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A B S T R A C T

Relation extraction aims to discover relational facts about entity mentions from plain texts. In this work, we
focus on clinical relation extraction; namely, given a medical record with mentions of drugs and their attributes,
we identify relations between these entities. We propose a machine learning model with a novel set of knowl-
edge-based and BioSentVec embedding features. We systematically investigate the impact of these features with
standard distance- and word-based features, conducting experiments on two benchmark datasets of clinical texts
from MADE 2018 and n2c2 2018 shared tasks. For comparison with the feature-based model, we utilize state-of-
the-art models and three BERT-based models, including BioBERT and Clinical BERT. Our results demonstrate
that distance and word features provide significant benefits to the classifier. Knowledge-based features improve
classification results only for particular types of relations. The sentence embedding feature provides the largest
improvement in results, among other explored features on the MADE corpus. The classifier obtains state-of-the-
art performance in clinical relation extraction with F-measure of 92.6%, improving F-measure by 3.5% on the
MADE corpus.

1. Introduction

Drugs and diseases play a central role in many areas of biomedical
research and healthcare. Aggregating knowledge about these entities
across a broader range of domains is critical for information extraction
(IE) applications. Relation extraction is a central task for various
downstream applications such as knowledge base population and
knowledge retrieval. At the same time, a large part of biomedical re-
search has been focused on research abstracts; see a comprehensive
overview of the field in [1]. In contrast to biomedical literature, re-
search into the processing of electronic health records (EHRs) has not
reached the same level of maturity.

There has been increasing interest from both industry and academia
in automated computational models for IE from EHRs. There are still
differences between relations expressed in research abstracts and EHRs
that influence natural language processing (NLP) models: (i) there are
clear differences in length and structure, (ii) the writing style and dis-
course in EHRs are different from that of scientific texts; for example,
EHRs often consist of long sentences with multiple dependencies and
clauses between entities from different sentences [2]; (iii) doctors and
medical workers might use nonstandard vocabulary with shorter and

less formal variations of medical concepts or abbreviations. Hence,
increased availability of EHRs has represented an opportunity to tailor
biomedical NLP algorithms to EHRs trained to extract knowledge con-
tained in these texts.

As shown in Fig. 1, the goal of relation extraction is to detect re-
lations between medical entities in raw texts. Following recent works
[3–5], we view the relation extraction task as binary classification. The
classifier takes as input preannotated pairs of entities and aims to
identify the relation between them. For example, there is a relation
between the drug Ruxience plus CVP and the duration of 4 cycles in
Fig. 1.

In recent years, there has been a surge of interest in relation ex-
traction for biomedical texts, resulting in several competitive evalua-
tions organized by the research community. Recent systems from the
MADE shared task [6] are based on supervised methods and several
features [7–10]. However, there is a common limitation in these works;
namely, the contribution of features of different types has not been
comprehensively investigated.

To fill this gap, we systematically evaluate four types of features on
drug-related information extraction from EHRs: distance-based, word-
based, knowledge, and embedding. In addition to popular features, we
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propose novel features: (i) number of sentences and punctuation char-
acters between entities, (ii) previous co-occurrence of entities in bio-
medical documents from different sources, (iii) semantic types from
Medical Subject Headings (MeSH), and (iv) sentence embedding feature
obtained with a sent2vec model [11]. We apply a random forest model
and perform experiments on the MADE and n2c2 corpora. For com-
parison, we evaluate classifiers based on Bidirectional Encoder Re-
presentations from Transformers (BERT), and approaches of teams that
participated in the MADE and n2c2 shared tasks.

This work is a significantly extended journal version of the con-
ference paper [12]. Compared to the conference version, we have (i)
significantly extended the experimental part of this work to assess the
performance of the feature-based model; specifically, we added new
evaluation experiments on a second corpus from the 2018 n2c2 shared
task 2; (ii) carried out an ablation study on two corpora; (iii) extended
our description of related work, adding more summaries of the recent
neural architectures for relation extraction from general domain (e.g.,
news); (iv) evaluated concept embeddings for the representation of
entities; (v) compared the feature-based model with three versions of
BERT-based models in terms of micro-averaged F-measures. Our results
show that the length of context between entities has a drastic impact on
performance, while other features show similar performance patterns
on both corpora.

The paper is organized as follows. We begin with an overview of
existing relation extraction methods in Section 2. In Section 3, we
present description of two real-world datasets. We present a feature-
based model in Section 4. Descriptions of our experimental setup,
baselines, and the results are reported in Section 5. Finally, we sum-
marize our contributions and discuss directions for further research in
Section 7.

2. Related work

The first attempts to relation extraction from EHRs were made in
2008. Roberts et al. proposed a machine learning approach for relation
extraction from oncology narratives [13]. The model is based on SVM
with several features, including lexical and syntactic features assigned
to tokens and entity pairs. The system achieved an F-measure of 70%.
This model has implemented in a Clinical E-Science Framework (CLEF),
which aims to extract clinically significant information from EHRs. The
full CLEF IE system, including automatic entity recognition, was used to
extract 6 million relations from over half a million patient documents.

One of the challenges of an i2b2 2010 competition was devoted to
assigning relation types between medical problems, tests, and treat-
ments in clinical health records [14]. This challenge aimed to classify
relations between pairs of given reference standard concepts from a
sentence. The model based on semantic features from Medline abstracts
and parsing trees feature achieved the best performance among other
participants [15]. The system obtained F-measure of 73.7%. The model
developed by the team from NRC Canada achieved an F-measure of
73.1% [16]. This model is based on the maximum entropy classification

algorithm with the following set of features: parsing trees; word sur-
face; concept mapping; context, section, sentence, document-level fea-
tures; Pointwise Mutual Information between two entities calculated on
Medline abstracts. Besides, the authors applied category balancing and
semi-supervised training. The system in third place adopted a hybrid
approach that combines machine learning techniques and matching of
constructed linguistic patterns [17]. The authors trained an SVM with
three types of features: surface, lexical, and syntactic. The system ob-
tained an F-measure of 70.9%. The rest of the participants applied su-
pervised approaches and obtained results varying from 70.2% to 65.6%
in terms of F-measure [18–22]. One of the main problems faced by
participants was an unbalanced number of examples for each relation
type. The developed classifiers could capture larger classes accurately
by using basic textual features. However, handcrafted rules have to be
developed in order to recognize less common relation types.

Further studies on the i2b2 competition corpus were devoted to
hybrid systems based on rule-based and machine learning approaches
to improve classification performance. D’Souza and Ng employed a
combination of rule-based and machine learning models with a rich set
of knowledge-based features [23]. This approach yields a 17–24% re-
lative reduction in error over a state of the art learning-based baseline
system. Sahu et al. investigated the potential of a convolutional neural
network (CNN) for relation extraction [24]. The model takes as input
the whole sentence and generates a feature vector for every word in the
sentence. The resulting vectors go through convolutional, dense, and
softmax layers. The results indicate that CNNs can learn global features
that can capture contextual features quite well and thus help to improve
the performance. Lv et al. adopted conditional random fields and ap-
plied a deep learning model for features optimization by the employ-
ment of autoencoder and sparsity limitation [25].

Natural Language Processing Challenge for Extracting Medication,
Indication, and Adverse Drug Events from Electronic Health Record
Notes (MADE) was organized in 2018 [6]. The competition aimed to
extract ADRs and detect relations between drugs, their attributes, and
diseases. In contrast to the i2b2 competition, only entities are defined in
the corpus. Thus, it is necessary to make candidate pairs and then de-
termine if there is a relation between them. The system in first place
utilized a random forest model with the following features: (i) candi-
date entity types and forms, (ii) the number of entities between and
their types, (iii) tokens and part-of-speech tags between candidate en-
tities and adjacent to them [7]. According to the performance metrics
table of the competition, the described system obtained micro-averaged
F1 of 86.8%. Dandala et al. applied a combination of bidirectional long
short-term memory (biLSTM) and attention network and achieved
second place results with micro-averaged F-measure of 84% [8]. The
system in third place adopted a support vector machine (SVM) model
[10]. The classifier uses four types of features: position, distance, a bag
of words, and a bag of entities and obtained an micro-averaged F1
measure of 83.1%. Magge et al. employed a random forest model with
entity types, number of the word in entities, number of words between
entities, averaged word embeddings of each entity, and indicator of
presence in the same sentence as a feature [9]. This approach obtained
micro-averaged F1 of 81.6%. As one can see from the above, most
participating teams applied machine learning models, and the only one
utilized neural networks while the results were on par.

Munkhdalai et al. conducted additional experiments on MADE
corpus and explored three supervised machine learning systems for
relation identification: (1) an SVM model, (2) an end-to-end deep
neural network system, and (3) a supervised descriptive rule induction
baseline system [26]. The authors used the following features for the
SVM model: entity types, a number of clinical entities, tokens between
entities, n-grams between two entities and of surrounding tokens,
character n-grams of named entities. The combination of biLSTM and
attention was utilized as a neural network model. The maximum
averaged F-measure of 89.1% was obtained by the SVM classifier, while
the neural network achieved only an F-measure of 65.72%.

Fig. 1. Relation extraction. The example is chosen from the MADE corpus,
where blue, yellow, red, and green circles denote Duration, Drug, ADE, and
Severity entities, respectively; duration and adverse, severity_type denote dif-
ferent types of relations. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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The modern approaches for relation extraction are based on neural
networks. The most widespread model is the convolutional neural
network (CNN) [27–29]. Zeng et al. proposed CNN with multi-instance
learning, which can extract relation extraction based on distant super-
vision data [27]. In this model, CNN aims to create a semantic re-
presentation of a sentence. The model was evaluated on dataset gen-
erated by aligning Freebase relations with the New York Times corpus
and achieved 78.3% of precision. However, the method assumes that at
least one sentence that mentions these two entities will express their
relations and drop a large amount of rich information containing in
neglected sentences. To address this problem, Yankai et al. modified the
described model adding selective attention over sentence instances
[28]. The model achieved 72.2% of precision. Several models have been
tested on a benchmark dataset from the SemEval-2010 shared task.
Zeng et al. developed the convolutional deep neural network, which
takes word embeddings as input and produces lexical and sentence
features automatically [29]. This architecture performs relation ex-
traction without complicated text preprocessing. The model obtained
82.7% of F-measure. Zhang et al. applied biLSTM with additional fea-
tures derived from the lexical resources and NLP systems, including
WordNet, dependency parser, and named entity recognizer [30]. This
model performed 84.3% of F-measure. Zhou et al. improved biLSTM
with an attention layer [31] and achieved 84% of F-measures. This
model does not rely on features obtained with additional resources or
with NLP tools and takes a row text as an input, while the results stay on
par with the model from [30]. Zhi-Xiu et al. studied the problem of a
few-shot relation classification [32]. The authors proposed a multi-level
matching and aggregation network, which encodes query instances and
class prototypes in an interactive fashion. The model achieves a state-
of-the-art performance of 92.66% accuracy on a FewRel dataset. This
dataset consists of 70,000 sentences on 100 relations derived from
Wikipedia and annotated by crowd workers. To sum up, recent ap-
proaches for relation extraction from the general domain utilize ad-
vanced neural architectures. However, there is a substantial number of
differences between EHRs and general texts (e.g., from news or Wiki-
pedia) that make relation extraction from EHRs a specific challenge.

According to the reviewed studies, machine learning approaches
have a high potential for the clinical relation extraction task. However,
for real-world biomedical applications, the results need to be improved
[6]. The error analysis of systems shows three common errors:

(i) related entities more than two sentences away from each other;
(ii) a model wrongly marks entities as related if these entities occur

together in a small distance;
(iii) there is more than one entity related to the same entity and only

the closest relation is detected.

Also, most of the previously proposed studies devoted to relation ex-
traction from EHRs largely ignore valuable supportive information,
such as the context and knowledge sources. Therefore, the machine
learning approach proposed in this paper can be viewed as an extension
of the previous work on extracting relations from clinical notes.

3. Corpora

We evaluate our model on two corpora of de-identified EHRs: (i) a
Medication and Adverse Drug Events from Electronic Health Records
2018 (MADE) corpus [6] and (ii) a National NLP Clinical Challenge
2018 (n2c2) corpus [33]. Each corpus contains manually annotated
relations between drugs, diseases, and drugs’ attributes. The summary
statistics of the MADE and n2c2 corpora of annotated relations are
presented in Tables 1 and 2, respectively. The summary of each dataset
includes the number of relations, the average and maximum length of
context between entities (in characters).

3.1. MADE

MADE corpus consists of EHRs from 21 cancer patients [6]. These
EHRs include discharge summaries, consultation reports, and other
clinic notes. The overall number of records is 1089, where 876 records
were selected for training and 213 notes for testing. Several annotators
participated in the annotation process, including physicians, biologists,
linguists, and biomedical database curators. Each document was an-
notated with two annotators, one of which carried out the initial an-
notation, the second reviewed the annotations, and modified them to
produce the final version. The agreement between five annotators
computed in a set of three documents was 0.424, which is falls in the
fair-to-significant agreement range.

Each record annotated with the following types of entities: drug,
adverse drug reaction (ADR), indication, dose, frequency, duration,
route, severity, and SSLIF (other signs/symptoms/illnesses). There are 7
types of relations: drug–ade (adverse), sslif–severity (severity), dru-
g–route (route), drug–dosage (do), drug– duration (du), drug–-
frequency (fr), drug–indication (reason). As shown in Table 1, the most
common relation types are drug-dose, drug-indication, and frequency.
Two types of relationships (reason and adverse) have the maximum
distance between entities more than 900 characters, which complicates
the identification of relations between them.

3.2. n2c2

The n2c2 corpus consists of 505 discharge summaries obtained from
the MIMIC-III (Medical Information Mart for Intensive Care-III) clinical
resource [33]. A total of 303 annotated files were used as a training set,
and 202 files utilized for testing. Each record was screened to contain at
least one ADR. The records were annotated by two independent an-
notators while a third annotator resolved conflicts. The agreement rates
were not provided.

The corpus contains the following entity annotations: drug,
strength, form, dosage, frequency, route, duration, reason, ADR. There
are 8 types of relations: strength–drug (severity), form–drug (form),
dosage–drug (do), frequency–drug (fr), route–drug (route), duration–-
drug (du), reason–drug (reason), ADR–Drug (adverse). As shown in
Table 2, the most common relation types are form–drug, frequency–-
drug, and strength–drug. The reason and adverse relation types have
the longest context between entities, the same as in the MADE corpus.

Hence, both corpora contain 7 common types of relations, while the
n2c2 corpus contains an additional form-drug (form) type.

4. Features

We divide features into four categories: (i) distance-based, (ii) word-
based, (iii) embedding, and (iv) knowledge-based. Distance features are
based on counting different metrics between entities. Word features are
derived using various properties of context and entity words.
Embedding features are received from word embedding models pre-
trained on a large number of biomedical texts. Knowledge features are
obtained from biomedical resources. We describe each type of features
below.

1. Distance features:
• word distance (word_dist): the number of words between entities.
• char distance (char_dist): the number of characters between enti-
ties.
• sentence distance (sent_dist): the number of sentences between
entities.
• punctuation (punc_dist): the number of punctuation characters
between entities.
• position (position): the position of the entity candidate (drug or
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SSLIF type entity) with respect to the attribute among the entire
entity candidates of the attribute, where the position of medical
attribute is set to 0.

2. Word features:
• bag of words (bow): all words within a 10-word window before
and after the entities plus the entities text. We utilized as features
only words that appeared in such context windows with fre-
quencies 500 across the dataset.
• bag of entities (boe): the counts of all annotation types between the
entities.
• entity types (type): binary vector indicating the types of entities.

3. Embedding features:
• entities embeddings (ent_emb): the vectors obtained from pre-
trained word embedding models for each entity. We explored two
word embedding models, including trained on the concatenation
of Wikipedia and PubMed, PMC abstracts [34], and BioWordVec
created using PubMed and the clinical notes from MIMIC-III
Clinical Database [35]. For entities represented by several words
the averaged vector value was applied.
• concept embeddings (concept_emb): the vectors obtained from pre-
trained medical concept embeddings for each entity. We utilized
the set of 500-dimensional embeddings for UMLS concepts trained
on insurance claims for 60 million Americans, 1.7 million full-text
PubMed articles, and clinical notes from 20 million patients at
Stanford [36].
• sentence embedding (sent_emb): the vectors obtained from pre-
trained BioSentVec model for words between two entities [11].
BioSentVec was obtained using sent2vec library and consists of
700-dimensional sentence embeddings.
• similarity (sim): similarity measure between entities embedding
vectors. Four types of similarity measures were employed:
taxicab, Euclidean, cosine, coordinate. The vectors were obtained
from BioWordVec model [11].

4. Knowledge features:
• UMLS concept types (umls): UMLS1 (Unified Medical Language
System) semantic types of entities represented with binary vector.
We used a publicly available system QuickUMLS [37] and UMLS
2018AA version for extracting UMLS concepts.
• MeSH concept types (mesh): MeSH2 (Medical Subject Headings)
categories of entities represented with a binary vector.
• Occurrence in FDA clinical trials (fda): the number of co-occurrence
of both entities in approval document received from FDA3 for
each drug of dataset.
• Occurrence in biomedical literature (bio_texts): the number of enti-
ties co-occurrence in biomedical texts. The detailed description of
this feature is provided below.

Prior knowledge retrieved from available sources is essential for
today’s health specialists to keep up with and incorporate new health
information into their practices [38]. This process of retrieving relevant
information is usually carried out by querying and checking medical
articles. We propose a set of features based on primary sources of in-
formation to analyze the influence of this process on clinical decision
making. In particular, we utilize statistics from various resources using
Pharmacognitive4. This system provides access to databases of grants,
publications, patents, clinical trials, and others.

For our experiments, we focus on three sources: (i) scientific ab-
stracts from MEDLINE, (ii) USPTO patents, and (iii) projects from the
grant-making Agencies of USA, Canada, EU, and Australia. The
Pharmacognitive system allows retrieving statistics such as the number
of documents or overall funding per year matching a query. The queries

Table 1
The summary statistics for the MADE corpus.

# relations Avg. distance Max. distance

Relation type train test all train test all train test all

do 5176 866 6042 8.4 7.7 8.3 215 143 215
reason 4523 870 5393 89.3 63.8 85.2 981 868 981
fr 4417 729 5146 17.7 18.6 17.8 201 178 201

severity 3475 557 4032 2.6 1.8 2.5 259 188 259
adverse 1989 481 2470 59.4 45.6 56.7 937 718 937
route 2550 455 3005 13.5 12.9 13.4 191 137 191
du 906 147 1053 18.5 15.0 18.0 272 121 272

all 23 036 4109 27 145 30.6 26.0 29.9 981 868 981

Table 2
The summary statistics for the n2c2 corpus.

# relations Avg. distance Max. distance

Relation type train test all train test all train test all

do 4225 2695 6920 22.3 23.9 22.9 389 505 505
reason 5169 3410 8579 62.9 63.9 63.3 792 908 908
fr 6310 4034 10 344 30.4 32.4 31.2 413 348 413

severity 6702 4244 10 946 3.6 4.4 3.9 398 313 398
adverse 1107 733 1840 49.9 44.8 47.9 823 500 823
route 5538 3546 9084 26.4 28.6 27.2 402 514 514
du 643 426 1069 40.2 39.3 39.8 350 361 361
form 6654 4374 11 010 20.3 20.7 20.5 404 344 404

all 36 384 23 462 59 810 27.3 28.7 27.9 823 908 908

1 https://www.nlm.nih.gov/research/umls/.
2 https://www.nlm.nih.gov/mesh/meshhome.html.
3 https://www.fda.gov/.
4 https://pharmacognitive.com.
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are generated using terms from entities of three types: Drug, Indication,
and ADR. We extend all queries with terms’ synonyms provided by the
Pharmacognitive tools. We consider the following features for a in-
dividual query:

• the number of publications/patents/projects published in the par-
ticular year (3 features for each year from 1952 to 2018).
• the number of publications/patents/projects published before the
particular year (3 features for each year from 1953 to 2018).
• the total number of publications/patents/projects (3 features).
• the average and sum of projects’ funding published in the particular
year (2 features for each year from 1974 to 2018).
• the average and sum of projects’ funding published before the par-
ticular year (3 features for each year from 1975 to 2018).
• the average and sum of projects’ funding (2 features).

We also generate features based on statistics of publications and
projects for joint queries of two terms: Drug and a disease-related entity
(ADR or Indication).

5. Experiments

In this section, we describe our classifier model, entity pair gen-
eration, experiments, and results. We make the source code available at
the github repository https://github.com/Ilseyar/relation-extraction-
ehr.

5.1. Classifier

We build a system to resolve the task as a set of independent
Random Forest classifiers, one for each relation type. The Random
Forest model was implemented with a Scikit-learn library [39]. We
tuned the parameters on 5-fold cross-validation and set the number of
estimators equal to 100 and the weight balance: 0.7 for positive and 0.3
for negative classes to mitigate the imbalanced class issues.

5.2. Bidirectional Encoder Representations from Transformers (BERT)

BERT (Bidirectional Encoder Representations from Transformers) is
a recent neural network model for NLP presented by Google [40]. BERT
is based on bidirectional attention-based Transformer architecture [41].
We investigated three models: 1) general-domain BERT5 [40] 2) Bio-
BERT6 [42] 3) Clinical BERT7 [43]. General-domain BERT was pre-
trained on BooksCorpus and English Wikipedia. In particular, we utilize
BERTbase, Uncased, which has 2-heads, 12-layers, 768-hidden units per
layer, and a total of 110 M parameters. BioBERT was initialized with
General-domain BERT and in addition pre-trained on PubMed abstracts
(PubMed) and PubMed Central full-text articles (PMC) (version: Bio-
BERT v1.0 (+ PubMed 200 K + PMC 270 K)). Clinical BERT was in-
itialized with a general-domain BERT model and pre-trained on clinical
texts from the approximately 2 million notes in the MIMIC-III v1.4
database. For general-domain BERT and ClinicalBERT, we ran classifi-
cation tasks and for the BioBERT relation extraction task. We utilized
the entity texts combined with a context between them as an input. All
models were trained without a fine-tuning or explicit selection of
parameters. We observe that loss cost becomes stable (without sig-
nificant decrease) after 30–35 epochs.

5.3. Entities pair generation

For each entity, we obtained a set of candidate entities following the

rules from [10]: the number of characters between the entities is
smaller than 1000, and the number of other entities that may partici-
pate in relations and locate between the candidate entities is not more
than 3. These restrictions allow to reduce infrequent negative pairs and
mitigate the imbalanced class issues, while more than 97% of the po-
sitive pairs remain in the dataset.

5.4. Experiments and results

We utilize the model with distance and word features as a baseline.
Besides, we compare our results with two state-of-the-art approaches
for MADE corpus: proposed by Munkhdalai et al. [26] and by Li et al.
[44]. Munkhdalai et al. applied SVM with following features: (i) token
distance between the 2 entities, (ii) number of clinical entities between
the 2 entities, (iii) n-grams between the 2 entities, (iv) n-grams of
surrounding tokens of the 2 entities, (v) one-hot encoding of the left and
right entities types, (vi) character n-grams of the named entities. Li
et al. utilized modern capsule networks. For n2c2 corpus, we utilize Xu
et al. [45] approach as a baseline. This approach based on a combi-
nation of biLSTM and CRF models and obtained the best performance
on this dataset [33].

For distance and word features evaluation, we removed each of the
features individually and in combination. To determine the most sig-
nificant features from embedding and knowledge features sets, we add
each of the features separately to the baseline model. The F-measure for
each relation type and micro-averaged over all classes F1 were used as
evaluation metrics. The evaluation scripts provided by competitions’
organizers were applied to compute these values. The results for each
relation type and micro-averaged F-measure are shown in Tables 3 and
4.

The combination of baseline selected features achieved 86.6% and
85% of micro F-measure on MADE and n2c2 corpora, respectively. The
result for MADE corpus stays on par with the best an F-measure of
86.84% achieved in the MADE competition, while for the n2c2 corpus,
the baseline performed micro F-measure lower by 11.3% in comparison
to results obtained at the competition. The combination of baseline and
sentence embedding features achieved the best results of 92.6% of
micro-averaged F-measure on MADE corpus. Thus our model out-
performed the Munkhdalai et al. results on 3.5%, Li et al. approach on
5.4%, and baseline approach on 6% on MADE corpus. All reported
improvements of the baseline model with sentence embedding feature
over baseline and both state-of-the-art methods are statistically sig-
nificant with p-value < 0.01 based on the paired sample t-test.

For the n2c2 corpus, the models with a combination of baseline and
UMLS features obtained the best results of 85.2% F-measure. This result
did not outperform the first-place results of the n2c2 competition
(96.3%). Further, we provided a more detailed analysis of the presented
results.

According to the results, the classifier with only distance features
achieves the micro-averaged F-measure of 76.6% and 69.1% on MADE
and n2c2 corpora, respectively. Word, char, and punctuation features
seemed to be complementary to each other due to the absence of one of
them lead to approximately the same loss in results on both corpora.
The sentence feature is significant for the n2c2 corpus (-1%), while for
the MADE corpus, this feature did not give the improvement in results.
The position feature is significant for the MADE corpus (-0.8%), while
on the n2c2 corpus, the F-measure of the baseline method increased on
0.01% without position feature. The baseline model without distance
set of feature (see rows ‘word’ in Tables 3 and 4) decrease results of
micro F-measure on 19% and 37.2% on MADE and n2c2 corpora re-
spectively, which evidences the importance of these parameters for
relation classification.

The word-based features also improved the performance of the re-
lation extraction system. The most significant improvement of micro F-
measure obtained with a bag of words feature (+3.8 % on MADE and
+12.7% on n2c2), which can be explained by a larger vector size

5 This model is available at https://github.com/google-research/bert.
6 This model is available at https://github.com/naver/biobert-pretrained.
7 This model is available at https://github.com/EmilyAlsentzer/clinicalBERT.
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Table 3
The results of F-measure for each relation type and averaged micro F-measure of all relation types for MADE corpus. The distance and word features are applied as a
baseline.

Features severity route reason do du fr adverse all

baseline: distance & word feat-s .933 .918 .806 .906 .905 .896 .729 .866
Munkhdalai et al. [26] .950 .960 .750 .880 .910 .950 .850 .891

Li et al. [44] – – – – – – – .872

baseline-word_dist .923 .922 .812 .900 .860 .909 .716 .864
baseline-char_dist .929 .916 .810 .908 .869 .890 .731 .864
baseline-sent_dist .933 .919 .807 .910 .880 .906 .719 .866
baseline-punc_dist .926 .912 .798 .907 .836 .906 .735 .863
baseline-position .931 .917 .803 .897 .865 .883 .723 .858

distance .918 .843 .683 .859 .713 .780 .525 .766

baseline-boe .932 .897 .775 .888 .861 .868 .715 .845
baseline-bow .918 .906 .726 .895 .810 .843 .712 .828
baseline-type .934 .906 .779 .899 .891 .891 .562 .839

word .542 .777 .645 .662 .718 .846 .511 .672

baseline + emb_pubmed_pmc_wiki .927 .898 .730 .887 .684 .900 .605 .827
baseline + emb_bio .920 .903 .772 .893 .602 .908 .613 .833

baseline + concept_emb .920 .897 .764 .902 .910 .889 .610 .841
baseline + sent_emb .936 .954 .937 .929 .854 .938 .869 .926

sent_emb .932 .935 .909 .915 .854 .835 .782 .884
baseline + sim .920 .908 .796 .905 .880 .902 .737 .862

baseline + umls .936 .915 .815 .922 .883 .891 .734 .870
baseline + mesh .938 .918 .812 .910 .856 .904 .730 .868
baseline + fda .936 .912 .808 .906 .895 .909 .730 .868

baseline + bio_text .934 .918 .805 .906 .905 .896 .749 .866
baseline + knowledge .936 .914 .806 .916 .889 .896 .736 .848

BERT .951 .976 .845 .934 .946 .950 .767 .905
BioBERT .953 .978 .851 . 930 .940 .951 .770 .910

Clinical BERT .952 .972 .856 .926 .930 .930 .765 .900

Table 4
The results of F-measure for each relation type and micro-averaged F-measure of all relation types for the n2c2 corpus. The distance and word features are applied as
a baseline.

Features severity route reason do du fr adverse form all

baseline: distance & word feat-s .874 .896 .715 .872 .781 .839 .706 .912 .850
Xu et al. [45] – – – – – – – – .963

baseline-word_dist .872 .893 .712 .872 .769 .836 .702 .913 .848
baseline-char_dist .869 .889 .705 .871 .762 .833 .697 .904 .843
baseline-sent_dist .875 .892 .690 .868 .763 .825 .666 .902 .840
baseline-punc_dist .870 .891 .707 .869 .768 .832 .689 .908 .844
baseline-position .875 .896 .711 .871 .768 .843 .706 .917 .851

distance .636 .646 .646 .619 .626 .803 .601 .847 .691

baseline-boe .862 .873 .701 .864 .758 .828 .706 .899 .837
baseline-bow .662 .696 .672 .652 .639 .816 .648 .886 .723
baseline-type .877 .897 .712 .875 .757 .842 .694 .910 .850

word .586 .410 .344 .531 .378 .351 .352 .590 .478

baseline + emb_pubmed_pmc_wiki .740 .781 .569 .803 .535 .632 .453 .807 .740
baseline + emb_bio .738 .836 .587 .830 .554 .754 .491 .823 .755

baseline + concept_emb .801 .843 .605 .846 .698 .802 .467 .858 .789
baseline + sent_emb .870 .874 .593 .846 . 704 . 817 .586 .909 .822

sent_emb .607 .637 .528 .589 .592 .820 .524 .876 .670
baseline + sim .817 .893 .701 .882 .764 .850 .694 .903 .838

baseline + umls .875 .896 .716 .874 .769 .843 .696 .921 .852
baseline + mesh .874 .895 .705 .872 .768 .838 .708 .907 .847
baseline + fda .874 .907 .710 .871 .768 .840 .698 .909 .850

baseine + bio_text .874 .896 .647 .875 .770 .842 .485 .915 .840
baseline + knowledge .873 .897 .706 .875 .771 .840 .698 .909 .848

BERT .576 .634 .216 .670 .409 .531 .103 .624 .556
BioBERT .676 .738 .726 .815 .656 .786 .623 .810 .752

Clinical BERT .678 .735 .725 .817 .654 .783 .619 .808 .746
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compared to the rest of the word-based features. The bag of entities
feature also increased the results of the baselines on 2.1% and 1.3% on
MADE and n2c2 corpora, respectively (see rows ‘baseline-boe’). The
entity type feature improved micro F-measure only on MADE corpus
(+2.7%).

The results for embedding features show that entity embeddings and
similarity features decrease the results regardless of the word embed-
ding model used. The sentence embedding feature achieved the most
considerable improvement of baseline results and obtained 92.6% of
micro F-measure on MADE corpus. Moreover, the model trained only
with the sentence embedding feature, outperformed the baseline by
1.8%. However, the same results are not observed on the n2c2 corpus.
The sentence embedding feature decreased the results of the baseline F-
measure on 2.8%.

It is better to consider the results for different relation types sepa-
rately to evaluate knowledge features. The supplement of UMLS based
feature to baseline model increased the results of baseline for severity
(0.3%), reason (0.9%), dose (1.6%), and adverse (0.5%) relation types
on the MADE corpus. For the n2c2 corpus, this feature increased results
on severity (0.1%), reason (0.1%), dose (0.2%), frequency (0.4%) and
form (0.9%) types. The combination of baseline and UMLS features
performed the best results among knowledge features on both corpora;
moreover, this model achieved the best results on the n2c2 corpus (see
rows ‘baseline + umls’). On the MADE corpus, the supplement of MeSH
semantic types increased the results of baseline on the largest number
of relation types, including, severity (+0.3%), reason (+0.6%), dose
(+0.4%), frequency (0.8%) and adverse (0.1%) types. However, on the
n2c2 corpus, the “baseline + mesh” model increased results only for
adverse (+0.2%) relation type. The FDA co-occurrence model achieved
the most significant increase of F-measure on frequency type (1.3%) for
MADE corpus and route type (1.1%) for n2c2 corpus in comparison to
the baseline model. The number of co-occurrence in the biomedical
texts feature improved the classifier performance for adverse relation
type on 2% of F-measure on MADE corpus, while for n2c2 corpus, the
same model increased results on 0.3% of F-measure for dose, frequency
and form models (see rows ‘baseline + bio_text’). Thus, all knowledge
features both individually, and in combination, increased results of
severity and adverse relation types on the MADE corpus. The knowl-
edge features did not increase the results on route and duration types
for the MADE corpus. The UMLS feature increased results on more re-
lation types among knowledge features on the n2c2 corpus. The MeSH
feature is more effective for MADE corpus.

The BioBERT model performed the best results among BERT-based
models on both corpora (91% on MADE and 75.2% on n2c2). The

BioBERT model also achieved the best results for severity (95.3%),
route (97.8%), and frequency (95.1%) relation types on MADE corpus
and reason (72.6%) type on n2c2 corpus. However, for a reason and
adverse types, this model obtained F-measure approximately lower on
10% than the best-achieved results on both corpora. We suppose that
the results reducing for adverse and reason types can be caused for two
reasons: (i) the same disease in different cases could be an adverse drug
reaction and a reason, (ii) the average length of the context for these
relation types is too long to catch the relation between entities. It
should be noted that on the MADE corpus, the average micro F-measure
of BERT-based models stays on par, while on n2c2 corpus, the general-
domain BERT model performed significantly lower results in compar-
ison to the rest BERT-based models.

A comparison of results for different types of relation shows that the
best result was achieved for route (97.6%) on MADE corpus and form
(92.1%) on n2c2. This result roughly stays on par with the best results
for severity, reason, dose, duration, and frequency types, while the best
results for adverse type lower on 10.7% and 21.3% on MADE and n2c2
corpora, respectively. This difference in results could be due to the
greater lexicon variety of adverse drug reaction entity type.

To sum up this section, three important conclusions can be drawn.
First, the distance and word-based features are beneficial for the clas-
sifier. Second, the sentence embedding has more impact on entities’
relations than entities’ embeddings. Finally, the prior knowledge im-
proves the results on particular relation types and the most improve-
ment on MADE corpus achieved for adverse relation type with biome-
dical text co-occurrence feature (+2%) and on n2c2 corpus for route
relation type with FDA co-occurrence feature (+1.1%).

6. Error analysis

In this section, we present an analysis of classification errors. We
applied the baseline model for both MADE and n2c2 corpora. Figs. 2
and 3 present error statistics of different relation types for MADE and
n2c2 test sets. According to the statistic, the number of false-negative
errors exceeds the number of false-positive errors for both corpora. The
least number of errors the classifier makes for duration relation type,
while the higher rate of errors noted for reason relation type on both
corpora. Further, we provide a more detailed analysis of reason reason
relation type.

Table 5 outlines the main categories of errors found when

Fig. 2. Error statistics of different relation types for the MADE corpus.

Fig. 3. Error statistics of different relation types for the n2c2 corpus.
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evaluating F-measure of reason relation type classification on test sets.
According to the table, the main reason for false-negative errors is a
broad context between entities (75% on MADE and 76% on n2c2). The
presence of entities in different sentences equally complicates the
identification of relations on the same level for both corpora (64%). The
presence of other entities in the context leads to the wrong classification
result. This type of error is 5% more common for the MADE corpus. The
presence of more than five punctuation marks in the context also
complicates the identification of relations (22% on MADE and 19% on
n2c2). Such contexts typically describe enumerates or lists. For a false-
positive type, the absence of entities and short context are the most
common reasons for errors. The short context produces more errors in
the n2c2 corpus (87%), while the absence of entities is the most
common for the MADE corpus (89%). The presence of entities in the
train set as positive examples also leads to the false-positive error types
(73% on MADE and 85% on n2c2).

The best results achieved by the developed model for the MADE
corpus outperformed the best results obtained on the n2c2 corpus on
7.4% in terms of F-measure (92.6% on MADE and 85.2% on n2c2). We
suppose that this is due to a higher disbalance of positive and negative
examples in n2c2 corpus (7% of positive samples) in comparison to the
MADE corpus (11% of positive samples). We also find out that contexts
in the n2c2 corpus contain more abbreviations and terms, including
‘WBC’, ‘HIT’, ‘PRN’. It makes context representation of n2c2 more
complicated and leads to the wrong classification of relation. We as-
sume that more careful pre-processing of texts, including removing
punctuation marks, abbreviations, low frequently terms, and reducing
the class imbalance, can improve the quality of relation extraction on
the n2c2 corpus.

7. Conclusion

In this study, we have investigated different types of features for
drug-related information extraction tasks from EHRs. Our evaluation on
MADE and n2c2 corpora shows that distance-based and word-based
features prove to be the most beneficial for the relation extraction task.
The resulting classifier, using a combination of these sets of features
with sentence embedding, outperformed state of the art results. These
results lead to the conclusion that the context between entities plays a
crucial role in relation detection. A detailed analysis of our results has
shown that prior knowledge about the entities’ co-occurrence improves
the results for adverse and form relation types. Besides, we evaluated
the general-domain and two biomedical BERT models. The results in-
dicate that these models need fine-tuning for their parameters, in-
cluding learning rate and batch size. In future research, we plan to focus
on the investigation of modern neural networks for relation extraction
from EHRs. We also plan to analyze various context representation
methods and extend our experiments to other biomedical relation types.
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