM random, 200 d. .934 .900 .917 .837 .603 .701 .903 .816 .857
biLSTM LSTM random, 300 d. .932 .899 .915 .827 .606 .699 .904 .814 .857
biLSTM LSTM HealthVec .932 .899 .915 .813 .601 .691 .902 .814 .856
biLSTM LSTM PubMedVec .937 .904 .920 .803 .623 .702 .907 .817 .860
biGRU LSTM PubMedVec .931 .901 .916 .829 .631 .717 .904 .823 .861
biGRU GRU PubMedVec .927 .896 .912 .800 .627 .703 .892 .819 .854

Table 6. Performance of the encoder-decoder model on the CépiDc full sets.

Networks’ Settings = 1 code ≥ 2 codes Full set
encoder decoder emb sim. P R F P R F P R F
biLSTM LSTM random, 100 d. no .868 .721 .787 .799 .340 .477 .832 .658 .735
biLSTM LSTM HealthVec no .874 .725 .793 .799 .340 .477 .836 .660 .737
biLSTM LSTM PubMedVec no .876 .728 .795 .806 .350 .488 .838 .669 .744
biLSTM LSTM PubMedVec yes .877 .728 .796 .815 .350 .490 .847 .673 .750
biLSTM LSTM French Wiki no .879 .730 .798 .815 .355 .495 .845 .677 .752
biLSTM LSTM French Wiki yes .874 .723 .792 .821 .350 .491 .848 .673 .750

with the dictionary for multi-label classification and submitted unofficial runs
due to conflict of interest. On the CépiDc test set, our neural network obtained
F-measure of 75.2% (without additional knowledge) and 75.0% (with similarity
vector) which is comparable results with SIBM team (F-measure of 76.4%).

The experiments with neural networks are presented in Tables 5 and 6. Each
dataset was divided into two parts: the one part contains records with only one
corresponding label, so we may consider this task to be single-label classification;
the other part contains records with two or more corresponding labels which
makes it multi-label classification task. The full dataset is also considered as
multi-labeled. For English dataset, the capacity of the first mentioned class is
86.03% of the full dataset and French dataset it is 72.9%.

Table 5 presents results for the English dataset. The best achieved F-measure
on single-label classification task is 92% for biLSTM with PubMedVec. For two
multi-label classification tasks (on the second part of the dataset and on the full
dataset) the best model was biGRU with PubMedVec achieving 72% and 86% of
F-measure, respectively. The second result is the best among all the participants
of this challenge. Interestingly the best precision on the experiment with second
class only is achieved by systems using random vectors. Overall the quality of
underlying vectors has limited influence on system performance.

Table 6 presents results for the French dataset. These results are comparable
with approaches presented by challenge participants, but our solution does not
use large vocabulary as additional input. The lowered system performance in
comparison with English dataset could be explained by two main reasons: (I)
the large number of Out-of-Vocabulary (OOV) words (app. 64% words of the



vocabulary) for French language which were not associated with embeddings, (II)
we did not perform language-dependent pre-processing steps including diacritic
removal and correction of some spelling errors (as in the LIMSI’s system), and
(III) unlike in the English dataset in CépiDc train and test sets have records from
different years, so the results could be influenced by changes in ICD-10 itself.
Interestingly, the vectors for the English language actually improve system’s
performance, which can be explained by the significant percentage of French
loan words in English language and consequently vocabulary sharing between
these two datasets.

5 Conclusion

In this paper, we introduce a neural network architecture with a specific appli-
cation to medical concept coding, i.e. linking the free-form language of clinical
records to particular entries in the International Classification of Diseases. We
find that by combining the encoder-decoder framework with cosine similarity
metrics and a traditional tf-idf weighting scheme, we achieve the state-of-the-art
results on the CDC corpus of English texts. Although we focus on ICD-10 coding
of death certificates, our model is extensible without any task-specific manual
feature engineering effort to other multi-label document tagging tasks, including
prediction of diagnoses and procedures.

We foresee three directions for future work. First, we plan to carry out exper-
iments on other datasets for medical code prediction including both MIMIC-II
and MIMIC-III datasets. Second, we believe attention should be given to in-
frequent codes since ICD-10-CM has more than 70,000 codes. From the system
perspective, future research might focus on embedding code descriptions and
ICD hierarchy to a latent space. If we can better incorporate prior knowledge
about codes, we may be able to infer rare medical events. From the medical side,
future work might focus on applying our automatic coding model to find mis-
classification in clinical records coded manually. The third promising direction
for research is to investigate multilingual models on datasets provided by CLEF
eHealth 2017 and 2018 challenges.
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