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Non-inertial reference frames (NIRF)

General transformation of coordinates, 4-vectors and 4-tensors:

x i = x i(x̃k), dx i =
∂x i

∂x̃k
dx̃k , Ai =

∂x i

∂x̃k
Ãk , Ai =

∂x̃k

∂x i
Ãk

Aik =
∂x i

∂x̃ l
∂xk

∂x̃m
Ãlm, Aik =

∂x̃ l

∂x i
∂x̃m

∂xk
Ãlm, A

i
k =

∂x i

∂x̃ l
∂x̃m

∂xk
Ãl

m

δik - 4-tensor. The metric tensor: ds2 = gikdx
idxk . Properties:

gik = gki , gilg
kl = δik , g ≡ Det(gik) < 0, Ai = g ikAk , Ai =

gikA
k .



Transformation of the 4-volume differential from the
Minkowski metric in the Cartesian coordinates:

J =
∂(x0, x1, x2, x3)

∂(x̃0, x̃1, x̃2, x̃3)
=

1√
−g

, dΩ̃→ 1

J
dΩ =

√
−g dΩ

.

An important particular case: transformation to an uniformly
rotating reference system (tilted coordinates - in non-rotating
RF):

x̃ = x cos Ωt − y sin Ωt, ỹ = x sin Ωt + y cos Ωt, z̃ = z , t̃ = t

ds2 =
[
c2 − Ω2(x2 + y 2)

]
dt2 − dx2 − dy 2 − dz2

+2Ωydtdx − 2Ωxdtdy

Light cylinder: x2 + y 2 = c2

Ω2 . The reference system may not
be realized by rigid physical bodies beyond it.



Covariant partial derivative

Semicolon - covariant partial derivative.
∂a
∂x i
≡ a,i = a;i , but Ai

,k is not a 4-tensor and

dAi = Ai(xk + dxk)− Ai(xk) is not a 4-vector. To determine
the difference of two 4-vectors, they should be first placed into
one point of space-time by using the vector parallel transport
operation. The change of a 4-vector Ai after its parallel
transport from x l to x l + dx l is given by:

δAi = −Γi
klA

kdx l

where Γi
kl are the Christoffel symbols (or, the affine

connection). By considering the transport of the scalar
product, δ(AiB

i) = 0, we get δAi = Γk
ilAkdx

l .



The total covariant change in Ai and Ai :

DAi = dAi − δAi =

(
∂Ai

∂x l
+ Γi

klA
k

)
dx l

DAi = dAi − δAi =

(
∂Ai

∂x l
− Γk

ilAk

)
dx l

Ai
;l =

∂Ai

∂x l
+ Γi

klA
k , Ai ;l =

∂Ai

∂x l
− Γk

ilAk

The assumptions:
1) gik;l = 0 - no nonmetricity;
2) Γi

kl = Γi
lk - no torsion.

Then the Christoffel symbols coincide with the Levi-Civita
connection. Let us define Γi ,kl = gimΓm

kl (here comma does not
mean derivative).



Relation of the Levi-Civita connection to metric
From gik;l = 0:

∂gik
∂x l

= Γk,il + Γi ,kl ,
∂gil
∂xk

= Γi ,kl + Γl ,ik , −
∂gkl
∂x i

= −Γl ,ki − Γk,il

Γi ,kl =
1

2

(
∂gik
∂x l

+
∂gil
∂xk
− ∂gkl
∂x i

)
Γi
kl =

1

2
g im

(
∂gmk

∂x l
+
∂gml

∂xk
− ∂gkl
∂xm

)

Useful relations:

dg = gg ikdgik = −ggikdg ik , Γk
ik =

∂ ln
√
−g

∂x i

Ai
;i =

1√
−g

∂(
√
−gAi)

∂x i
, φ;i

;i =
1√
−g

∂

∂x i

(√
−gg ik ∂φ

∂xk

)



The equivalence principle

The gravitational constant (the 2018 CODATA recommended
value) G = 6.67430(15)× 10−8 cm3 g−1 s−2.

Relativistic effects in gravity becomes important when |∆ϕ|
c2 is

not small compared to unity where ϕ is the Newtonian
gravitational potential. Further in my lectures: c = 1.

Two forms of the equivalence principle.
1. The weak equivalence principle (WEP): mi = mg ,pass .
Tested with the accuracy 3 · 10−15 by now (the MICROSCOPE
mission, arXiv:2209.15488).
2. The strong equivalence principle (SEP): mg ,pass = mg ,act .
Tested with the accuracy 3× 10−6 by now (in the triple stellar
system PSR J0337+1715 : a neutron star (radio pulsar) and
two white dwarfs, arXiv:1807.02059).



Action and equations of motion for a massive

particle
WEP: locally motion in the gravitational field is
indistinguishable from that in a NIRF. But now we don’t
assume that the interval ds can be globally transformed to its
form in the Minkowski space-time. Locally, it is always
possible. Moreover, locally all the Christoffel symbols can be
made zero using the local coordinate transformation
x̃ i = x i + 1

2
(Γi

kl)0x
kx l - the local IRF.

The action has the same form as in Special Relativity:

S = −m
∫ b

a

ds

Equations of motion:

Dui

ds
≡ dui

ds
+ Γi

klu
kul = 0



The Hamilton-Jacobi equation has the same form, too:

g ik ∂S

∂x i
∂S

∂xk
= m2

The limit m = 0 gives the eikonal equation in GR for the
motion of light in the geometric optics approximation:

g ik ∂ψ

∂x i
∂ψ

∂xk
= 0

Transition to the non-relativitic Newton gravity:

L = −m +
mv 2

2
−mϕ→ ds =

(
1− v 2

2
+ ϕ

)
dt →

→ ds2 = (1 + 2ϕ)dt2 − dr2 → g00 = 1 + 2ϕ



The Riemann tensor

The new effect appearing in curved space-time: a 4-vector
changes after its parallel transport along a closed loop
∆Ak = 1

2
R i

klmAi∆f lm.
An equivalent way to introduce the Riemann tensor (the
second conventional choice of sign):

Ai ;k;l − Ai ;l ;k = AmR
m
ikl

R i
klm =

∂Γi
km

∂x l
− ∂Γi

kl

∂xm
+ Γi

nlΓ
n
km − Γi

nmΓn
kl

Properties of the Riemann tensor:
1. Riklm = −Rkilm = −Rikml = Rlmik .
2. Riklm + Rimkl + Rilmk = 0.
3. Rn

ikl ;m + Rn
imk;l + Rn

ilm;k = 0 - the Bianchi identity.



The Ricci tensor and the gravitational field action
The Ricci tensor is defined as (the third conventional choice of
sign):

R i
k = Rm

imk

Rik = Rki , R
k
i ;k =

1

2
R,i

The Ricci scalar (or, scalar curvature): R ≡ R i
i

The action for the gravitational field:

Sg = − 1

16πG

∫
(R + 2Λ)

√
−gdΩ

The action can be represented in a not generally covariant
form containing squares of the first derivatives of the metric
tensor using the identity

√
−gR =

√
−gg ik(Γm

il Γl
km − Γl

ikΓm
lm) +

∂(
√
−gw i)

∂x i



The vacuum Einstein equations with a

cosmological constant

δSg/δg
ik = 0

The useful relation δ
√
−g = − 1

2
√
−g δg = −1

2

√
−ggikδg ik .

(−16πG )δSg =∫ (
Rik − 1

2
gik(R + 2Λ)

)
δg ik√−gdΩ +

∫
g ikδRik

√
−gdΩ

It can be shown that the last term in the integrand is the total
derivative:

√
−gg ikδRik =

∂

∂x l
(
√
−gv l)

In the local IRF where all Γi
kl = 0, v l = g ikδΓl

ik − g ilδΓk
ik .

The vacuum Einstein equations with a cosmological constant

Rik −
1

2
gikR = gikΛ

The differentiation (; k) gives 0 = 0 due to the Bianchi
identity.



Spherically symmetric vacuum gravitational field
The most general spherically symmetric space-time metric:

ds2 = A(t, r)dt2+B(t, r)dtdr−C (t, r)dr 2−D(t, r)(dθ2+sin2 θdφ2)

Remaining freedom of coordinate transformations:
r = f1(r̃ , t̃), t = f2(r̃ , t̃).

ds2 = eνdt2 − eλdr 2 − r 2(dθ2 + sin2 θdφ2)

Γ1
11 =

λ′

2
, Γ0

10 =
ν ′

2
, Γ1

00 =
ν ′

2
eν−λ

Γ0
00 =

ν̇

2
, Γ1

10 =
λ̇

2
, Γ0

11 =
λ̇

2
eλ−ν

Γ2
12 = Γ3

13 =
1

r
, Γ1

22 = −re−λ, Γ1
33 = −re−λ sin2 θ

Γ3
23 = cot θ, Γ2

33 = − sin θ cos θ



Λ = 0, R1
1 −

1

2
R = −e−λ

(
ν ′

r
+

1

r 2

)
+

1

r 2
= 0

R0
0 −

1

2
R = −e−λ

(
−λ

′

r
+

1

r 2

)
+

1

r 2
= 0, R1

0 = −e−λ λ̇
r

= 0

From the last equation: λ = λ(r). The difference of the
second and third equations gives λ + ν = f (t). f (t) can be
made zero by using the remaining possible transformation of
time t = f3(t̃). Thus, spherically symmetric vacuum
gravitational field appears to be static (for the range of r for
which it has sense). Then integration of the second equation
gives e−λ = eν = 1− rg

r
, rg = 2GM .

The Schwarzschild metric describing the outer region of a
non-rotating black hole:

ds2 =
(

1− rg
r

)
dt2 − dr 2

1− rg
r

− r 2(dθ2 + sin2 θdφ2)

Space-time remains regular at r = rg .
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