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ABSTRACT Relation extraction (RE) aims to extract relational facts from plain text, which is essential to
the biomedical research field with the rapid growth of biomedical literature and generally large volumes
of biomedicine-related text coming from various sources. Numerous annotated corpora and state-of-the-art
models have been introduced in the past five years. However, there are no general guidelines about evaluating
models on these corpora in single- and cross-domain settings with diverse entities and relation types. We aim
to fill this gap for the task of detecting whether a relation holds between two biomedical entities given a text
span. In this work, we present a fine-grained evaluation intended to perform a comparative evaluation of
four biomedical benchmarks and understand the efficiency of state-of-the-art neural architectures based on
Long Short-Term Memory (LSTM) with cross-attention and Bidirectional Encoder Representations from
Transformers (BERT) for relation extraction across two main domains, namely scientific abstracts and
electronic health records. We present a comparative evaluation of biomedical RE datasets, including the
PHAEDRA, i2b2/VA, BC5CDR, and MADE corpora. Our evaluation of BioBERT and LSTM for binary
classification shows significant divergence in in-domain and out-of-domain performance, finding an average
drop in F1-measure of 34.2% for BioBERT. The cross-attention LSTMmodel developed in this work exhibits
better cross-domain performance, with a drop of only 27.6% in F-measure.

INDEX TERMS Relation extraction, natural language processing, bioinformatics.

I. INTRODUCTION
Identification of semantic relations between entities found
in text, known as relation extraction (RE), plays a central
role in many areas of biomedical research and healthcare.
For example, relation extraction aims to identify the relation
between (Lyrica, adverse reaction, autoimmune hemolytic
anemia) from the following sentence: ‘‘She had just started
on Lyrica and was thought perhaps that this had exacerbated
her autoimmune hemolytic anemia’’. Biomedical entity types
include drugs/medications/chemicals, drug attributes, dis-
eases, adverse drug reactions, proteins, and other biomedical
objects, while relation types cover interactions among these
types.
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approving it for publication was Yongming Li .

With the rapid advances of deep learning in recent years,
neural relation extraction models have defined state of the
art performance for several years. In this work, we follow
the currently most well-researched direction and focus on
binary relations: given a pair of entity mentions in a text span,
the goal is to detect if the text indicates a relation between
this pair. Reported results of different neural networks vary
substantially on different corpora, with, for example, the
F1-measure (a common metric in this problem) ranging at
least from 75% to 86% on scientific abstracts [2], [6], [11]
and from 81% to 90% on electronic health records [1], [8].
The model performance is frequently evaluated under the
implicit hypothesis that the training data (source) and the test
data (target) come from the same underlying distribution, e.g.,
that both sets consist of PubMed abstracts from a specific
narrow sub-domain (e.g., cardiology or oncology). Such an
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assumption makes it hard to adopt supervised RE models in
real-world applications: a new or underresearched domain
may not have readily available large-scale labeled datasets.
A recurring problem is the re-use of models trained on
large-scale biomedical repositories (e.g., PubMed, clinical
databases) on new data.

In this work, we perform an extensive evaluation of
several neural RE models on four biomedical corpora. Each
corpus contains manually annotated relations among entity
mentions. Entity annotations can be clustered into those
related to sign, symptom, or disease mentions, and those
related to medication (drug name or chemical) mentions.
We fine-tune:

(i) a classifier based on Bidirectional Encoder Represen-
tations from Transformers (BERT) [4] that currently
achieves state of the art results on in-domain biomedical
RE [2], [6], [11], and

(ii) a novel neural model where context and entities are
processed by separate encoders based Long Short-Term
Memory (LSTM) [7], which interact through cross-
attention layers.

We aim to advance state of the art models in relation
extraction with various entity types and context characteris-
tics, concentrating on cross-domain evaluation. In particular,
in this work, we seek to answer the following research
questions:

RQ1: Do in-domain evaluation with training and testing
on each benchmark separately lead to a significant
overestimation of performance?

RQ2: Do models trained on texts from one source (e.g.,
scientific abstracts) perform better on texts from the
same source rather than others, i.e., clinical texts (or
vice versa)?

We answer the first question positively and show conflicting
results on the second. Importantly, we show that the proposed
model, while it loses to BioBERT on in-domain evaluation,
shows significantly better results in cross-domain evaluation,
with a much smaller drop in performance. This suggests that
cross-domain RE may need to be decoupled from in-domain
RE, and we suggest that the corresponding evaluation should
become part of the standard evaluation of new REmodels and
part of the corresponding benchmarks and leaderboards.

The paper is organized as follows. Section II introduces
four datasets that consist of scientific abstracts and/or clinical
records. Section III describes neural architectures used in
our experiments, including the newly proposed LSTM+CA
model. Section IV presents the results of our cross-domain
evaluation on the relation extraction task, and Section V
concludes the paper.

II. CORPORA
We use the following publicly available benchmarks:

(i) Medication and Adverse Drug Events from Electronic
Health Records (MADE) [8],

(ii) BioCreative V CDR (BC5CDR) [12],

(iii) PHArmacovigilence Entity DRug Annotation
(PHAEDRA) [19],

(iv) 2010 i2b2/VA corpus [20].

Table 1 shows some basic descriptive statistics of these four
datasets.

A. MADE
The Medication and Adverse Drug Events from Electronic
Health Records (MADE) challenge [8] introduced a task
for extraction of relations among medications, indications,
and adverse drug events (ADEs) from electronic health
record (EHR) notes taken from 21 randomly selected patients
with cancer. These EHRs include discharge summaries,
consultation reports, and other clinical notes. The total
number of records is 1089, and the train set consists of
876 records. There are three types of relations (7 in total):

(i) drug–indication (reason to use),
(ii) drug–ADE, and
(iii) attribute relations (drug–route, drug–dosage, drug–

duration, drug–frequency, other sign–severity).
This corpus contains the largest number of relations (27145)
with the largest average and maximum context length
between entities (29.9 and 981 respectively). Table 2 shows a
summary of different relation types from the MADE corpus.
Interestingly, two relation types, drug–indication and drug–
ADE, have themaximumdistance between entities exceeding
900 characters, which complicates the identification of
relations between these entities.

B. i2b2
The second corpus of clinical records used in our experiments
is the 2010 i2b2/VA corpus [20]. The 2010 i2b2/VA challenge
proposed a task to identify relations between a treatment
and a medical problem. The corpus includes 871 annotated
documents containing statements of discharges and case
histories. There are three types of relationships:

(i) medical problem–treatment,
(ii) medical problem–test,
(iii) medical problem–medical problem.
The first type includes cases in which treatment has
improved, worsened, or caused a medical problem or has
been prescribed due to a medical problem. The second type
indicates that a test is conducted to diagnose a medical
problem. The latter includes medical problems that reveal
aspects of the same medical problem or cause other medical
problems.

A summary of different relation types is shown in
Table 2. Relations of the type ‘‘Medical problem–treatment’’
and ‘‘Medical problem–test’’ dominate in the corpus. The
‘‘Medical problem–test’’ type has the largest context in
terms of the number of tokens (73), while the ‘‘Medical
problem–medical problem’’ relation type has the shortest
maximum context between entities. On average, the ‘‘Med-
ical problem–treatment’’ type has the shortest context length
(2.8 tokens), while the ‘‘Medical problem–test’’ has the
longest context length (4.8 tokens). Compared with other
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TABLE 1. Statistics of the datasets used in our experiments.

TABLE 2. Statistics on different relation types from the MADE, i2b2, and PHAEDRA corpora. Context length is measured in tokens.

corpora, the number of relations in the i2b2 test set exceeds
the training set’s number of relations. This corpus has the
smallest context window between entities (3.7 on average and
a maximum of 73 tokens).

C. BioCreative V CDR
BioCreative V CDR (BC5CDR) [12] introduces a task for
the extraction of chemical–disease relations from abstracts.
The corpus annotations contain entities denoting diseases
(Disease) and chemical preparations (Chemical), and rela-
tions between these entities. The corpus is divided into three
subsets: training, test, and development. The corpus consists
of 1500 documents, with the test set taking up one third of the
texts.

D. PHAEDRA
The PHArmacovigilence Entity DRug Annotation (PHAE-
DRA) corpus consists of 597 PubMed abstracts [19]. The
corpus contains three relation types:
(i) subject–disorder that includes disorders corresponded to

a complaint suffered by the subject(s),
(ii) is_equivalent that shows links between different names

of the same concept,
(iii) co-reference relation.

The first relation type is especially important since subjects
are frequently characterized by their existing medical condi-
tions while discussing drug effects.

As shown in Table 1, both CDR and PHAEDRA corpora
of abstracts contain a significantly lower number of context
tokens between entities than the MADE corpus (14.8 and
15.0 respectively vs. 29.9). The PHAEDRA corpus includes
the lowest number of annotated relations (1136 in total).
Summary statistics of different relation types are shown in
Table 2; in particular, it shows that 55% of relations in the
corpus are subject–disorder.

E. GENERATION OF NEGATIVE EXAMPLES
Since each corpus contains only positive examples of entity
pairs that appear in some relation, we have generated negative
samples for the i2b2, CDR, and PHAEDRA sets according
to the intra- and inter-sentence level rules proposed by [5].
In particular, for intra-sentence relations, we apply heuristic
rules as follows:

(i) the token distance between the two mentions should be
less than 10,

(ii) if there are multiple mentions in a sentence that refer to
the same entity, keep the nearest pair.
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FIGURE 1. Architecture of the proposed LSTM+CA for relation extraction.

For theMADE corpus, where the average distance between
entities is larger than in the other three corpora, we use the
generation of negative samples proposed by [22]. We apply
the following rules:

(i) the number of characters between entities should be less
than 1000,

(ii) the number of other entities that participate in relations
and occur between candidate entities should not be
exceeding 3.

We refer to [5], [22] for more details on negative example
generation.

III. MODELS FOR RELATION EXTRACTION
In this section, we describe our proposed relation extraction
framework in detail. Formally, each collection consists of
a set of documents D = {d1, d2, . . . , dn}. Each document
includes a set of annotated entities e1 = {w1

1,w
2
1, . . . ,w

|e1|
1 },

e2 = {w1
2,w

2
2, . . . ,w

|e2|
2 }, . . . , e

n
= {w1

n,w
2
n, . . . ,w

|en|
n }.

Entities ei and ej are in a relationship if the text indicates
their semantic interaction or influence on each other. The task
definition is as follows. For each pair of entities from one
document eki , e

k
j ∈ dk , i, j ∈ [1, |ek |], i 6= j, we determine

whether a relation r holds between them, r(eki , e
k
j ) = 1 or

not, r(eki , e
k
j ) = 0. We view this task as a binary classification

problem.
In recent years, state of the art neural methods adopt

different variations of attention mechanisms in order to
de-emphasize noisy or less important context (in terms of
tokens or sentences) for relation extraction [3], [9], [13],
[18], [23], [24], [26]. For comparative evaluation, we utilize

three models: (i) a BERT-based classifier, (ii) attention-
based convolutional neural network (CNN) (further named
CNN+A) [18], (iii) a novel cross-attention LSTM-based
model (further named LSTM+CA). In particular, we follow
the ideas originating in sentiment and multimodal classifica-
tion [14], [28] and propose to utilize the attention mechanism
associated with two entities to obtain important information
from the context to compute the final text representation for
classification. We note that our goal is not to achieve state of
the art performance with large pretrained fine-tuned language
models such as BERT on each dataset separately but to ask
which architecture can better transfer knowledge from one
domain to another.

A. CROSS-ATTENTION LSTM
Our proposed cross-attention LSTM network architecture is
presented in Figure 1. The model has three input layers.
As input, two layers take the entities encoded by the
word embeddings, while the third layer is fed with context
between entities, encoded by word embeddings and position
embeddings [25]. Position embeddings are based on the
assumption that words close to the target entities are usually
more informative for determining the relations between
entities. To determine position embeddings, we construct two
vectors that contain the relative distance from each token in
the context to each target entity. If a context token appears in
the text after the entity, then the relative position is a positive
number, otherwise the position is defined by a negative
number. Initially, each position is encoded with randomly
initialized vectors of length 5, and then optimal values of the
vectors are learned in the process of training the network.
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Outputs of all embedding layers are fed to LSTM layers
separately. Further, the attention mechanism is applied to the
outputs of the LSTM layers.

Let [h1c, h
2
c, . . . , h

n
c] be the hidden context represen-

tation obtained from the LSTM layer and let he1 =

[h1e1 , h
2
e1 , . . . , h

n
e1 ] and he2 = [h1e2 , h

2
e2 , . . . , h

n
e2 ] be the hidden

representations of entities. The average value is calculated for
each entity:

e1,avg =
1
m

n∑
i=1

hie1 , e2,avg =
1
m

n∑
i=1

hie2 .

For the context vector [h1c, h
2
c, . . . , h

n
c], an attention vector

α is generated with respect to each entity using the average
value of the entity vector e1,avg and e2,avg. The attention
vector for the first entity is defined as

α1,i =
exp(γ (hic, e1,avg))∑n
j=1 exp(γ (h

j
c, e1,avg))

,

where γ is a function that shows the degree of importance of
hic in the context. This parameter is defined as

γ (hic, e1,avg) = tanh
(
hic ·Wa · e>1,avg + ba

)
,

where Wa and ba are the weight matrix and the offset matrix
respectively, and e>1,avg denotes the transposition of e1,avg.
Similarly, the vector of the context attention relative to the
second entity is calculated as

α2,i =
exp(γ (hic, e2,avg))∑n
j=1 exp(γ (h

j
c, e2,avg))

,

where

γ (hic, e2,avg) = tanh
(
hic ·Wa · e>2,avg + ba

)
.

The final context vector representation is calculated based
on the resulting attention vectors:

ce1 =
n∑
i=1

α1,ihic, ce2 =
m∑
i=1

α2,ihic.

The context presentation vectors ce1 and ce2 are concate-
nated into one vector for further classification in the linear
layer with the softmax activation function.

We trained LSTM+CA with 300 hidden units for
10 epochs using 200-dimensional BioWordVec embed-
dings [27], learning rate of 0.001, batch size of 32, and Adam
optimizer [10]. The BioWordVec embeddings were trained on
texts from PubMed and the MIMIC-III Clinical Database.

Note that our in-domain experiments have demonstrated
that LSTM+CA outperforms LSTM with one input layer for
a text span of entities and context between them.

B. ATTENTION-BASED CNN
We utilize an attention-based convolutional neural network
(CNN+A) from [18], for which we introduce and consider a
simplified version. This network uses word-level attention to
select relevant words with respect to the target entities.

The network consists of two parts: the first part generates a
vector representation of the context using the CNN network,
while the second part extracts features based on the attention
layer. A concatenation of the obtained vectors is then fed
as input to the classification layer. Word representations,
positional features, and parts of speech are fed to the CNN
layer. Positional features are constructed in the same way as
in the cross-attention LSTM (Section III-A). Our experiments
showed that part-of-speech vectors did not yield any gains in
performance and thus were excluded.

The vector of attention weights is calculated as follows. Let
each sentence contain T words, and denote their vectors by
wit , where t ∈ [1,T ] is the index of a word in the ith sentence,
and entity vectors by eij, where j ∈ [1, 2] represents the jth
entity in the ith sentence. Further, word vectors wit and entity
vectors eij were concatenated to obtain a new representation
of words in the sentence:

hjit =
[
wit , eij

]
.

After that, ujit is calculated as the degree of relevance of
each word in the sentence in relation to the jth entity in the
ith sentence:

htji = [wit , eij],

uitj = Wa[tanh(Wwe)h
tj
i + bwe)]+ ba.

The weight vector αitj is then normalized by softmax:

αitj =
exp(uitj )∑
t exp(u

it
j )
.

Finally, the representation of a sentence is computed based
on the obtained values of attention weights as follows:

sij =
∑
t

αitj wit .

In-domain evaluation has shown that this architecture yield
results inferior to LSTM with cross-attention (see Table 3).

C. BERT
Bidirectional Encoder Representations from Transform-
ers (BERT) is a language model based on the bidirec-
tional multilayer Transformer architecture [21]. We utilize
BioBERTbase v1.0 (+PubMed 200K +PMC 270K) [11] and
the authors’ implementation of the relation extraction clas-
sifier1 BioBERT was trained on the texts of research paper
abstracts from PubMed and PMC. We trained BioBERT for
10 epochs with batch size 32.

IV. CROSS-DOMAIN EVALUATION
We train models on a source train set and evaluate on a
target test set. Let us use a A-B pair notation to indicate the

1Made available at https://github.com/dmis-lab/biobert/blob/master/
run_re.py
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TABLE 3. In-domain performance of LSTM with cross-attention, attention-based CNN, and BioBERT of macro F1.

TABLE 4. Cross-domain performance of LSTM with cross-attention (LSTM+CA) and BioBERT of macro F1. We report in-domain results on the diagonals
(grey cells), the average out-of-domain F1 and drop scores.

training set (A) and the test set (B). In this work, the models
were evaluated according to the recommendations presented
in [16].

Table 3 presents the results of in-domainmodels evaluation
for RE task in terms of macro F1. The BioBERT model
showed the highest results in the average F-measure on all
corpora. The highest results were obtained on theMADE case
(95.4%). LSTM+CA outperformed the CNNA model on all
sets. The largest gain of the LSTM+CAmodel in comparison
with CNNA was achieved on the Phaedra corpus (+5%).

Table 4 presents the results of cross-domain models
evaluation for RE task in terms of macro F1. Several obser-
vations can be drawn to answer RQ1. First, LSTM+CA and
BioBERT achieve 81.1%, and 86.1% averaged across four
sets on in-domain RE. With the in-domain setup, BioBERT
achieves 83.0% F1 on abstracts on 89.2% on clinical texts.
From the latter, it follows RE could be considered as a
largely solved task on EHRs. Yet, out-of-domain results
are significantly worse: LSTM+CA and BioBERT achieve
F1 of 53.5% and 51.9% averaged across 12 scores for
each model. To answer RQ2, we compare two averaged
results achieved (i) by models on four pairs (i2b2/MADE)-
(CDR/PHAEDRA) and (ii) by models on two pairs of
PubMed abstracts CDR-PHAEDRA and PHAEDRA-CDR.
To our surprise, results of LSTM+CA on CDR-PHAEDRA
are similar to averaged results on (i2b2/MADE)-PHAEDRA
(52.0% vs. 54.8%), yet F1 on i2b2-PHAEDRA is higher
(62.8%). Although CDR and PHAEDRA have equal context
length (app. 15 tokens), context vectors from PHAEDRA are
closer to context vectors from i2b2 than to CDR (see below).
Altogether, the average difference between the results’ pairs
is 5-6% F1. We summarize that the loss of quality is not

closely related to a change of a source (PubMed vs. EHRs).
We also refer to studies on protein-protein interaction corpora
of abstracts [16], [17], where the performance of a CNN
model on interaction detection varies 15-30% macro F1 on
test sets with the unified set of relations [17].

To analyze context similarity between corpora, we com-
pute the Euclidean distance between context representations.
For LSTM, we obtained context representations from the
LSTM’s output layer, which takes the context as input.
For BioBERT, we computed context representations as
an average of the last four layers’ hidden states. These
representations were normalized by dividing by maximum.

First, we apply the t-SNE algorithm [15] on each pair
of target and source sets to see that context representations
do overlap with each other. Figure 2 shows the visualiza-
tion of context representations. We observe that LSTM’s
context representations are denser than BioBERT’s vectors.
Second, we clustered representations and computed pairwise
Euclidean distance between cluster centers. According to the
calculated metrics of the distance between clusters, LSTM
generates closer vectors for different corpora compared to
BioBERT. In particular, the distance scores for LSTM’s
vectors are as follows: 4.25 for PHAEDRA-i2b2, 5.96 for
PHAEDRA-CDR, and 5.02 for CDR-i2b2. For BioBERT,
the distance scores as follows: 7.19 for PHAEDRA-i2b2,
6.29 for PHAEDRA-CDR, and 6.59 for CDR-i2b2. These
observations also confirm that there is room for improving
the transferability of BERT-based models, that is, the ability
to maintain large-scale performance.

To assess the relationship between the obtained classifi-
cation results and the context representations, we calculated
the Spearman correlation coefficient between the F-measures
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FIGURE 2. Visualization of context representations between entities for CDR (red), Phaedra (green) and i2b2 (blue). Representations
are derived from LSTM+CA and BioBERT.

and the distance between the contexts. For the cross-attention
LSTM, Spearman’s correlation coefficient is −0.717, and
for the BioBERT model, the coefficient is −0.517, which
proves the inverse relationship between the F-measure and
the distance: the larger the F-measure, the closer the distance
between sets and vice versa. Moreover, for the cross-attention
LSTM, this dependence is stronger (coefficient is closer
to −1). This determines higher results for the cross-attention
LSTM compared to BioBERT.

V. CONCLUSION
In this work, we have presented a comparative evaluation of
BERT-, CNN-, and LSTM-based neural models for relation
extraction on four biomedical datasets of scientific abstracts

and clinical records. While BioBERT has outperformed
CNN and LSTM when measured in terms of in-domain
performance, our cross-domain experiments have demon-
strated that LSTM with the proposed cross-attention layers
outperformed BioBERT by 1.6% F1-measure on out-of-
domain relation extraction. This indicates that a fine-tuned
language model, even a large one, has limited capacity to
decide if a relation holds between two entities given a text
span, and this capacity is hard to carry over across datasets
and domains, even closely related ones. We have observed
that the average drop in performance does not differ greatly
depending on the text domain. We believe that this evaluation
can serve as a step toward reliable evaluation of relation
extraction models and improving restricted leaderboards of
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the corresponding competitions. Moreover, this opens up a
natural question of developing models that have better cross-
domain performance; while in this work we have already
presented a model that improves over BioBERT in cross-
domain performance, this is merely a first step, and further
work is definitely required.
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